2
0
mirror of https://github.com/Shawn-Shan/fawkes.git synced 2025-01-22 17:37:49 +05:30

replace skimage resize with image resize

This commit is contained in:
Shawn-Shan 2020-07-26 14:37:55 -05:00
parent 2b2d054118
commit c52b38e152
3 changed files with 52 additions and 28 deletions

View File

@ -407,6 +407,8 @@ class FawkesMaskGeneration:
if iteration != 0 and iteration % (self.MAX_ITERATIONS // 3) == 0:
LR = LR * 0.8
if self.verbose:
print("Learning rate: ", LR)
if iteration % (self.MAX_ITERATIONS // 5) == 0:
if self.verbose == 1:

View File

@ -26,16 +26,6 @@ def generate_cloak_images(protector, image_X, target_emb=None):
return cloaked_image_X
def check_imgs(imgs):
if np.max(imgs) <= 1 and np.min(imgs) >= 0:
imgs = imgs * 255.0
elif np.max(imgs) <= 255 and np.min(imgs) >= 0:
pass
else:
raise Exception("Image values ")
return imgs
class Fawkes(object):
def __init__(self, feature_extractor, gpu, batch_size):
@ -66,7 +56,7 @@ class Fawkes(object):
def mode2param(self, mode):
if mode == 'low':
th = 0.003
max_step = 50
max_step = 40
lr = 20
elif mode == 'mid':
th = 0.005
@ -89,7 +79,6 @@ class Fawkes(object):
def run_protection(self, image_paths, mode='low', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png',
separate_target=True, debug=False):
if mode == 'custom':
pass
else:
@ -101,11 +90,16 @@ class Fawkes(object):
image_paths, loaded_images = filter_image_paths(image_paths)
if not image_paths:
raise Exception("No images in the directory")
print("No images in the directory")
return 3
with graph.as_default():
faces = Faces(image_paths, loaded_images, self.aligner, verbose=1)
original_images = faces.cropped_faces
if len(original_images) == 0:
print("No face detected. ")
return 2
original_images = np.array(original_images)
with sess.as_default():
@ -143,16 +137,19 @@ class Fawkes(object):
faces.cloaked_cropped_faces = protected_images
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(
original_images)
final_images = faces.merge_faces(cloak_perturbation)
# cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(
# original_images)
# final_images = faces.merge_faces(cloak_perturbation)
final_images = faces.merge_faces(reverse_process_cloaked(protected_images),
reverse_process_cloaked(original_images))
for p_img, path in zip(final_images, image_paths):
file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), mode, format)
dump_image(p_img, file_name, format=format)
print("Done!")
return None
return 1
def main(*argv):
@ -201,7 +198,15 @@ def main(*argv):
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
protector = Fawkes(args.feature_extractor, args.gpu, args.batch_size)
protector.run_protection(image_paths, mode=args.mode, th=args.th, sd=args.sd, lr=args.lr, max_step=args.max_step,
if args.mode != 'all':
protector.run_protection(image_paths, mode=args.mode, th=args.th, sd=args.sd, lr=args.lr,
max_step=args.max_step,
batch_size=args.batch_size, format=args.format,
separate_target=args.separate_target, debug=args.debug)
else:
for m in ['low', 'mid', 'high']:
protector.run_protection(image_paths, mode=m, th=args.th, sd=args.sd, lr=args.lr,
max_step=args.max_step,
batch_size=args.batch_size, format=args.format,
separate_target=args.separate_target, debug=args.debug)

View File

@ -25,7 +25,7 @@ from PIL import Image, ExifTags
from keras.layers import Dense, Activation, Dropout
from keras.models import Model
from keras.preprocessing import image
from skimage.transform import resize
# from skimage.transform import resize
from fawkes.align_face import align
from six.moves.urllib.request import urlopen
@ -140,7 +140,6 @@ class Faces(object):
cur_faces_square = []
if verbose:
print("Find {} face(s) in {}".format(len(cur_faces), p.split("/")[-1]))
if eval_local:
cur_faces = cur_faces[:1]
@ -152,16 +151,16 @@ class Faces(object):
base = np.zeros((long_size, long_size, 3))
base[0:img.shape[0], 0:img.shape[1], :] = img
cur_faces_square.append(base)
cur_index = align_img[1]
cur_faces_square = [resize(f, (224, 224)) for f in cur_faces_square]
self.cropped_faces_shape.extend(cur_shapes)
self.cropped_faces.extend(cur_faces_square)
self.cropped_index.extend(cur_index)
self.callback_idx.extend([i] * len(cur_faces_square))
if not self.cropped_faces:
raise Exception("No faces detected")
if len(self.cropped_faces) == 0:
return
self.cropped_faces = np.array(self.cropped_faces)
@ -173,15 +172,24 @@ class Faces(object):
def get_faces(self):
return self.cropped_faces
def merge_faces(self, cloaks):
def merge_faces(self, protected_images, original_images):
self.cloaked_faces = np.copy(self.org_faces)
for i in range(len(self.cropped_faces)):
cur_cloak = cloaks[i]
# cur_cloak = cloaks[i]
cur_protected = protected_images[i]
cur_original = original_images[i]
org_shape = self.cropped_faces_shape[i]
old_square_shape = max([org_shape[0], org_shape[1]])
reshape_cloak = resize(cur_cloak, (old_square_shape, old_square_shape))
# reshape_cloak = resize(cur_cloak, (old_square_shape, old_square_shape))
cur_protected = resize(cur_protected, (old_square_shape, old_square_shape))
cur_original = resize(cur_original, (old_square_shape, old_square_shape))
reshape_cloak = cur_protected - cur_original
reshape_cloak = reshape_cloak[0:org_shape[0], 0:org_shape[1], :]
callback_id = self.callback_idx[i]
@ -211,6 +219,15 @@ def load_victim_model(number_classes, teacher_model=None, end2end=False, dropout
return model
def resize(img, sz):
assert np.min(img) >= 0 and np.max(img) <= 255.0
from keras.preprocessing import image
im_data = image.array_to_img(img).resize((sz[1], sz[0]))
im_data = image.img_to_array(im_data)
return im_data
def init_gpu(gpu_index, force=False):
if isinstance(gpu_index, list):
gpu_num = ','.join([str(i) for i in gpu_index])