2
0
mirror of https://github.com/Shawn-Shan/fawkes.git synced 2024-12-22 07:09:33 +05:30
Former-commit-id: 268fb7e6825ddfc1165fa7adc7c216f9d61005da [formerly 06376993a831c060c337ec6e7540252f0b2dfe09]
Former-commit-id: c4812d40187a76a878e7d215d22ee84811b41896
This commit is contained in:
Shawn-Shan 2020-07-01 21:16:03 -05:00
parent 3ba2abacf2
commit 889fd933e8
19 changed files with 1647 additions and 1099 deletions

View File

@ -0,0 +1 @@
58d500da850206b845bdd0150fa182a0ff8c50f0

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

80
fawkes/align_face.py Normal file
View File

@ -0,0 +1,80 @@
import detect_face
import numpy as np
import tensorflow as tf
# modify the default parameters of np.load
np_load_old = np.load
np.load = lambda *a, **k: np_load_old(*a, allow_pickle=True, **k)
def to_rgb(img):
w, h = img.shape
ret = np.empty((w, h, 3), dtype=np.uint8)
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
return ret
def aligner(sess):
pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
return [pnet, rnet, onet]
def align(orig_img, aligner, margin=0.8, detect_multiple_faces=True):
pnet, rnet, onet = aligner
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
if orig_img.ndim < 2:
return None
if orig_img.ndim == 2:
orig_img = to_rgb(orig_img)
orig_img = orig_img[:, :, 0:3]
bounding_boxes, _ = detect_face.detect_face(orig_img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
det_arr = []
img_size = np.asarray(orig_img.shape)[0:2]
if nrof_faces > 1:
margin = margin / 1.5
if detect_multiple_faces:
for i in range(nrof_faces):
det_arr.append(np.squeeze(det[i]))
else:
bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
img_center = img_size / 2
offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1],
(det[:, 1] + det[:, 3]) / 2 - img_center[0]])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
det_arr.append(det[index, :])
else:
det_arr.append(np.squeeze(det))
cropped_arr = []
bounding_boxes_arr = []
for i, det in enumerate(det_arr):
det = np.squeeze(det)
bb = np.zeros(4, dtype=np.int32)
side_1 = int((det[2] - det[0]) * margin)
side_2 = int((det[3] - det[1]) * margin)
bb[0] = np.maximum(det[0] - side_1 / 2, 0)
bb[1] = np.maximum(det[1] - side_1 / 2, 0)
bb[2] = np.minimum(det[2] + side_2 / 2, img_size[1])
bb[3] = np.minimum(det[3] + side_2 / 2, img_size[0])
cropped = orig_img[bb[1]:bb[3], bb[0]:bb[2], :]
cropped_arr.append(cropped)
bounding_boxes_arr.append([bb[0], bb[1], bb[2], bb[3]])
# scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
return cropped_arr, bounding_boxes_arr
else:
return None
#
# if __name__ == '__main__':
# orig_img = misc.imread('orig_img.jpeg')
# cropped_arr, bounding_boxes_arr = align(orig_img)
# misc.imsave('test_output.jpeg', cropped_arr[0])
# print(bounding_boxes_arr)
#

794
fawkes/detect_face.py Normal file
View File

@ -0,0 +1,794 @@
""" Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# from math import floor
import cv2
import numpy as np
import tensorflow as tf
from six import string_types, iteritems
def layer(op):
"""Decorator for composable network layers."""
def layer_decorated(self, *args, **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError('No input variables found for layer %s.' % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self, layer_input, *args, **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self
return layer_decorated
class Network(object):
def __init__(self, inputs, trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true, the resulting variables are set as trainable
self.trainable = trainable
self.setup()
def setup(self):
"""Construct the network. """
raise NotImplementedError('Must be implemented by the subclass.')
def load(self, data_path, session, ignore_missing=False):
"""Load network weights.
data_path: The path to the numpy-serialized network weights
session: The current TensorFlow session
ignore_missing: If true, serialized weights for missing layers are ignored.
"""
data_dict = np.load(data_path, encoding='latin1').item() # pylint: disable=no-member
for op_name in data_dict:
with tf.variable_scope(op_name, reuse=True):
for param_name, data in iteritems(data_dict[op_name]):
try:
var = tf.get_variable(param_name)
session.run(var.assign(data))
except ValueError:
if not ignore_missing:
raise
def feed(self, *args):
"""Set the input(s) for the next operation by replacing the terminal nodes.
The arguments can be either layer names or the actual layers.
"""
assert len(args) != 0
self.terminals = []
for fed_layer in args:
if isinstance(fed_layer, string_types):
try:
fed_layer = self.layers[fed_layer]
except KeyError:
raise KeyError('Unknown layer name fed: %s' % fed_layer)
self.terminals.append(fed_layer)
return self
def get_output(self):
"""Returns the current network output."""
return self.terminals[-1]
def get_unique_name(self, prefix):
"""Returns an index-suffixed unique name for the given prefix.
This is used for auto-generating layer names based on the type-prefix.
"""
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
return '%s_%d' % (prefix, ident)
def make_var(self, name, shape):
"""Creates a new TensorFlow variable."""
return tf.get_variable(name, shape, trainable=self.trainable)
def validate_padding(self, padding):
"""Verifies that the padding is one of the supported ones."""
assert padding in ('SAME', 'VALID')
@layer
def conv(self,
inp,
k_h,
k_w,
c_o,
s_h,
s_w,
name,
relu=True,
padding='SAME',
group=1,
biased=True):
# Verify that the padding is acceptable
self.validate_padding(padding)
# Get the number of channels in the input
c_i = int(inp.get_shape()[-1])
# Verify that the grouping parameter is valid
assert c_i % group == 0
assert c_o % group == 0
# Convolution for a given input and kernel
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
with tf.variable_scope(name) as scope:
kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o])
# This is the common-case. Convolve the input without any further complications.
output = convolve(inp, kernel)
# Add the biases
if biased:
biases = self.make_var('biases', [c_o])
output = tf.nn.bias_add(output, biases)
if relu:
# ReLU non-linearity
output = tf.nn.relu(output, name=scope.name)
return output
@layer
def prelu(self, inp, name):
with tf.variable_scope(name):
i = int(inp.get_shape()[-1])
alpha = self.make_var('alpha', shape=(i,))
output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp))
return output
@layer
def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'):
self.validate_padding(padding)
return tf.nn.max_pool(inp,
ksize=[1, k_h, k_w, 1],
strides=[1, s_h, s_w, 1],
padding=padding,
name=name)
@layer
def fc(self, inp, num_out, name, relu=True):
with tf.variable_scope(name):
input_shape = inp.get_shape()
if input_shape.ndims == 4:
# The input is spatial. Vectorize it first.
dim = 1
for d in input_shape[1:].as_list():
dim *= int(d)
feed_in = tf.reshape(inp, [-1, dim])
else:
feed_in, dim = (inp, input_shape[-1].value)
weights = self.make_var('weights', shape=[dim, num_out])
biases = self.make_var('biases', [num_out])
op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b
fc = op(feed_in, weights, biases, name=name)
return fc
"""
Multi dimensional softmax,
refer to https://github.com/tensorflow/tensorflow/issues/210
compute softmax along the dimension of target
the native softmax only supports batch_size x dimension
"""
@layer
def softmax(self, target, axis, name=None):
max_axis = tf.reduce_max(target, axis, keepdims=True)
target_exp = tf.exp(target - max_axis)
normalize = tf.reduce_sum(target_exp, axis, keepdims=True)
softmax = tf.div(target_exp, normalize, name)
return softmax
class PNet(Network):
def setup(self):
(self.feed('data') # pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='PReLU1')
.max_pool(2, 2, 2, 2, name='pool1')
.conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='PReLU2')
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='PReLU3')
.conv(1, 1, 2, 1, 1, relu=False, name='conv4-1')
.softmax(3, name='prob1'))
(self.feed('PReLU3') # pylint: disable=no-value-for-parameter
.conv(1, 1, 4, 1, 1, relu=False, name='conv4-2'))
class RNet(Network):
def setup(self):
(self.feed('data') # pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.fc(128, relu=False, name='conv4')
.prelu(name='prelu4')
.fc(2, relu=False, name='conv5-1')
.softmax(1, name='prob1'))
(self.feed('prelu4') # pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv5-2'))
class ONet(Network):
def setup(self):
(self.feed('data') # pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.max_pool(2, 2, 2, 2, name='pool3')
.conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4')
.prelu(name='prelu4')
.fc(256, relu=False, name='conv5')
.prelu(name='prelu5')
.fc(2, relu=False, name='conv6-1')
.softmax(1, name='prob1'))
(self.feed('prelu5') # pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv6-2'))
(self.feed('prelu5') # pylint: disable=no-value-for-parameter
.fc(10, relu=False, name='conv6-3'))
def create_mtcnn(sess, model_path):
if not model_path:
model_path, _ = os.path.split(os.path.realpath(__file__))
with tf.variable_scope('pnet'):
data = tf.placeholder(tf.float32, (None, None, None, 3), 'input')
pnet = PNet({'data': data})
pnet.load(os.path.join(model_path, 'weights/det1.npy'), sess)
with tf.variable_scope('rnet'):
data = tf.placeholder(tf.float32, (None, 24, 24, 3), 'input')
rnet = RNet({'data': data})
rnet.load(os.path.join(model_path, 'weights/det2.npy'), sess)
with tf.variable_scope('onet'):
data = tf.placeholder(tf.float32, (None, 48, 48, 3), 'input')
onet = ONet({'data': data})
onet.load(os.path.join(model_path, 'weights/det3.npy'), sess)
pnet_fun = lambda img: sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0': img})
rnet_fun = lambda img: sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0': img})
onet_fun = lambda img: sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'),
feed_dict={'onet/input:0': img})
return pnet_fun, rnet_fun, onet_fun
def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
"""Detects faces in an image, and returns bounding boxes and points for them.
img: input image
minsize: minimum faces' size
pnet, rnet, onet: caffemodel
threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
factor_count = 0
total_boxes = np.empty((0, 9))
points = np.empty(0)
h = img.shape[0]
w = img.shape[1]
minl = np.amin([h, w])
m = 12.0 / minsize
minl = minl * m
# create scale pyramid
scales = []
while minl >= 12:
scales += [m * np.power(factor, factor_count)]
minl = minl * factor
factor_count += 1
# first stage
for scale in scales:
hs = int(np.ceil(h * scale))
ws = int(np.ceil(w * scale))
im_data = imresample(img, (hs, ws))
im_data = (im_data - 127.5) * 0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0, 2, 1, 3))
out = pnet(img_y)
out0 = np.transpose(out[0], (0, 2, 1, 3))
out1 = np.transpose(out[1], (0, 2, 1, 3))
boxes, _ = generateBoundingBox(out1[0, :, :, 1].copy(), out0[0, :, :, :].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
if numbox > 0:
pick = nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick, :]
regw = total_boxes[:, 2] - total_boxes[:, 0]
regh = total_boxes[:, 3] - total_boxes[:, 1]
qq1 = total_boxes[:, 0] + total_boxes[:, 5] * regw
qq2 = total_boxes[:, 1] + total_boxes[:, 6] * regh
qq3 = total_boxes[:, 2] + total_boxes[:, 7] * regw
qq4 = total_boxes[:, 3] + total_boxes[:, 8] * regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:, 4]]))
total_boxes = rerec(total_boxes.copy())
total_boxes[:, 0:4] = np.fix(total_boxes[:, 0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
if numbox > 0:
# second stage
tempimg = np.zeros((24, 24, 3, numbox))
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = img[y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
out = rnet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1, :]
ipass = np.where(score > threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
mv = out0[:, ipass[0]]
if total_boxes.shape[0] > 0:
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick, :]
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:, pick]))
total_boxes = rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
if numbox > 0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48, 48, 3, numbox))
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = img[y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
tempimg1 = np.transpose(tempimg, (3, 1, 0, 2))
out = onet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1, :]
points = out1
ipass = np.where(score > threshold[2])
points = points[:, ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0], 0:4].copy(), np.expand_dims(score[ipass].copy(), 1)])
mv = out0[:, ipass[0]]
w = total_boxes[:, 2] - total_boxes[:, 0] + 1
h = total_boxes[:, 3] - total_boxes[:, 1] + 1
points[0:5, :] = np.tile(w, (5, 1)) * points[0:5, :] + np.tile(total_boxes[:, 0], (5, 1)) - 1
points[5:10, :] = np.tile(h, (5, 1)) * points[5:10, :] + np.tile(total_boxes[:, 1], (5, 1)) - 1
if total_boxes.shape[0] > 0:
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
pick = nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick, :]
points = points[:, pick]
return total_boxes, points
def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor):
"""Detects faces in a list of images
images: list containing input images
detection_window_size_ratio: ratio of minimum face size to smallest image dimension
pnet, rnet, onet: caffemodel
threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1]
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
all_scales = [None] * len(images)
images_with_boxes = [None] * len(images)
for i in range(len(images)):
images_with_boxes[i] = {'total_boxes': np.empty((0, 9))}
# create scale pyramid
for index, img in enumerate(images):
all_scales[index] = []
h = img.shape[0]
w = img.shape[1]
minsize = int(detection_window_size_ratio * np.minimum(w, h))
factor_count = 0
minl = np.amin([h, w])
if minsize <= 12:
minsize = 12
m = 12.0 / minsize
minl = minl * m
while minl >= 12:
all_scales[index].append(m * np.power(factor, factor_count))
minl = minl * factor
factor_count += 1
# # # # # # # # # # # # #
# first stage - fast proposal network (pnet) to obtain face candidates
# # # # # # # # # # # # #
images_obj_per_resolution = {}
# TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images
for index, scales in enumerate(all_scales):
h = images[index].shape[0]
w = images[index].shape[1]
for scale in scales:
hs = int(np.ceil(h * scale))
ws = int(np.ceil(w * scale))
if (ws, hs) not in images_obj_per_resolution:
images_obj_per_resolution[(ws, hs)] = []
im_data = imresample(images[index], (hs, ws))
im_data = (im_data - 127.5) * 0.0078125
img_y = np.transpose(im_data, (1, 0, 2)) # caffe uses different dimensions ordering
images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index})
for resolution in images_obj_per_resolution:
images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]]
outs = pnet(images_per_resolution)
for index in range(len(outs[0])):
scale = images_obj_per_resolution[resolution][index]['scale']
image_index = images_obj_per_resolution[resolution][index]['index']
out0 = np.transpose(outs[0][index], (1, 0, 2))
out1 = np.transpose(outs[1][index], (1, 0, 2))
boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'],
boxes,
axis=0)
for index, image_obj in enumerate(images_with_boxes):
numbox = image_obj['total_boxes'].shape[0]
if numbox > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0]
regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1]
qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw
qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh
qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw
qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh
image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)
numbox = image_obj['total_boxes'].shape[0]
tempimg = np.zeros((24, 24, 3, numbox))
if numbox > 0:
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2))
# # # # # # # # # # # # #
# second stage - refinement of face candidates with rnet
# # # # # # # # # # # # #
bulk_rnet_input = np.empty((0, 24, 24, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' in image_obj:
bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0)
out = rnet(bulk_rnet_input)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1, :]
i = 0
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' not in image_obj:
continue
rnet_input_count = image_obj['rnet_input'].shape[0]
score_per_image = score[i:i + rnet_input_count]
out0_per_image = out0[:, i:i + rnet_input_count]
ipass = np.where(score_per_image > threshold[1])
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)])
mv = out0_per_image[:, ipass[0]]
if image_obj['total_boxes'].shape[0] > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'], 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
numbox = image_obj['total_boxes'].shape[0]
if numbox > 0:
tempimg = np.zeros((48, 48, 3, numbox))
image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h)
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2))
i += rnet_input_count
# # # # # # # # # # # # #
# third stage - further refinement and facial landmarks positions with onet
# # # # # # # # # # # # #
bulk_onet_input = np.empty((0, 48, 48, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' in image_obj:
bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0)
out = onet(bulk_onet_input)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1, :]
points = out1
i = 0
ret = []
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' not in image_obj:
ret.append(None)
continue
onet_input_count = image_obj['onet_input'].shape[0]
out0_per_image = out0[:, i:i + onet_input_count]
score_per_image = score[i:i + onet_input_count]
points_per_image = points[:, i:i + onet_input_count]
ipass = np.where(score_per_image > threshold[2])
points_per_image = points_per_image[:, ipass[0]]
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)])
mv = out0_per_image[:, ipass[0]]
w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1
h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1
points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile(
image_obj['total_boxes'][:, 0], (5, 1)) - 1
points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile(
image_obj['total_boxes'][:, 1], (5, 1)) - 1
if image_obj['total_boxes'].shape[0] > 0:
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv))
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
points_per_image = points_per_image[:, pick]
ret.append((image_obj['total_boxes'], points_per_image))
else:
ret.append(None)
i += onet_input_count
return ret
# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox, reg):
"""Calibrate bounding boxes"""
if reg.shape[1] == 1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:, 2] - boundingbox[:, 0] + 1
h = boundingbox[:, 3] - boundingbox[:, 1] + 1
b1 = boundingbox[:, 0] + reg[:, 0] * w
b2 = boundingbox[:, 1] + reg[:, 1] * h
b3 = boundingbox[:, 2] + reg[:, 2] * w
b4 = boundingbox[:, 3] + reg[:, 3] * h
boundingbox[:, 0:4] = np.transpose(np.vstack([b1, b2, b3, b4]))
return boundingbox
def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty((0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
if boxes.size == 0:
return np.empty((0, 3))
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
s = boxes[:, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size > 0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o <= threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
"""Compute the padding coordinates (pad the bounding boxes to square)"""
tmpw = (total_boxes[:, 2] - total_boxes[:, 0] + 1).astype(np.int32)
tmph = (total_boxes[:, 3] - total_boxes[:, 1] + 1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:, 0].copy().astype(np.int32)
y = total_boxes[:, 1].copy().astype(np.int32)
ex = total_boxes[:, 2].copy().astype(np.int32)
ey = total_boxes[:, 3].copy().astype(np.int32)
tmp = np.where(ex > w)
edx.flat[tmp] = np.expand_dims(-ex[tmp] + w + tmpw[tmp], 1)
ex[tmp] = w
tmp = np.where(ey > h)
edy.flat[tmp] = np.expand_dims(-ey[tmp] + h + tmph[tmp], 1)
ey[tmp] = h
tmp = np.where(x < 1)
dx.flat[tmp] = np.expand_dims(2 - x[tmp], 1)
x[tmp] = 1
tmp = np.where(y < 1)
dy.flat[tmp] = np.expand_dims(2 - y[tmp], 1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
"""Convert bboxA to square."""
h = bboxA[:, 3] - bboxA[:, 1]
w = bboxA[:, 2] - bboxA[:, 0]
l = np.maximum(w, h)
bboxA[:, 0] = bboxA[:, 0] + w * 0.5 - l * 0.5
bboxA[:, 1] = bboxA[:, 1] + h * 0.5 - l * 0.5
bboxA[:, 2:4] = bboxA[:, 0:2] + np.transpose(np.tile(l, (2, 1)))
return bboxA
def imresample(img, sz):
im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) # @UndefinedVariable
return im_data
# This method is kept for debugging purpose
# h=img.shape[0]
# w=img.shape[1]
# hs, ws = sz
# dx = float(w) / ws
# dy = float(h) / hs
# im_data = np.zeros((hs,ws,3))
# for a1 in range(0,hs):
# for a2 in range(0,ws):
# for a3 in range(0,3):
# im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3]
# return im_data

View File

@ -47,7 +47,7 @@ class FawkesMaskGeneration:
max_iterations=MAX_ITERATIONS, initial_const=INITIAL_CONST,
intensity_range=INTENSITY_RANGE, l_threshold=L_THRESHOLD,
max_val=MAX_VAL, keep_final=KEEP_FINAL, maximize=MAXIMIZE, image_shape=IMAGE_SHAPE,
verbose=0, ratio=RATIO, limit_dist=LIMIT_DIST):
verbose=0, ratio=RATIO, limit_dist=LIMIT_DIST, faces=None):
assert intensity_range in {'raw', 'imagenet', 'inception', 'mnist'}
@ -69,10 +69,12 @@ class FawkesMaskGeneration:
self.ratio = ratio
self.limit_dist = limit_dist
self.single_shape = list(image_shape)
self.faces = faces
self.input_shape = tuple([self.batch_size] + self.single_shape)
self.bottleneck_shape = tuple([self.batch_size] + self.single_shape)
# self.bottleneck_shape = tuple([self.batch_size, bottleneck_model_ls[0].output_shape[-1]])
# the variable we're going to optimize over
self.modifier = tf.Variable(np.zeros(self.input_shape, dtype=np.float32))
@ -149,8 +151,6 @@ class FawkesMaskGeneration:
self.dist_raw,
tf.zeros_like(self.dist_raw)))
self.dist_sum = tf.reduce_sum(tf.where(self.mask, self.dist, tf.zeros_like(self.dist)))
# self.dist_sum = 1e-5 * tf.reduce_sum(self.dist)
# self.dist_raw_sum = self.dist_sum
def resize_tensor(input_tensor, model_input_shape):
if input_tensor.shape[1:] == model_input_shape or model_input_shape[1] is None:
@ -171,16 +171,14 @@ class FawkesMaskGeneration:
self.bottleneck_a = bottleneck_model(cur_aimg_input)
if self.MIMIC_IMG:
# cur_timg_input = resize_tensor(self.timg_input, model_input_shape)
# cur_simg_input = resize_tensor(self.simg_input, model_input_shape)
cur_timg_input = self.timg_input
cur_simg_input = self.simg_input
self.bottleneck_t = calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input)
# self.bottleneck_t = bottleneck_model(cur_timg_input)
else:
self.bottleneck_t = self.bottleneck_t_raw
bottleneck_diff = self.bottleneck_t - self.bottleneck_a
scale_factor = tf.sqrt(tf.reduce_sum(tf.square(self.bottleneck_t), axis=1))
cur_bottlesim = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_diff), axis=1))
@ -189,7 +187,6 @@ class FawkesMaskGeneration:
self.bottlesim += cur_bottlesim
# self.bottlesim_push += cur_bottlesim_push_sum
self.bottlesim_sum += cur_bottlesim_sum
# sum up the losses
@ -202,20 +199,13 @@ class FawkesMaskGeneration:
self.loss,
tf.zeros_like(self.loss)))
# self.loss_sum = self.dist_sum + tf.reduce_sum(self.bottlesim)
# import pdb
# pdb.set_trace()
# self.loss_sum = tf.reduce_sum(tf.where(self.mask, self.loss, tf.zeros_like(self.loss)))
# Setup the Adadelta optimizer and keep track of variables
# we're creating
start_vars = set(x.name for x in tf.global_variables())
self.learning_rate_holder = tf.placeholder(tf.float32, shape=[])
optimizer = tf.train.AdadeltaOptimizer(self.learning_rate_holder)
# optimizer = tf.train.AdamOptimizer(self.learning_rate_holder)
self.train = optimizer.minimize(self.loss_sum,
var_list=[self.modifier])
self.train = optimizer.minimize(self.loss_sum, var_list=[self.modifier])
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
@ -297,6 +287,7 @@ class FawkesMaskGeneration:
LR = self.learning_rate
nb_imgs = source_imgs.shape[0]
mask = [True] * nb_imgs + [False] * (self.batch_size - nb_imgs)
# mask = [True] * self.batch_size
mask = np.array(mask, dtype=np.bool)
source_imgs = np.array(source_imgs)
@ -317,19 +308,34 @@ class FawkesMaskGeneration:
timg_tanh_batch = np.zeros(self.input_shape)
else:
timg_tanh_batch = np.zeros(self.bottleneck_shape)
weights_batch = np.zeros(self.bottleneck_shape)
simg_tanh_batch[:nb_imgs] = simg_tanh[:nb_imgs]
timg_tanh_batch[:nb_imgs] = timg_tanh[:nb_imgs]
weights_batch[:nb_imgs] = weights[:nb_imgs]
modifier_batch = np.ones(self.input_shape) * 1e-6
self.sess.run(self.setup,
{self.assign_timg_tanh: timg_tanh_batch,
self.assign_simg_tanh: simg_tanh_batch,
self.assign_const: CONST,
self.assign_mask: mask,
self.assign_weights: weights_batch,
self.assign_modifier: modifier_batch})
temp_images = []
# set the variables so that we don't have to send them over again
if self.MIMIC_IMG:
self.sess.run(self.setup,
{self.assign_timg_tanh: timg_tanh_batch,
self.assign_simg_tanh: simg_tanh_batch,
self.assign_const: CONST,
self.assign_mask: mask,
self.assign_weights: weights_batch,
self.assign_modifier: modifier_batch})
else:
# if directly mimicking a vector, use assign_bottleneck_t_raw
# in setup
self.sess.run(self.setup,
{self.assign_bottleneck_t_raw: timg_tanh_batch,
self.assign_simg_tanh: simg_tanh_batch,
self.assign_const: CONST,
self.assign_mask: mask,
self.assign_weights: weights_batch,
self.assign_modifier: modifier_batch})
best_bottlesim = [0] * nb_imgs if self.maximize else [np.inf] * nb_imgs
best_adv = np.zeros_like(source_imgs)
@ -347,6 +353,7 @@ class FawkesMaskGeneration:
dist_raw_sum,
bottlesim_sum / nb_imgs))
finished_idx = set()
try:
total_distance = [0] * nb_imgs
@ -369,8 +376,14 @@ class FawkesMaskGeneration:
[self.dist_raw,
self.bottlesim,
self.aimg_input])
all_clear = True
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
if e in finished_idx:
continue
if e >= nb_imgs:
break
if (bottlesim < best_bottlesim[e] and bottlesim > total_distance[e] * 0.1 and (
@ -379,40 +392,55 @@ class FawkesMaskGeneration:
best_bottlesim[e] = bottlesim
best_adv[e] = aimg_input
if iteration != 0 and iteration % (self.MAX_ITERATIONS // 3) == 0:
# LR = LR / 2
# if iteration > 20 and (dist_raw >= self.l_threshold or iteration == self.MAX_ITERATIONS - 1):
# finished_idx.add(e)
# print("{} finished at dist {}".format(e, dist_raw))
# best_bottlesim[e] = bottlesim
# best_adv[e] = aimg_input
#
all_clear = False
if all_clear:
break
if iteration != 0 and iteration % (self.MAX_ITERATIONS // 2) == 0:
LR = LR / 2
print("Learning Rate: ", LR)
if iteration % (self.MAX_ITERATIONS // 10) == 0:
if iteration % (self.MAX_ITERATIONS // 5) == 0:
if self.verbose == 1:
loss_sum = float(self.sess.run(self.loss_sum))
dist_sum = float(self.sess.run(self.dist_sum))
thresh_over = (dist_sum /
self.batch_size /
self.l_threshold *
100)
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = self.sess.run(self.bottlesim_sum)
print('ITER %4d: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
% (iteration,
Decimal(loss_sum),
dist_sum,
thresh_over,
dist_raw_sum,
bottlesim_sum / nb_imgs))
print('ITER %4d perturb: %.5f; sim: %f'
% (iteration, dist_raw_sum / nb_imgs, bottlesim_sum / nb_imgs))
# protected_images = aimg_input_list
#
# orginal_images = np.copy(self.faces.cropped_faces)
# cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(
# orginal_images)
# final_images = self.faces.merge_faces(cloak_perturbation)
#
# for p_img, img in zip(protected_images, final_images):
# dump_image(reverse_process_cloaked(p_img),
# "/home/shansixioing/fawkes/data/emily/emily_cloaked_cropped{}.png".format(iteration),
# format='png')
#
# dump_image(img,
# "/home/shansixioing/fawkes/data/emily/emily_cloaked_{}.png".format(iteration),
# format='png')
except KeyboardInterrupt:
pass
if self.verbose == 1:
loss_sum = float(self.sess.run(self.loss_sum))
dist_sum = float(self.sess.run(self.dist_sum))
thresh_over = (dist_sum / self.batch_size / self.l_threshold * 100)
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = float(self.sess.run(self.bottlesim_sum))
print('END: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
print('END: Total loss: %.4E; perturb: %.6f (raw: %.6f); sim: %f'
% (Decimal(loss_sum),
dist_sum,
thresh_over,
dist_raw_sum,
bottlesim_sum / nb_imgs))

View File

@ -0,0 +1 @@
837da51fc1cd7e21f6989badd07c3ccec543833e

View File

@ -6,21 +6,16 @@ import sys
import numpy as np
from differentiator import FawkesMaskGeneration
from keras.applications.vgg16 import preprocess_input
from keras.preprocessing import image
from skimage.transform import resize
from tensorflow import set_random_seed
from utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked
from utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
Faces
random.seed(12243)
np.random.seed(122412)
set_random_seed(12242)
BATCH_SIZE = 1
MAX_ITER = 1000
BATCH_SIZE = 10
def generate_cloak_images(sess, feature_extractors, image_X, target_X=None, th=0.01):
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None):
batch_size = BATCH_SIZE if len(image_X) > BATCH_SIZE else len(image_X)
differentiator = FawkesMaskGeneration(sess, feature_extractors,
@ -29,92 +24,117 @@ def generate_cloak_images(sess, feature_extractors, image_X, target_X=None, th=0
intensity_range='imagenet',
initial_const=args.sd,
learning_rate=args.lr,
max_iterations=MAX_ITER,
max_iterations=args.max_step,
l_threshold=th,
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:])
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:],
faces=faces)
cloaked_image_X = differentiator.attack(image_X, target_X)
cloaked_image_X = differentiator.attack(image_X, target_emb)
return cloaked_image_X
def get_mode_config(mode):
if mode == 'low':
args.feature_extractor = "low_extract"
# args.th = 0.003
args.th = 0.001
elif mode == 'mid':
args.feature_extractor = "mid_extract"
args.th = 0.001
args.th = 0.004
elif mode == 'high':
args.feature_extractor = "high_extract"
args.th = 0.005
args.th = 0.004
elif mode == 'ultra':
args.feature_extractor = "high_extract"
args.th = 0.007
args.th = 0.03
elif mode == 'custom':
pass
else:
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
def extract_faces(img):
# wait on Huiying
return preprocess_input(resize(img, (224, 224)))
def check_imgs(imgs):
if np.max(imgs) <= 1 and np.min(imgs) >= 0:
imgs = imgs * 255.0
elif np.max(imgs) <= 255 and np.min(imgs) >= 0:
pass
else:
raise Exception("Image values ")
return imgs
def fawkes():
assert args.format in ['png', 'jpg', 'jpeg']
if args.format == 'jpg':
args.format = 'jpeg'
get_mode_config(args.mode)
sess = init_gpu(args.gpu)
feature_extractors_ls = [load_extractor(args.feature_extractor)]
# feature_extractors_ls = [load_extractor(args.feature_extractor)]
# fs_names = ['mid_extract', 'high_extract']
fs_names = [args.feature_extractor]
feature_extractors_ls = [load_extractor(name) for name in fs_names]
image_paths = glob.glob(os.path.join(args.directory, "*"))
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
orginal_images = [extract_faces(image.img_to_array(image.load_img(cur_path))) for cur_path in
image_paths]
faces = Faces(image_paths, sess)
orginal_images = faces.cropped_faces
orginal_images = np.array(orginal_images)
if args.seperate_target:
target_images = []
if args.separate_target:
target_embedding = []
for org_img in orginal_images:
org_img = org_img.reshape([1] + list(org_img.shape))
tar_img = select_target_label(org_img, feature_extractors_ls, [args.feature_extractor])
target_images.append(tar_img)
target_images = np.concatenate(target_images)
tar_emb = select_target_label(org_img, feature_extractors_ls, fs_names)
target_embedding.append(tar_emb)
target_embedding = np.concatenate(target_embedding)
else:
target_images = select_target_label(orginal_images, feature_extractors_ls, [args.feature_extractor])
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
target_X=target_images, th=args.th)
target_emb=target_embedding, th=args.th, faces=faces)
for p_img, path in zip(protected_images, image_paths):
p_img = reverse_process_cloaked(p_img)
file_name = "{}_cloaked.jpeg".format(".".join(path.split(".")[:-1]))
dump_image(p_img, file_name, format="JPEG")
faces.cloaked_cropped_faces = protected_images
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
final_images = faces.merge_faces(cloak_perturbation)
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
file_name = "{}_{}_{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.th,
args.feature_extractor, args.format)
dump_image(p_img, file_name, format=args.format)
#
# file_name = "{}_{}_{}_{}_cloaked_cropped.png".format(".".join(path.split(".")[:-1]), args.mode, args.th,
# args.feature_extractor)
# dump_image(reverse_process_cloaked(cloaked_img), file_name, format="png")
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--directory', type=str,
parser.add_argument('--directory', '-d', type=str,
help='directory that contain images for cloaking', default='imgs/')
parser.add_argument('--gpu', type=str,
help='GPU id', default='0')
parser.add_argument('--mode', type=str,
help='cloak generation mode', default='mid')
help='cloak generation mode', default='high')
parser.add_argument('--feature-extractor', type=str,
help="name of the feature extractor used for optimization",
default="mid_extract")
default="high_extract")
parser.add_argument('--th', type=float, default=0.005)
parser.add_argument('--th', type=float, default=0.01)
parser.add_argument('--max-step', type=int, default=200)
parser.add_argument('--sd', type=int, default=1e9)
parser.add_argument('--lr', type=float, default=1)
parser.add_argument('--lr', type=float, default=10)
parser.add_argument('--result_directory', type=str, default="../results")
parser.add_argument('--seperate_target', action='store_true')
parser.add_argument('--separate_target', action='store_true')
parser.add_argument('--format', type=str,
help="final image format",
default="jpg")
return parser.parse_args(argv)

View File

@ -1,3 +1,5 @@
import glob
import gzip
import json
import os
import pickle
@ -7,12 +9,16 @@ import keras
import keras.backend as K
import numpy as np
import tensorflow as tf
from align_face import align, aligner
from keras.applications.vgg16 import preprocess_input
from keras.layers import Dense, Activation
from keras.models import Model
from keras.preprocessing import image
from keras.utils import get_file
from keras.utils import to_categorical
from skimage.transform import resize
from sklearn.metrics import pairwise_distances
from PIL import Image, ExifTags
def clip_img(X, preprocessing='raw'):
@ -22,6 +28,86 @@ def clip_img(X, preprocessing='raw'):
return X
def load_image(path):
img = Image.open(path)
if img._getexif() is not None:
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
exif = dict(img._getexif().items())
if orientation in exif.keys():
if exif[orientation] == 3:
img = img.rotate(180, expand=True)
elif exif[orientation] == 6:
img = img.rotate(270, expand=True)
elif exif[orientation] == 8:
img = img.rotate(90, expand=True)
else:
pass
img = img.convert('RGB')
image_array = image.img_to_array(img)
return image_array
class Faces(object):
def __init__(self, image_paths, sess):
self.aligner = aligner(sess)
self.org_faces = []
self.cropped_faces = []
self.cropped_faces_shape = []
self.cropped_index = []
self.callback_idx = []
for i, p in enumerate(image_paths):
cur_img = load_image(p)
self.org_faces.append(cur_img)
align_img = align(cur_img, self.aligner, margin=0.7)
cur_faces = align_img[0]
cur_shapes = [f.shape[:-1] for f in cur_faces]
cur_faces_square = []
for img in cur_faces:
long_size = max([img.shape[1], img.shape[0]])
base = np.zeros((long_size, long_size, 3))
base[0:img.shape[0], 0:img.shape[1], :] = img
cur_faces_square.append(base)
cur_index = align_img[1]
cur_faces_square = [resize(f, (224, 224)) for f in cur_faces_square]
self.cropped_faces_shape.extend(cur_shapes)
self.cropped_faces.extend(cur_faces_square)
self.cropped_index.extend(cur_index)
self.callback_idx.extend([i] * len(cur_faces_square))
self.cropped_faces = preprocess_input(np.array(self.cropped_faces))
self.cloaked_cropped_faces = None
self.cloaked_faces = np.copy(self.org_faces)
def get_faces(self):
return self.cropped_faces
def merge_faces(self, cloaks):
# import pdb
# pdb.set_trace()
self.cloaked_faces = np.copy(self.org_faces)
for i in range(len(self.cropped_faces)):
cur_cloak = cloaks[i]
org_shape = self.cropped_faces_shape[i]
old_square_shape = max([org_shape[0], org_shape[1]])
reshape_cloak = resize(cur_cloak, (old_square_shape, old_square_shape))
reshape_cloak = reshape_cloak[0:org_shape[0], 0:org_shape[1], :]
callback_id = self.callback_idx[i]
bb = self.cropped_index[i]
self.cloaked_faces[callback_id][bb[1]:bb[3], bb[0]:bb[2], :] += reshape_cloak
return self.cloaked_faces
def dump_dictionary_as_json(dict, outfile):
j = json.dumps(dict)
with open(outfile, "wb") as f:
@ -30,10 +116,12 @@ def dump_dictionary_as_json(dict, outfile):
def fix_gpu_memory(mem_fraction=1):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=mem_fraction)
tf_config = tf.ConfigProto(gpu_options=gpu_options)
tf_config.gpu_options.allow_growth = True
tf_config.log_device_placement = False
tf_config = None
if tf.test.is_gpu_available():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=mem_fraction)
tf_config = tf.ConfigProto(gpu_options=gpu_options)
tf_config.gpu_options.allow_growth = True
tf_config.log_device_placement = False
init_op = tf.global_variables_initializer()
sess = tf.Session(config=tf_config)
sess.run(init_op)
@ -45,7 +133,6 @@ def load_victim_model(number_classes, teacher_model=None, end2end=False):
for l in teacher_model.layers:
l.trainable = end2end
x = teacher_model.layers[-1].output
x = Dense(number_classes)(x)
x = Activation('softmax', name="act")(x)
model = Model(teacher_model.input, x)
@ -141,6 +228,7 @@ def imagenet_preprocessing(x, data_format=None):
return x
def imagenet_reverse_preprocessing(x, data_format=None):
import keras.backend as K
x = np.array(x)
@ -185,7 +273,20 @@ def build_bottleneck_model(model, cut_off):
def load_extractor(name):
model = keras.models.load_model("../feature_extractors/{}.h5".format(name))
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
os.makedirs(model_dir, exist_ok=True)
model_file = os.path.join(model_dir, "{}.h5".format(name))
if os.path.exists(model_file):
model = keras.models.load_model(model_file)
else:
get_file("{}.h5".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/{}.h5".format(name),
cache_dir=model_dir, cache_subdir='')
get_file("{}_emb.p.gz".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/{}_emb.p.gz".format(name),
cache_dir=model_dir, cache_subdir='')
model = keras.models.load_model(model_file)
if hasattr(model.layers[-1], "activation") and model.layers[-1].activation == "softmax":
raise Exception(
"Given extractor's last layer is softmax, need to remove the top layers to make it into a feature extractor")
@ -199,11 +300,13 @@ def load_extractor(name):
return model
def get_dataset_path(dataset):
if not os.path.exists("config.json"):
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
if not os.path.exists(os.path.join(model_dir, "config.json")):
raise Exception("Please config the datasets before running protection code. See more in README and config.py.")
config = json.load(open("config.json", 'r'))
config = json.load(open(os.path.join(model_dir, "config.json"), 'r'))
if dataset not in config:
raise Exception(
"Dataset {} does not exist, please download to data/ and add the path to this function... Abort".format(
@ -217,7 +320,8 @@ def normalize(x):
def dump_image(x, filename, format="png", scale=False):
img = image.array_to_img(x, scale=scale)
# img = image.array_to_img(x, scale=scale)
img = image.array_to_img(x)
img.save(filename, format)
return
@ -235,9 +339,13 @@ def load_dir(path):
def load_embeddings(feature_extractors_names):
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
dictionaries = []
for extractor_name in feature_extractors_names:
path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
fp = gzip.open(os.path.join(model_dir, "{}_emb.p.gz".format(extractor_name)), 'rb')
path2emb = pickle.load(fp)
fp.close()
dictionaries.append(path2emb)
merge_dict = {}
@ -272,6 +380,8 @@ def calculate_dist_score(a, b, feature_extractors_ls, metric='l2'):
def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, metric='l2'):
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
original_feature_x = extractor_ls_predict(feature_extractors_ls, imgs)
path2emb = load_embeddings(feature_extractors_names)
@ -282,37 +392,25 @@ def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, m
pair_dist = pairwise_distances(original_feature_x, embs, metric)
max_sum = np.min(pair_dist, axis=0)
sorted_idx = np.argsort(max_sum)[::-1]
max_id = np.argmax(max_sum)
highest_num = 0
paired_target_X = None
final_target_class_path = None
for idx in sorted_idx[:1]:
target_class_path = paths[idx]
cur_target_X = load_dir(target_class_path)
cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
cur_tot_sum, cur_paired_target_X = calculate_dist_score(imgs, cur_target_X,
feature_extractors_ls,
metric=metric)
if cur_tot_sum > highest_num:
highest_num = cur_tot_sum
paired_target_X = cur_paired_target_X
image_paths = glob.glob(os.path.join(model_dir, "target_data/{}/*".format(paths[int(max_id)])))
target_images = [image.img_to_array(image.load_img(cur_path)) for cur_path in
image_paths]
target_images = preprocess_input(np.array([resize(x, (224, 224)) for x in target_images]))
np.random.shuffle(paired_target_X)
paired_target_X = list(paired_target_X)
while len(paired_target_X) < len(imgs):
paired_target_X += paired_target_X
paired_target_X = paired_target_X[:len(imgs)]
return np.array(paired_target_X)
target_images = list(target_images)
while len(target_images) < len(imgs):
target_images += target_images
target_images = random.sample(target_images, len(imgs))
return np.array(target_images)
class CloakData(object):
def __init__(self, protect_directory=None, img_shape=(224, 224)):
self.img_shape = img_shape
# self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
# self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
self.protect_directory = protect_directory

View File

@ -52,6 +52,7 @@ We shared three different feature extractors under feature_extractors/
1. low_extract.h5: trained on WebFace dataset with DenseNet architecture.
2. mid_extract.h5: VGGFace2 dataset with DenseNet architecture. Trained with PGD adversarial training for 5 epochs.
3. high_extract.h5: WebFace dataset with DenseNet architecture. Trained with PGD adversarial training for 20 epochs.
4. high2_extract.h5: VGGFace2 dataset with DenseNet architecture. Trained with PGD adversarial training for 20 epochs.
### Citation
```

399
fawkes_dev/azure.py Normal file
View File

@ -0,0 +1,399 @@
import http.client, urllib.request, urllib.parse, urllib.error
import json
import time
#Face API Key and Endpoint
subscription_key = 'e127e26e4d534e2bad6fd9ca06145302'
uri_base = 'eastus.api.cognitive.microsoft.com'
# uri_base = 'https://shawn.cognitiveservices.azure.com/'
def detect_face(image_url):
headers = {
# Request headers
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
# Request parameters
'returnFaceId': 'true',
'returnFaceLandmarks': 'false',
'recognitionModel': 'recognition_01',
'returnRecognitionModel': 'false',
'detectionModel': 'detection_01',
})
body = json.dumps({
'url': image_url
})
conn = http.client.HTTPSConnection(uri_base)
conn.request("POST", "/face/v1.0/detect?%s" % params, body, headers)
response = conn.getresponse()
data = json.loads(response.read())
conn.close()
return data[0]["faceId"]
def verify_face(faceId, personGroupId, personId):
# html header
headers = {
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
# image URL
body = json.dumps({
"faceId": faceId,
"personId": personId,
"PersonGroupId": personGroupId
})
# Call Face API
conn = http.client.HTTPSConnection(uri_base)
conn.request("POST", "/face/v1.0/verify?%s" % params, body, headers)
response = conn.getresponse()
data = json.loads(response.read())
conn.close()
return data
def create_personGroupId(personGroupId, personGroupName):
headers = {
# Request headers
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({
"name": personGroupName
})
conn = http.client.HTTPSConnection(uri_base)
conn.request("PUT", "/face/v1.0/persongroups/{}?%s".format(personGroupId) % params, body, headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
def create_personId(personGroupId, personName):
headers = {
# Request headers
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({
"name": personName
})
conn = http.client.HTTPSConnection(uri_base)
conn.request("POST", "/face/v1.0/persongroups/{}/persons?%s".format(personGroupId) % params, body, headers)
response = conn.getresponse()
data = json.loads(response.read())
print(data)
conn.close()
return data["personId"]
def add_persistedFaceId(personGroupId, personId, image_url):
headers = {
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
'personGroupId': personGroupId,
'personId': personId
})
body = json.dumps({
'url': image_url
})
conn = http.client.HTTPSConnection(uri_base)
conn.request("POST", "/face/v1.0/persongroups/{}/persons/{}/persistedFaces?%s".format(personGroupId, personId) % params, body, headers)
response = conn.getresponse()
data = json.loads(response.read())
print(data)
conn.close()
return data["persistedFaceId"]
def list_personGroupPerson(personGroupId):
headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({})
conn = http.client.HTTPSConnection(uri_base)
conn.request("GET", "/face/v1.0/persongroups/{}/persons?%s".format(personGroupId) % params, body, headers)
response = conn.getresponse()
data = json.loads(response.read())
conn.close()
for person in data:
print(person["personId"], len(person["persistedFaceIds"]))
def get_personGroupPerson(personGroupId, personId):
headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({})
conn = http.client.HTTPSConnection(uri_base)
conn.request("GET", "/face/v1.0/persongroups/{}/persons/{}?%s".format(personGroupId, personId) % params, body, headers)
response = conn.getresponse()
data = json.loads(response.read())
print(data)
conn.close()
def train_personGroup(personGroupId):
headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({})
conn = http.client.HTTPSConnection(uri_base)
conn.request("POST", "/face/v1.0/persongroups/{}/train?%s".format(personGroupId) % params, body, headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
def eval(original_faceIds, personGroupId, protect_personId):
headers = {
'Content-Type': 'application/json',
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({
'faceIds': original_faceIds,
'personGroupId': personGroupId,
'maxNumOfCandidatesReturned': 1
})
conn = http.client.HTTPSConnection(uri_base)
conn.request("POST", "/face/v1.0/identify?%s" % params, body, headers)
response = conn.getresponse()
data = json.loads(response.read())
conn.close()
face = data[0]
if len(face["candidates"]) and face["candidates"][0]["personId"] == protect_personId:
return True
else:
return False
def delete_personGroupPerson(personGroupId, personId):
headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({})
conn = http.client.HTTPSConnection(uri_base)
conn.request("DELETE", "/face/v1.0/persongroups/{}/persons/{}?%s".format(personGroupId, personId) % params, body, headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
def add_protect_person(personGroupId, name):
personId = create_personId(personGroupId, name)
for idx in range(72):
cloaked_image_url = "https://super.cs.uchicago.edu/~shawn/cloaked/{}_c.png".format(idx)
add_persistedFaceId(personGroupId, personId, cloaked_image_url)
def add_sybil_person(personGroupId, name):
personId = create_personId(personGroupId, name)
for idx in range(82):
try:
cloaked_image_url = "https://super.cs.uchicago.edu/~shawn/sybils/{}_c.png".format(idx)
add_persistedFaceId(personGroupId, personId, cloaked_image_url)
except:
print(idx)
def add_other_person(personGroupId):
for idx_person in range(65):
personId = create_personId(personGroupId, str(idx_person))
for idx_image in range(90):
try:
image_url = "https://super.cs.uchicago.edu/~shawn/train/{}/{}.png".format(idx_person, idx_image)
add_persistedFaceId(personGroupId, personId, image_url)
except:
print(idx_person, idx_image)
def get_trainStatus(personGroupId):
headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({})
conn = http.client.HTTPSConnection(uri_base)
conn.request("GET", "/face/v1.0/persongroups/{}/training?%s".format(personGroupId) % params, body, headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
def test_original():
personGroupId = 'pubfig'
# create_personGroupId(personGroupId, 'pubfig')
# add protect person
protect_personId = 'd3df3012-6f3f-4c1b-b86d-55e91a352e01'
#protect_personId = create_personId(personGroupId, 'Emily')
#for idx in range(50):
# image_url = "https://super.cs.uchicago.edu/~shawn/cloaked/{}_o.png".format(idx)
# add_persistedFaceId(personGroupId, protect_personId, image_url)
# add other people
#for idx_person in range(65):
# personId = create_personId(personGroupId, str(idx_person))
# for idx_image in range(50):
# try:
# image_url = "https://super.cs.uchicago.edu/~shawn/train/{}/{}.png".format(idx_person, idx_image)
# add_persistedFaceId(personGroupId, personId, image_url)
# except:
# print(idx_person, idx_image)
# train model based on personGroup
#train_personGroup(personGroupId)
#time.sleep(3)
#get_trainStatus(personGroupId)
#list_personGroupPerson(personGroupId)
idx_range = range(50, 82)
acc = 0.
for idx in idx_range:
original_image_url = "https://super.cs.uchicago.edu/~shawn/cloaked/{}_o.png".format(idx)
faceId = detect_face(original_image_url)
original_faceIds = [faceId]
# verify
res = eval(original_faceIds, personGroupId, protect_personId)
if res:
acc += 1.
acc /= len(idx_range)
print(acc) # 1.0
def list_personGroups():
headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({})
conn = http.client.HTTPSConnection(uri_base)
conn.request("GET", "/face/v1.0/persongroups?%s" % params, body, headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
def delete_personGroup(personGroupId):
headers = {
'Ocp-Apim-Subscription-Key': subscription_key,
}
params = urllib.parse.urlencode({
})
body = json.dumps({})
conn = http.client.HTTPSConnection(uri_base)
conn.request("DELETE", "/face/v1.0/persongroups/{}?%s".format(personGroupId) % params, body, headers)
response = conn.getresponse()
data = response.read()
print(data)
conn.close()
def main():
# delete_personGroup('cloaking')
# delete_personGroup('cloaking-emily')
# delete_personGroup('pubfig')
# list_personGroups()
# exit()
personGroupId = 'cloaking'
# create_personGroupId(personGroupId, 'cloaking')
list_personGroups()
exit()
#delete_personGroupPerson(personGroupId, '0ac606cd-24b3-440f-866a-31adf2a1b446')
#add_protect_person(personGroupId, 'Emily')
#personId = create_personId(personGroupId, 'Emily')
#add_sybil_person(personGroupId, 'sybil')
protect_personId = '6c5a71eb-f39a-4570-b3f5-72cca3ab5a6b'
#delete_personGroupPerson(personGroupId, protect_personId)
#add_protect_person(personGroupId, 'Emily')
# train model based on personGroup
#train_personGroup(personGroupId)
get_trainStatus(personGroupId)
#add_other_person(personGroupId)
#list_personGroupPerson(personGroupId)
#delete_personGroupPerson(personGroupId, '80e32c80-bc69-416a-9dff-c8d42d7a3301')
idx_range = range(72, 82)
original_faceIds = []
for idx in idx_range:
original_image_url = "https://super.cs.uchicago.edu/~shawn/cloaked/{}_o.png".format(idx)
faceId = detect_face(original_image_url)
original_faceIds.append(faceId)
# verify
eval(original_faceIds, personGroupId, protect_personId)
if __name__ == '__main__':
main()

View File

@ -4,7 +4,7 @@ import os
DATASETS = {
"pubfig": "../data/pubfig",
"scrub": "/home/shansixioing/cloak/fawkes/data/scrub/",
"scrub": "/home/shansixioing/fawkes/data/scrub/",
"vggface2": "/mnt/data/sixiongshan/data/vggface2/",
"webface": "/mnt/data/sixiongshan/data/webface/",
"youtubeface": "/mnt/data/sixiongshan/data/youtubeface/keras_flow_data/",
@ -32,7 +32,8 @@ def main():
"num_images": num_images}
print("Successfully config {}".format(dataset))
j = json.dumps(config)
with open("config.json", "wb") as f:
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
with open(os.path.join(model_dir, "config.json"), "wb") as f:
f.write(j.encode())

View File

@ -1,430 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date : 2020-05-17
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
# @Link : https://www.shawnshan.com/
import datetime
import time
from decimal import Decimal
import numpy as np
import tensorflow as tf
from utils import preprocess, reverse_preprocess
class FawkesMaskGeneration:
# if the attack is trying to mimic a target image or a neuron vector
MIMIC_IMG = True
# number of iterations to perform gradient descent
MAX_ITERATIONS = 10000
# larger values converge faster to less accurate results
LEARNING_RATE = 1e-2
# the initial constant c to pick as a first guess
INITIAL_CONST = 1
# pixel intensity range
INTENSITY_RANGE = 'imagenet'
# threshold for distance
L_THRESHOLD = 0.03
# whether keep the final result or the best result
KEEP_FINAL = False
# max_val of image
MAX_VAL = 255
# The following variables are used by DSSIM, should keep as default
# filter size in SSIM
FILTER_SIZE = 11
# filter sigma in SSIM
FILTER_SIGMA = 1.5
# weights used in MS-SSIM
SCALE_WEIGHTS = None
MAXIMIZE = False
IMAGE_SHAPE = (224, 224, 3)
RATIO = 1.0
LIMIT_DIST = False
def __init__(self, sess, bottleneck_model_ls, mimic_img=MIMIC_IMG,
batch_size=1, learning_rate=LEARNING_RATE,
max_iterations=MAX_ITERATIONS, initial_const=INITIAL_CONST,
intensity_range=INTENSITY_RANGE, l_threshold=L_THRESHOLD,
max_val=MAX_VAL, keep_final=KEEP_FINAL, maximize=MAXIMIZE, image_shape=IMAGE_SHAPE,
verbose=0, ratio=RATIO, limit_dist=LIMIT_DIST):
assert intensity_range in {'raw', 'imagenet', 'inception', 'mnist'}
# constant used for tanh transformation to avoid corner cases
self.tanh_constant = 2 - 1e-6
self.sess = sess
self.MIMIC_IMG = mimic_img
self.LEARNING_RATE = learning_rate
self.MAX_ITERATIONS = max_iterations
self.initial_const = initial_const
self.batch_size = batch_size
self.intensity_range = intensity_range
self.l_threshold = l_threshold
self.max_val = max_val
self.keep_final = keep_final
self.verbose = verbose
self.maximize = maximize
self.learning_rate = learning_rate
self.ratio = ratio
self.limit_dist = limit_dist
self.single_shape = list(image_shape)
self.input_shape = tuple([self.batch_size] + self.single_shape)
self.bottleneck_shape = tuple([self.batch_size] + self.single_shape)
# the variable we're going to optimize over
self.modifier = tf.Variable(np.zeros(self.input_shape, dtype=np.float32))
# target image in tanh space
if self.MIMIC_IMG:
self.timg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
else:
self.bottleneck_t_raw = tf.Variable(np.zeros(self.bottleneck_shape), dtype=np.float32)
# source image in tanh space
self.simg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
self.const = tf.Variable(np.ones(batch_size), dtype=np.float32)
self.mask = tf.Variable(np.ones((batch_size), dtype=np.bool))
self.weights = tf.Variable(np.ones(self.bottleneck_shape,
dtype=np.float32))
# and here's what we use to assign them
self.assign_modifier = tf.placeholder(tf.float32, self.input_shape)
if self.MIMIC_IMG:
self.assign_timg_tanh = tf.placeholder(
tf.float32, self.input_shape)
else:
self.assign_bottleneck_t_raw = tf.placeholder(
tf.float32, self.bottleneck_shape)
self.assign_simg_tanh = tf.placeholder(tf.float32, self.input_shape)
self.assign_const = tf.placeholder(tf.float32, (batch_size))
self.assign_mask = tf.placeholder(tf.bool, (batch_size))
self.assign_weights = tf.placeholder(tf.float32, self.bottleneck_shape)
# the resulting image, tanh'd to keep bounded from -0.5 to 0.5
# adversarial image in raw space
self.aimg_raw = (tf.tanh(self.modifier + self.simg_tanh) /
self.tanh_constant +
0.5) * 255.0
# source image in raw space
self.simg_raw = (tf.tanh(self.simg_tanh) /
self.tanh_constant +
0.5) * 255.0
if self.MIMIC_IMG:
# target image in raw space
self.timg_raw = (tf.tanh(self.timg_tanh) /
self.tanh_constant +
0.5) * 255.0
# convert source and adversarial image into input space
if self.intensity_range == 'imagenet':
mean = tf.constant(np.repeat([[[[103.939, 116.779, 123.68]]]], self.batch_size, axis=0), dtype=tf.float32,
name='img_mean')
self.aimg_input = (self.aimg_raw[..., ::-1] - mean)
self.simg_input = (self.simg_raw[..., ::-1] - mean)
if self.MIMIC_IMG:
self.timg_input = (self.timg_raw[..., ::-1] - mean)
elif self.intensity_range == 'raw':
self.aimg_input = self.aimg_raw
self.simg_input = self.simg_raw
if self.MIMIC_IMG:
self.timg_input = self.timg_raw
def batch_gen_DSSIM(aimg_raw_split, simg_raw_split):
msssim_split = tf.image.ssim(aimg_raw_split, simg_raw_split, max_val=255.0)
dist = (1.0 - tf.stack(msssim_split)) / 2.0
return dist
# raw value of DSSIM distance
self.dist_raw = batch_gen_DSSIM(self.aimg_raw, self.simg_raw)
# distance value after applying threshold
self.dist = tf.maximum(self.dist_raw - self.l_threshold, 0.0)
self.dist_raw_sum = tf.reduce_sum(
tf.where(self.mask,
self.dist_raw,
tf.zeros_like(self.dist_raw)))
self.dist_sum = tf.reduce_sum(tf.where(self.mask, self.dist, tf.zeros_like(self.dist)))
def resize_tensor(input_tensor, model_input_shape):
if input_tensor.shape[1:] == model_input_shape or model_input_shape[1] is None:
return input_tensor
resized_tensor = tf.image.resize(input_tensor, model_input_shape[:2])
return resized_tensor
def calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input):
target_features = bottleneck_model(cur_timg_input)
return target_features
# target_center = tf.reduce_mean(target_features, axis=0)
# original = bottleneck_model(cur_simg_input)
# original_center = tf.reduce_mean(original, axis=0)
# direction = target_center - original_center
# final_target = original + self.ratio * direction
# return final_target
self.bottlesim = 0.0
self.bottlesim_sum = 0.0
self.bottlesim_push = 0.0
for bottleneck_model in bottleneck_model_ls:
model_input_shape = bottleneck_model.input_shape[1:]
cur_aimg_input = resize_tensor(self.aimg_input, model_input_shape)
self.bottleneck_a = bottleneck_model(cur_aimg_input)
if self.MIMIC_IMG:
# cur_timg_input = resize_tensor(self.timg_input, model_input_shape)
# cur_simg_input = resize_tensor(self.simg_input, model_input_shape)
cur_timg_input = self.timg_input
cur_simg_input = self.simg_input
self.bottleneck_t = calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input)
# self.bottleneck_t = bottleneck_model(cur_timg_input)
else:
self.bottleneck_t = self.bottleneck_t_raw
bottleneck_diff = self.bottleneck_t - self.bottleneck_a
scale_factor = tf.sqrt(tf.reduce_sum(tf.square(self.bottleneck_t), axis=1))
cur_bottlesim = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_diff), axis=1))
cur_bottlesim = cur_bottlesim / scale_factor
cur_bottlesim_sum = tf.reduce_sum(cur_bottlesim)
self.bottlesim += cur_bottlesim
# self.bottlesim_push += cur_bottlesim_push_sum
self.bottlesim_sum += cur_bottlesim_sum
# sum up the losses
if self.maximize:
self.loss = self.const * tf.square(self.dist) - self.bottlesim
else:
self.loss = self.const * tf.square(self.dist) + self.bottlesim
self.loss_sum = tf.reduce_sum(tf.where(self.mask, self.loss, tf.zeros_like(self.loss)))
# Setup the Adadelta optimizer and keep track of variables
# we're creating
start_vars = set(x.name for x in tf.global_variables())
self.learning_rate_holder = tf.placeholder(tf.float32, shape=[])
optimizer = tf.train.AdadeltaOptimizer(self.learning_rate_holder)
self.train = optimizer.minimize(self.loss_sum,
var_list=[self.modifier])
end_vars = tf.global_variables()
new_vars = [x for x in end_vars if x.name not in start_vars]
# these are the variables to initialize when we run
self.setup = []
self.setup.append(self.modifier.assign(self.assign_modifier))
if self.MIMIC_IMG:
self.setup.append(self.timg_tanh.assign(self.assign_timg_tanh))
else:
self.setup.append(self.bottleneck_t_raw.assign(
self.assign_bottleneck_t_raw))
self.setup.append(self.simg_tanh.assign(self.assign_simg_tanh))
self.setup.append(self.const.assign(self.assign_const))
self.setup.append(self.mask.assign(self.assign_mask))
self.setup.append(self.weights.assign(self.assign_weights))
self.init = tf.variables_initializer(var_list=[self.modifier] + new_vars)
print('Attacker loaded')
def preprocess_arctanh(self, imgs):
imgs = reverse_preprocess(imgs, self.intensity_range)
imgs /= 255.0
imgs -= 0.5
imgs *= self.tanh_constant
tanh_imgs = np.arctanh(imgs)
return tanh_imgs
def clipping(self, imgs):
imgs = reverse_preprocess(imgs, self.intensity_range)
imgs = np.clip(imgs, 0, self.max_val)
imgs = np.rint(imgs)
imgs = preprocess(imgs, self.intensity_range)
return imgs
def attack(self, source_imgs, target_imgs, weights=None):
if weights is None:
weights = np.ones([source_imgs.shape[0]] +
list(self.bottleneck_shape[1:]))
assert weights.shape[1:] == self.bottleneck_shape[1:]
assert source_imgs.shape[1:] == self.input_shape[1:]
assert source_imgs.shape[0] == weights.shape[0]
if self.MIMIC_IMG:
assert target_imgs.shape[1:] == self.input_shape[1:]
assert source_imgs.shape[0] == target_imgs.shape[0]
else:
assert target_imgs.shape[1:] == self.bottleneck_shape[1:]
assert source_imgs.shape[0] == target_imgs.shape[0]
start_time = time.time()
adv_imgs = []
print('%d batches in total'
% int(np.ceil(len(source_imgs) / self.batch_size)))
for idx in range(0, len(source_imgs), self.batch_size):
print('processing batch %d at %s' % (idx, datetime.datetime.now()))
adv_img = self.attack_batch(source_imgs[idx:idx + self.batch_size],
target_imgs[idx:idx + self.batch_size],
weights[idx:idx + self.batch_size])
adv_imgs.extend(adv_img)
elapsed_time = time.time() - start_time
print('attack cost %f s' % (elapsed_time))
return np.array(adv_imgs)
def attack_batch(self, source_imgs, target_imgs, weights):
"""
Run the attack on a batch of images and labels.
"""
LR = self.learning_rate
nb_imgs = source_imgs.shape[0]
mask = [True] * nb_imgs + [False] * (self.batch_size - nb_imgs)
mask = np.array(mask, dtype=np.bool)
source_imgs = np.array(source_imgs)
target_imgs = np.array(target_imgs)
# convert to tanh-space
simg_tanh = self.preprocess_arctanh(source_imgs)
if self.MIMIC_IMG:
timg_tanh = self.preprocess_arctanh(target_imgs)
else:
timg_tanh = target_imgs
CONST = np.ones(self.batch_size) * self.initial_const
self.sess.run(self.init)
simg_tanh_batch = np.zeros(self.input_shape)
if self.MIMIC_IMG:
timg_tanh_batch = np.zeros(self.input_shape)
else:
timg_tanh_batch = np.zeros(self.bottleneck_shape)
weights_batch = np.zeros(self.bottleneck_shape)
simg_tanh_batch[:nb_imgs] = simg_tanh[:nb_imgs]
timg_tanh_batch[:nb_imgs] = timg_tanh[:nb_imgs]
weights_batch[:nb_imgs] = weights[:nb_imgs]
modifier_batch = np.ones(self.input_shape) * 1e-6
# set the variables so that we don't have to send them over again
if self.MIMIC_IMG:
self.sess.run(self.setup,
{self.assign_timg_tanh: timg_tanh_batch,
self.assign_simg_tanh: simg_tanh_batch,
self.assign_const: CONST,
self.assign_mask: mask,
self.assign_weights: weights_batch,
self.assign_modifier: modifier_batch})
else:
# if directly mimicking a vector, use assign_bottleneck_t_raw
# in setup
self.sess.run(self.setup,
{self.assign_bottleneck_t_raw: timg_tanh_batch,
self.assign_simg_tanh: simg_tanh_batch,
self.assign_const: CONST,
self.assign_mask: mask,
self.assign_weights: weights_batch,
self.assign_modifier: modifier_batch})
best_bottlesim = [0] * nb_imgs if self.maximize else [np.inf] * nb_imgs
best_adv = np.zeros_like(source_imgs)
if self.verbose == 1:
loss_sum = float(self.sess.run(self.loss_sum))
dist_sum = float(self.sess.run(self.dist_sum))
thresh_over = (dist_sum / self.batch_size / self.l_threshold * 100)
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = self.sess.run(self.bottlesim_sum)
print('START: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
% (Decimal(loss_sum),
dist_sum,
thresh_over,
dist_raw_sum,
bottlesim_sum / nb_imgs))
try:
total_distance = [0] * nb_imgs
if self.limit_dist:
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
[self.dist_raw,
self.bottlesim,
self.aimg_input])
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
if e >= nb_imgs:
break
total_distance[e] = bottlesim
for iteration in range(self.MAX_ITERATIONS):
self.sess.run([self.train], feed_dict={self.learning_rate_holder: LR})
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
[self.dist_raw,
self.bottlesim,
self.aimg_input])
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
if e >= nb_imgs:
break
if (bottlesim < best_bottlesim[e] and bottlesim > total_distance[e] * 0.1 and (
not self.maximize)) or (
bottlesim > best_bottlesim[e] and self.maximize):
best_bottlesim[e] = bottlesim
best_adv[e] = aimg_input
if iteration != 0 and iteration % (self.MAX_ITERATIONS // 3) == 0:
LR = LR / 2
print("Learning Rate: ", LR)
if iteration % (self.MAX_ITERATIONS // 10) == 0:
if self.verbose == 1:
loss_sum = float(self.sess.run(self.loss_sum))
dist_sum = float(self.sess.run(self.dist_sum))
thresh_over = (dist_sum /
self.batch_size /
self.l_threshold *
100)
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = self.sess.run(self.bottlesim_sum)
print('ITER %4d: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
% (iteration,
Decimal(loss_sum),
dist_sum,
thresh_over,
dist_raw_sum,
bottlesim_sum / nb_imgs))
except KeyboardInterrupt:
pass
if self.verbose == 1:
loss_sum = float(self.sess.run(self.loss_sum))
dist_sum = float(self.sess.run(self.dist_sum))
thresh_over = (dist_sum / self.batch_size / self.l_threshold * 100)
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
bottlesim_sum = float(self.sess.run(self.bottlesim_sum))
print('END: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
% (Decimal(loss_sum),
dist_sum,
thresh_over,
dist_raw_sum,
bottlesim_sum / nb_imgs))
best_adv = self.clipping(best_adv[:nb_imgs])
return best_adv

View File

@ -1,25 +1,18 @@
import argparse
import os
import sys
sys.path.append("/home/shansixioing/tools/")
sys.path.append("/home/shansixioing/cloak/")
import argparse
from tensorflow import set_random_seed
from utils import init_gpu, load_extractor, load_victim_model, dump_dictionary_as_json
import os
import numpy as np
sys.path.append("/home/shansixioing/fawkes/fawkes")
from utils import extract_faces, get_dataset_path, init_gpu, load_extractor, load_victim_model
import random
import pickle
import re
import glob
from keras.preprocessing import image
from keras.utils import to_categorical
from keras.applications.vgg16 import preprocess_input
# import locale
#
# loc = locale.getlocale()
# locale.setlocale(locale.LC_ALL, loc)
def select_samples(data_dir):
all_data_path = []
@ -27,43 +20,49 @@ def select_samples(data_dir):
cls_dir = os.path.join(data_dir, cls)
for data_path in os.listdir(cls_dir):
all_data_path.append(os.path.join(cls_dir, data_path))
return all_data_path
def generator_wrap(cloak_data, n_classes, test=False, validation_split=0.1):
if test:
all_data_path = select_samples(cloak_data.test_data_dir)
else:
all_data_path = select_samples(cloak_data.train_data_dir)
split = int(len(cloak_data.cloaked_protect_train_X) * (1 - validation_split))
cloaked_train_X = cloak_data.cloaked_protect_train_X[:split]
np.random.seed(12345)
def generator_wrap(protect_images, test=False, validation_split=0.1):
train_data_dir, test_data_dir, num_classes, num_images = get_dataset_path(args.dataset)
# all_vals = list(cloak_data.path2idx.items())
idx = 0
path2class = {}
path2imgs_list = {}
for target_path in sorted(glob.glob(train_data_dir + "/*")):
path2class[target_path] = idx
path2imgs_list[target_path] = glob.glob(os.path.join(target_path, "*"))
idx += 1
if idx >= args.num_classes:
break
path2class["protected"] = idx
np.random.seed(12345)
while True:
batch_X = []
batch_Y = []
cur_batch_path = np.random.choice(all_data_path, args.batch_size)
cur_batch_path = np.random.choice(list(path2class.keys()), args.batch_size)
for p in cur_batch_path:
# p = p.encode("utf-8").decode("ascii", 'ignore')
cur_y = cloak_data.path2idx[p]
# protect class and sybil class do not need to appear in test dataset
if test and (re.search(cloak_data.protect_class, p)):
cur_y = path2class[p]
if test and p == 'protected':
continue
# protect class images in train dataset
elif p in cloak_data.protect_class_path:
cur_x = random.choice(cloaked_train_X)
elif p == 'protected':
cur_x = random.choice(protect_images)
else:
im = image.load_img(p, target_size=cloak_data.img_shape)
im = image.img_to_array(im)
cur_x = preprocess_input(im)
cur_path = random.choice(path2imgs_list[p])
im = image.load_img(cur_path, target_size=(224, 224))
cur_x = image.img_to_array(im)
cur_x = preprocess_input(cur_x)
batch_X.append(cur_x)
batch_Y.append(cur_y)
batch_X = np.array(batch_X)
batch_Y = to_categorical(np.array(batch_Y), num_classes=n_classes)
batch_Y = to_categorical(np.array(batch_Y), num_classes=args.num_classes + 1)
yield batch_X, batch_Y
@ -87,51 +86,59 @@ def eval_cloaked_test_data(cloak_data, n_classes, validation_split=0.1):
def main():
init_gpu(args.gpu)
if args.dataset == 'pubfig':
N_CLASSES = 65
CLOAK_DIR = args.cloak_data
elif args.dataset == 'scrub':
N_CLASSES = 530
CLOAK_DIR = args.cloak_data
else:
raise ValueError
CLOAK_DIR = os.path.join("../results", CLOAK_DIR)
RES = pickle.load(open(os.path.join(CLOAK_DIR, "cloak_data.p"), 'rb'))
#
# if args.dataset == 'pubfig':
# N_CLASSES = 65
# CLOAK_DIR = args.cloak_data
# elif args.dataset == 'scrub':
# N_CLASSES = 530
# CLOAK_DIR = args.cloak_data
# else:
# raise ValueError
print("Build attacker's model")
cloak_data = RES['cloak_data']
EVAL_RES = {}
train_generator = generator_wrap(cloak_data, n_classes=N_CLASSES,
image_paths = glob.glob(os.path.join(args.directory, "*"))
original_image_paths = sorted([path for path in image_paths if "_cloaked" not in path.split("/")[-1]])
protect_image_paths = sorted([path for path in image_paths if "_cloaked" in path.split("/")[-1]])
original_imgs = np.array([extract_faces(image.img_to_array(image.load_img(cur_path))) for cur_path in
original_image_paths[:150]])
original_y = to_categorical([args.num_classes] * len(original_imgs), num_classes=args.num_classes + 1)
protect_imgs = [extract_faces(image.img_to_array(image.load_img(cur_path))) for cur_path in
protect_image_paths]
train_generator = generator_wrap(protect_imgs,
validation_split=args.validation_split)
test_generator = generator_wrap(cloak_data, test=True, n_classes=N_CLASSES,
test_generator = generator_wrap(protect_imgs, test=True,
validation_split=args.validation_split)
EVAL_RES['transfer_model'] = args.transfer_model
base_model = load_extractor(args.transfer_model)
model = load_victim_model(teacher_model=base_model, number_classes=N_CLASSES)
model = load_victim_model(teacher_model=base_model, number_classes=args.num_classes + 1)
original_X, original_Y = eval_uncloaked_test_data(cloak_data, N_CLASSES)
cloaked_test_X, cloaked_test_Y = eval_cloaked_test_data(cloak_data, N_CLASSES,
validation_split=args.validation_split)
# cloaked_test_X, cloaked_test_Y = eval_cloaked_test_data(cloak_data, args.num_classes,
# validation_split=args.validation_split)
try:
model.fit_generator(train_generator, steps_per_epoch=cloak_data.number_samples // 32,
validation_data=(original_X, original_Y), epochs=args.n_epochs, verbose=2,
use_multiprocessing=False, workers=1)
except KeyboardInterrupt:
pass
# try:
train_data_dir, test_data_dir, num_classes, num_images = get_dataset_path(args.dataset)
model.fit_generator(train_generator, steps_per_epoch=num_images // 32,
validation_data=(original_imgs, original_y),
epochs=args.n_epochs,
verbose=1,
use_multiprocessing=True, workers=5)
# except KeyboardInterrupt:
# pass
_, acc_original = model.evaluate(original_X, original_Y, verbose=0)
_, acc_original = model.evaluate(original_imgs, original_y, verbose=0)
print("Accuracy on uncloaked/original images TEST: {:.4f}".format(acc_original))
EVAL_RES['acc_original'] = acc_original
# EVAL_RES['acc_original'] = acc_original
_, other_acc = model.evaluate_generator(test_generator, verbose=0, steps=50)
print("Accuracy on other classes {:.4f}".format(other_acc))
EVAL_RES['other_acc'] = other_acc
dump_dictionary_as_json(EVAL_RES, os.path.join(CLOAK_DIR, "eval_seed{}.json".format(args.seed_idx)))
# EVAL_RES['other_acc'] = other_acc
# dump_dictionary_as_json(EVAL_RES, os.path.join(CLOAK_DIR, "eval_seed{}.json".format(args.seed_idx)))
def parse_arguments(argv):
@ -139,16 +146,21 @@ def parse_arguments(argv):
parser.add_argument('--gpu', type=str,
help='GPU id', default='0')
parser.add_argument('--dataset', type=str,
help='name of dataset', default='scrub')
parser.add_argument('--cloak_data', type=str,
parser.add_argument('--num_classes', type=int,
help='name of dataset', default=520)
parser.add_argument('--directory', '-d', type=str,
help='name of the cloak result directory',
default='scrub_webface_dense_robust_extract_protectPatrick_Dempsey')
default='img/')
parser.add_argument('--transfer_model', type=str,
help='the feature extractor used for tracker model training. It can be the same or not same as the user\'s', default='vggface2_inception_extract')
help='the feature extractor used for tracker model training. ', default='low_extract')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--validation_split', type=float, default=0.1)
parser.add_argument('--n_epochs', type=int, default=5)
parser.add_argument('--n_epochs', type=int, default=3)
return parser.parse_args(argv)

View File

@ -1,4 +1,5 @@
import argparse
import glob
import os
import pickle
import random
@ -7,8 +8,9 @@ import sys
import numpy as np
from keras.applications.vgg16 import preprocess_input
from keras.preprocessing import image
from utils import load_extractor, get_dataset_path
sys.path.append("../fawkes")
# from utils import load_extractor
import keras
def load_sample_dir(path, sample=10):
x_ls = []
@ -30,21 +32,26 @@ def normalize(x):
def main():
extractor = load_extractor(args.feature_extractor)
extractor = keras.models.load_model(args.feature_extractor)
path2emb = {}
for target_dataset in args.candidate_datasets:
target_dataset_path, _, _, _ = get_dataset_path(target_dataset)
for target_class in os.listdir(target_dataset_path):
target_class_path = os.path.join(target_dataset_path, target_class)
target_X = load_sample_dir(target_class_path)
cur_feature = extractor.predict(target_X)
cur_feature = np.mean(cur_feature, axis=0)
path2emb[target_class_path] = cur_feature
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
for path in glob.glob(os.path.join(model_dir, "target_data/*")):
print(path)
idx = int(path.split("/")[-1])
cur_image_paths = glob.glob(os.path.join(path, "*"))
imgs = np.array([image.img_to_array(image.load_img(p, target_size=(224, 224))) for p in cur_image_paths])
imgs = preprocess_input(imgs)
for k, v in path2emb.items():
path2emb[k] = normalize(v)
cur_feature = extractor.predict(imgs)
cur_feature = np.mean(cur_feature, axis=0)
path2emb[idx] = cur_feature
model_path = os.path.join(model_dir, "{}_extract.h5".format(args.feature_extractor_name))
emb_path = os.path.join(model_dir, "{}_emb.p".format(args.feature_extractor_name))
extractor.save(model_path)
pickle.dump(path2emb, open(emb_path, "wb"))
pickle.dump(path2emb, open("../feature_extractors/embeddings/{}_emb.p".format(args.feature_extractor), "wb"))
def parse_arguments(argv):
@ -54,8 +61,12 @@ def parse_arguments(argv):
parser.add_argument('--candidate-datasets', nargs='+',
help='path candidate datasets')
parser.add_argument('--feature-extractor', type=str,
help="path of the feature extractor used for optimization",
default="/home/shansixioing/fawkes/feature_extractors/high2_extract.h5")
parser.add_argument('--feature-extractor-name', type=str,
help="name of the feature extractor used for optimization",
default="webface_dense_robust_extract")
default="high2")
return parser.parse_args(argv)

View File

@ -1,95 +0,0 @@
import argparse
import os
import pickle
import random
import sys
import numpy as np
from differentiator import FawkesMaskGeneration
from tensorflow import set_random_seed
from utils import load_extractor, CloakData, init_gpu
random.seed(12243)
np.random.seed(122412)
set_random_seed(12242)
NUM_IMG_PROTECTED = 400 # Number of images used to optimize the target class
BATCH_SIZE = 32
MAX_ITER = 1000
def diff_protected_data(sess, feature_extractors_ls, image_X, number_protect, target_X=None, th=0.01):
image_X = image_X[:number_protect]
differentiator = FawkesMaskGeneration(sess, feature_extractors_ls,
batch_size=BATCH_SIZE,
mimic_img=True,
intensity_range='imagenet',
initial_const=args.sd,
learning_rate=args.lr,
max_iterations=MAX_ITER,
l_threshold=th,
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:])
if len(target_X) < len(image_X):
target_X = np.concatenate([target_X, target_X, target_X])
target_X = target_X[:len(image_X)]
cloaked_image_X = differentiator.attack(image_X, target_X)
return cloaked_image_X
def perform_defense():
RES = {}
sess = init_gpu(args.gpu)
FEATURE_EXTRACTORS = [args.feature_extractor]
RES_DIR = '../results/'
RES['num_img_protected'] = NUM_IMG_PROTECTED
RES['extractors'] = FEATURE_EXTRACTORS
num_protect = NUM_IMG_PROTECTED
print("Loading {} for optimization".format(args.feature_extractor))
feature_extractors_ls = [load_extractor(name) for name in FEATURE_EXTRACTORS]
protect_class = args.protect_class
cloak_data = CloakData(args.dataset, protect_class=protect_class)
RES_FILE_NAME = "{}_{}_protect{}".format(args.dataset, args.feature_extractor, cloak_data.protect_class)
RES_FILE_NAME = os.path.join(RES_DIR, RES_FILE_NAME)
print("Protect Class: ", cloak_data.protect_class)
cloak_data.target_path, cloak_data.target_data = cloak_data.select_target_label(feature_extractors_ls,
FEATURE_EXTRACTORS)
os.makedirs(RES_DIR, exist_ok=True)
os.makedirs(RES_FILE_NAME, exist_ok=True)
cloak_image_X = diff_protected_data(sess, feature_extractors_ls, cloak_data.protect_train_X,
number_protect=num_protect,
target_X=cloak_data.target_data, th=args.th)
cloak_data.cloaked_protect_train_X = cloak_image_X
RES['cloak_data'] = cloak_data
pickle.dump(RES, open(os.path.join(RES_FILE_NAME, 'cloak_data.p'), "wb"))
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str,
help='GPU id', default='0')
parser.add_argument('--dataset', type=str,
help='name of dataset', default='scrub')
parser.add_argument('--feature-extractor', type=str,
help="name of the feature extractor used for optimization",
default="webface_dense_robust_extract")
parser.add_argument('--th', type=float, default=0.007)
parser.add_argument('--sd', type=int, default=1e9)
parser.add_argument('--protect_class', type=str, default=None)
parser.add_argument('--lr', type=float, default=1)
return parser.parse_args(argv)
if __name__ == '__main__':
args = parse_arguments(sys.argv[1:])
perform_defense()

View File

@ -1,373 +0,0 @@
import json
import os
import pickle
import random
import keras
import keras.backend as K
import numpy as np
import tensorflow as tf
from keras.applications.vgg16 import preprocess_input
from keras.layers import Dense, Activation
from keras.models import Model
from keras.preprocessing import image
from keras.utils import to_categorical
from sklearn.metrics import pairwise_distances
# from keras.utils import get_file
def clip_img(X, preprocessing='raw'):
X = reverse_preprocess(X, preprocessing)
X = np.clip(X, 0.0, 255.0)
X = preprocess(X, preprocessing)
return X
def dump_dictionary_as_json(dict, outfile):
j = json.dumps(dict)
with open(outfile, "wb") as f:
f.write(j.encode())
def fix_gpu_memory(mem_fraction=1):
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=mem_fraction)
tf_config = tf.ConfigProto(gpu_options=gpu_options)
tf_config.gpu_options.allow_growth = True
tf_config.log_device_placement = False
init_op = tf.global_variables_initializer()
sess = tf.Session(config=tf_config)
sess.run(init_op)
K.set_session(sess)
return sess
def load_victim_model(number_classes, teacher_model=None, end2end=False):
for l in teacher_model.layers:
l.trainable = end2end
x = teacher_model.layers[-1].output
x = Dense(number_classes)(x)
x = Activation('softmax', name="act")(x)
model = Model(teacher_model.input, x)
opt = keras.optimizers.Adadelta()
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
return model
def init_gpu(gpu_index, force=False):
if isinstance(gpu_index, list):
gpu_num = ','.join([str(i) for i in gpu_index])
else:
gpu_num = str(gpu_index)
if "CUDA_VISIBLE_DEVICES" in os.environ and os.environ["CUDA_VISIBLE_DEVICES"] and not force:
print('GPU already initiated')
return
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_num
sess = fix_gpu_memory()
return sess
def preprocess(X, method):
assert method in {'raw', 'imagenet', 'inception', 'mnist'}
if method is 'raw':
pass
elif method is 'imagenet':
X = imagenet_preprocessing(X)
else:
raise Exception('unknown method %s' % method)
return X
def reverse_preprocess(X, method):
assert method in {'raw', 'imagenet', 'inception', 'mnist'}
if method is 'raw':
pass
elif method is 'imagenet':
X = imagenet_reverse_preprocessing(X)
else:
raise Exception('unknown method %s' % method)
return X
def imagenet_preprocessing(x, data_format=None):
if data_format is None:
data_format = K.image_data_format()
assert data_format in ('channels_last', 'channels_first')
x = np.array(x)
if data_format == 'channels_first':
# 'RGB'->'BGR'
if x.ndim == 3:
x = x[::-1, ...]
else:
x = x[:, ::-1, ...]
else:
# 'RGB'->'BGR'
x = x[..., ::-1]
mean = [103.939, 116.779, 123.68]
std = None
# Zero-center by mean pixel
if data_format == 'channels_first':
if x.ndim == 3:
x[0, :, :] -= mean[0]
x[1, :, :] -= mean[1]
x[2, :, :] -= mean[2]
if std is not None:
x[0, :, :] /= std[0]
x[1, :, :] /= std[1]
x[2, :, :] /= std[2]
else:
x[:, 0, :, :] -= mean[0]
x[:, 1, :, :] -= mean[1]
x[:, 2, :, :] -= mean[2]
if std is not None:
x[:, 0, :, :] /= std[0]
x[:, 1, :, :] /= std[1]
x[:, 2, :, :] /= std[2]
else:
x[..., 0] -= mean[0]
x[..., 1] -= mean[1]
x[..., 2] -= mean[2]
if std is not None:
x[..., 0] /= std[0]
x[..., 1] /= std[1]
x[..., 2] /= std[2]
return x
def imagenet_reverse_preprocessing(x, data_format=None):
import keras.backend as K
x = np.array(x)
if data_format is None:
data_format = K.image_data_format()
assert data_format in ('channels_last', 'channels_first')
if data_format == 'channels_first':
if x.ndim == 3:
# Zero-center by mean pixel
x[0, :, :] += 103.939
x[1, :, :] += 116.779
x[2, :, :] += 123.68
# 'BGR'->'RGB'
x = x[::-1, :, :]
else:
x[:, 0, :, :] += 103.939
x[:, 1, :, :] += 116.779
x[:, 2, :, :] += 123.68
x = x[:, ::-1, :, :]
else:
# Zero-center by mean pixel
x[..., 0] += 103.939
x[..., 1] += 116.779
x[..., 2] += 123.68
# 'BGR'->'RGB'
x = x[..., ::-1]
return x
def build_bottleneck_model(model, cut_off):
bottleneck_model = Model(model.input, model.get_layer(cut_off).output)
bottleneck_model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return bottleneck_model
def load_extractor(name):
model = keras.models.load_model("../feature_extractors/{}.h5".format(name))
if hasattr(model.layers[-1], "activation") and model.layers[-1].activation == "softmax":
raise Exception(
"Given extractor's last layer is softmax, need to remove the top layers to make it into a feature extractor")
# if "extract" in name.split("/")[-1]:
# pass
# else:
# print("Convert a model to a feature extractor")
# model = build_bottleneck_model(model, model.layers[layer_idx].name)
# model.save(name + "extract")
# model = keras.models.load_model(name + "extract")
return model
def get_dataset_path(dataset):
if not os.path.exists("config.json"):
raise Exception("Please config the datasets before running protection code. See more in README and config.py.")
config = json.load(open("config.json", 'r'))
if dataset not in config:
raise Exception(
"Dataset {} does not exist, please download to data/ and add the path to this function... Abort".format(
dataset))
return config[dataset]['train_dir'], config[dataset]['test_dir'], config[dataset]['num_classes'], config[dataset][
'num_images']
def normalize(x):
return x / np.linalg.norm(x, axis=1, keepdims=True)
class CloakData(object):
def __init__(self, dataset, img_shape=(224, 224), protect_class=None):
self.dataset = dataset
self.img_shape = img_shape
self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
if protect_class:
self.protect_class = protect_class
else:
self.protect_class = random.choice(self.all_labels)
self.sybil_class = random.choice([l for l in self.all_labels if l != self.protect_class])
self.protect_train_X, self.protect_test_X = self.load_label_data(self.protect_class)
self.sybil_train_X, self.sybil_test_X = self.load_label_data(self.sybil_class)
self.cloaked_protect_train_X = None
self.cloaked_sybil_train_X = None
self.label2path_train, self.label2path_test, self.path2idx = self.build_data_mapping()
self.all_training_path = self.get_all_data_path(self.label2path_train)
self.all_test_path = self.get_all_data_path(self.label2path_test)
self.protect_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.protect_class))
self.sybil_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.sybil_class))
print("Find {} protect images".format(len(self.protect_class_path)))
def get_class_image_files(self, path):
return [os.path.join(path, f) for f in os.listdir(path)]
def extractor_ls_predict(self, feature_extractors_ls, X):
feature_ls = []
for extractor in feature_extractors_ls:
cur_features = extractor.predict(X)
feature_ls.append(cur_features)
concated_feature_ls = np.concatenate(feature_ls, axis=1)
concated_feature_ls = normalize(concated_feature_ls)
return concated_feature_ls
def load_embeddings(self, feature_extractors_names):
dictionaries = []
for extractor_name in feature_extractors_names:
path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
dictionaries.append(path2emb)
merge_dict = {}
for k in dictionaries[0].keys():
cur_emb = [dic[k] for dic in dictionaries]
merge_dict[k] = np.concatenate(cur_emb)
return merge_dict
def select_target_label(self, feature_extractors_ls, feature_extractors_names, metric='l2'):
original_feature_x = self.extractor_ls_predict(feature_extractors_ls, self.protect_train_X)
path2emb = self.load_embeddings(feature_extractors_names)
items = list(path2emb.items())
paths = [p[0] for p in items]
embs = [p[1] for p in items]
embs = np.array(embs)
pair_dist = pairwise_distances(original_feature_x, embs, metric)
max_sum = np.min(pair_dist, axis=0)
sorted_idx = np.argsort(max_sum)[::-1]
highest_num = 0
paired_target_X = None
final_target_class_path = None
for idx in sorted_idx[:5]:
target_class_path = paths[idx]
cur_target_X = self.load_dir(target_class_path)
cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
cur_tot_sum, cur_paired_target_X = self.calculate_dist_score(self.protect_train_X, cur_target_X,
feature_extractors_ls,
metric=metric)
if cur_tot_sum > highest_num:
highest_num = cur_tot_sum
paired_target_X = cur_paired_target_X
final_target_class_path = target_class_path
np.random.shuffle(paired_target_X)
return final_target_class_path, paired_target_X
def calculate_dist_score(self, a, b, feature_extractors_ls, metric='l2'):
features1 = self.extractor_ls_predict(feature_extractors_ls, a)
features2 = self.extractor_ls_predict(feature_extractors_ls, b)
pair_cos = pairwise_distances(features1, features2, metric)
max_sum = np.min(pair_cos, axis=0)
max_sum_arg = np.argsort(max_sum)[::-1]
max_sum_arg = max_sum_arg[:len(a)]
max_sum = [max_sum[i] for i in max_sum_arg]
paired_target_X = [b[j] for j in max_sum_arg]
paired_target_X = np.array(paired_target_X)
return np.min(max_sum), paired_target_X
def get_all_data_path(self, label2path):
all_paths = []
for k, v in label2path.items():
cur_all_paths = [os.path.join(k, cur_p) for cur_p in v]
all_paths.extend(cur_all_paths)
return all_paths
def load_label_data(self, label):
train_label_path = os.path.join(self.train_data_dir, label)
test_label_path = os.path.join(self.test_data_dir, label)
train_X = self.load_dir(train_label_path)
test_X = self.load_dir(test_label_path)
return train_X, test_X
def load_dir(self, path):
assert os.path.exists(path)
x_ls = []
for file in os.listdir(path):
cur_path = os.path.join(path, file)
im = image.load_img(cur_path, target_size=self.img_shape)
im = image.img_to_array(im)
x_ls.append(im)
raw_x = np.array(x_ls)
return preprocess_input(raw_x)
def build_data_mapping(self):
label2path_train = {}
label2path_test = {}
idx = 0
path2idx = {}
for label_name in self.all_labels:
full_path_train = os.path.join(self.train_data_dir, label_name)
full_path_test = os.path.join(self.test_data_dir, label_name)
label2path_train[full_path_train] = list(os.listdir(full_path_train))
label2path_test[full_path_test] = list(os.listdir(full_path_test))
for img_file in os.listdir(full_path_train):
path2idx[os.path.join(full_path_train, img_file)] = idx
for img_file in os.listdir(full_path_test):
path2idx[os.path.join(full_path_test, img_file)] = idx
idx += 1
return label2path_train, label2path_test, path2idx
def generate_data_post_cloak(self, sybil=False):
assert self.cloaked_protect_train_X is not None
while True:
batch_X = []
batch_Y = []
cur_batch_path = random.sample(self.all_training_path, 32)
for p in cur_batch_path:
cur_y = self.path2idx[p]
if p in self.protect_class_path:
cur_x = random.choice(self.cloaked_protect_train_X)
elif sybil and (p in self.sybil_class):
cur_x = random.choice(self.cloaked_sybil_train_X)
else:
im = image.load_img(p, target_size=self.img_shape)
im = image.img_to_array(im)
cur_x = preprocess_input(im)
batch_X.append(cur_x)
batch_Y.append(cur_y)
batch_X = np.array(batch_X)
batch_Y = to_categorical(np.array(batch_Y), num_classes=self.number_classes)
yield batch_X, batch_Y