mirror of
https://github.com/Shawn-Shan/fawkes.git
synced 2024-12-22 07:09:33 +05:30
0.3
This commit is contained in:
parent
e25cff66ac
commit
1a810c8fb7
@ -80,7 +80,7 @@ class Fawkes(object):
|
||||
max_step = 1000
|
||||
lr = 8
|
||||
else:
|
||||
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
|
||||
raise Exception("mode must be one of 'min', 'low', 'mid', 'high', 'ultra', 'custom'")
|
||||
return th, max_step, lr
|
||||
|
||||
def run_protection(self, image_paths, mode='min', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png',
|
||||
|
@ -233,7 +233,6 @@ def load_victim_model(number_classes, teacher_model=None, end2end=False):
|
||||
|
||||
def resize(img, sz):
|
||||
assert np.min(img) >= 0 and np.max(img) <= 255.0
|
||||
|
||||
from keras.preprocessing import image
|
||||
im_data = image.array_to_img(img).resize((sz[1], sz[0]))
|
||||
im_data = image.img_to_array(im_data)
|
||||
@ -431,18 +430,12 @@ def dump_image(x, filename, format="png", scale=False):
|
||||
|
||||
def load_embeddings(feature_extractors_names):
|
||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
||||
dictionaries = []
|
||||
for extractor_name in feature_extractors_names:
|
||||
fp = gzip.open(os.path.join(model_dir, "{}_emb.p.gz".format(extractor_name)), 'rb')
|
||||
path2emb = pickle.load(fp)
|
||||
fp.close()
|
||||
dictionaries.append(path2emb)
|
||||
|
||||
merge_dict = {}
|
||||
for k in dictionaries[0].keys():
|
||||
cur_emb = [dic[k] for dic in dictionaries]
|
||||
merge_dict[k] = np.concatenate(cur_emb)
|
||||
return merge_dict
|
||||
return path2emb
|
||||
|
||||
|
||||
def extractor_ls_predict(feature_extractors_ls, X):
|
||||
|
Loading…
Reference in New Issue
Block a user