2
0
mirror of https://github.com/Shawn-Shan/fawkes.git synced 2024-11-09 13:41:31 +05:30
fawkes/evaluation/eval_local.py

190 lines
7.7 KiB
Python
Raw Normal View History

import argparse
import glob
import os
import random
import sys
import keras
import numpy as np
random.seed(1000)
2020-07-21 11:43:28 +05:30
from fawkes.utils import init_gpu, load_extractor, load_victim_model, get_file, preprocess, Faces, filter_image_paths
from keras.preprocessing import image
from keras.utils import to_categorical
from fawkes.align_face import aligner
def select_samples(data_dir):
all_data_path = []
for cls in os.listdir(data_dir):
cls_dir = os.path.join(data_dir, cls)
for data_path in os.listdir(cls_dir):
all_data_path.append(os.path.join(cls_dir, data_path))
return all_data_path
class DataGenerator(object):
def __init__(self, original_images, protect_images):
l = int(len(original_images) * 0.7)
self.original_images_test = original_images[l:]
self.protect_images_train = protect_images[:l]
other_classes = range(0, 20946)
selected_classes = random.sample(other_classes, args.num_other_classes)
print("Downloading additional data...")
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
self.id2label = {-1: 0}
self.id2path = {}
self.id2pathtest = {}
idx = 1
for target_data_id in selected_classes:
image_dir = os.path.join(model_dir, "target_data/{}".format(target_data_id))
os.makedirs(os.path.join(model_dir, "target_data"), exist_ok=True)
os.makedirs(image_dir, exist_ok=True)
self.id2label[target_data_id] = idx
idx += 1
for i in range(10):
if os.path.exists(os.path.join(model_dir, "target_data/{}/{}.jpg".format(target_data_id, i))):
continue
try:
get_file("{}.jpg".format(i),
"http://sandlab.cs.uchicago.edu/fawkes/files/target_data/{}/{}.jpg".format(target_data_id,
i),
cache_dir=model_dir, cache_subdir='target_data/{}/'.format(target_data_id))
except Exception:
print("error getting http://sandlab.cs.uchicago.edu/fawkes/files/target_data/{}/{}.jpg".format(
target_data_id,
i))
pass
all_pathes = glob.glob(os.path.join(model_dir, 'target_data/{}/*.jpg'.format(target_data_id)))
test_path = random.sample(all_pathes, 2)
train_path = [p for p in all_pathes if p not in test_path]
self.id2path[target_data_id] = train_path
self.id2pathtest[target_data_id] = test_path
self.num_classes = 1 + len(self.id2path)
np.random.seed(12345)
self.all_id = selected_classes + [-1]
def generate(self, test=False):
while True:
batch_X = []
batch_Y = []
cur_batch_path = np.random.choice(self.all_id, 32)
for p in cur_batch_path:
cur_y = self.id2label[p]
if test and p == -1:
continue
# protect class images in train dataset
elif p == -1:
cur_x = random.choice(self.protect_images_train)
else:
if test:
cur_path = random.choice(self.id2pathtest[p])
else:
cur_path = random.choice(self.id2path[p])
im = image.load_img(cur_path, target_size=(224, 224))
cur_x = image.img_to_array(im)
cur_x = preprocess(cur_x, 'imagenet')
batch_X.append(cur_x)
batch_Y.append(cur_y)
batch_X = np.array(batch_X)
batch_Y = to_categorical(np.array(batch_Y), num_classes=self.num_classes)
yield batch_X, batch_Y
def test_original(self):
original_y = to_categorical([0] * len(self.original_images_test), num_classes=self.num_classes)
return self.original_images_test, original_y
class CallbackGenerator(keras.callbacks.Callback):
def __init__(self, original_imgs, protect_imgs, original_y, original_protect_y, test_gen):
self.original_imgs = original_imgs
self.protect_imgs = protect_imgs
self.original_y = original_y
self.original_protect_y = original_protect_y
self.test_gen = test_gen
def on_epoch_end(self, epoch, logs=None):
_, original_acc = self.model.evaluate(self.original_imgs, self.original_y, verbose=0)
print("Epoch: {} - Protection Success Rate {:.4f}".format(epoch, 1 - original_acc))
def main():
sess = init_gpu(args.gpu)
ali = aligner(sess)
print("Build attacker's model")
image_paths = glob.glob(os.path.join(args.directory, "*"))
2020-07-21 11:43:28 +05:30
cloak_file_name = "_cloaked"
original_image_paths = sorted([path for path in image_paths if "cloaked" not in path.split("/")[-1]])
2020-07-21 11:43:28 +05:30
original_image_paths, original_loaded_images = filter_image_paths(original_image_paths)
protect_image_paths = sorted([path for path in image_paths if cloak_file_name in path.split("/")[-1]])
2020-07-21 11:43:28 +05:30
protect_image_paths, protected_loaded_images = filter_image_paths(protect_image_paths)
print("Find {} original image and {} cloaked images".format(len(original_image_paths), len(protect_image_paths)))
2020-07-21 11:43:28 +05:30
original_faces = Faces(original_image_paths, original_loaded_images, ali, verbose=1, eval_local=True)
original_faces = original_faces.cropped_faces
2020-07-21 11:43:28 +05:30
cloaked_faces = Faces(protect_image_paths, protected_loaded_images, ali, verbose=1, eval_local=True)
cloaked_faces = cloaked_faces.cropped_faces
2020-07-21 11:43:28 +05:30
if len(original_faces) <= 10 or len(protect_image_paths) <= 10:
raise Exception("Must have more than 10 protected images to run the evaluation")
num_classes = args.num_other_classes + 1
datagen = DataGenerator(original_faces, cloaked_faces)
original_test_X, original_test_Y = datagen.test_original()
print("{} Training Images | {} Testing Images".format(len(datagen.protect_images_train), len(original_test_X)))
train_generator = datagen.generate()
test_generator = datagen.generate(test=True)
base_model = load_extractor(args.base_model)
model = load_victim_model(teacher_model=base_model, number_classes=num_classes)
cb = CallbackGenerator(original_imgs=original_test_X, protect_imgs=cloaked_faces, original_y=original_test_Y,
original_protect_y=None,
test_gen=test_generator)
model.fit_generator(train_generator, steps_per_epoch=num_classes * 10 // 32,
epochs=args.n_epochs,
2020-07-21 11:43:28 +05:30
verbose=1,
callbacks=[cb]
)
_, acc_original = model.evaluate(original_test_X, original_test_Y, verbose=0)
print("Protection Success Rate: {:.4f}".format(1 - acc_original))
def parse_arguments(argv):
parser = argparse.ArgumentParser()
2020-07-14 05:37:08 +05:30
parser.add_argument('--gpu', type=str,
help='GPU id', default='0')
parser.add_argument('--dataset', type=str,
help='name of dataset', default='scrub')
parser.add_argument('--num_other_classes', type=int,
2020-07-21 11:43:28 +05:30
help='name of dataset', default=500)
parser.add_argument('--directory', '-d', type=str,
help='name of the cloak result directory', required=True)
parser.add_argument('--base_model', type=str,
help='the feature extractor used for tracker model training. ', default='low_extract')
parser.add_argument('--n_epochs', type=int, default=5)
return parser.parse_args(argv)
if __name__ == '__main__':
args = parse_arguments(sys.argv[1:])
main()