2
0
mirror of https://github.com/Shawn-Shan/fawkes.git synced 2024-12-22 07:09:33 +05:30
Former-commit-id: c3687684a19c18309f97b69f8161af7a31fe0fb8 [formerly b68719d5e14a54377fafbea9f2c7c9b996bea583]
Former-commit-id: f17d9cbb79833f56450e0518d978603997037e94
This commit is contained in:
Shawn-Shan 2020-07-02 12:32:05 -05:00
parent 71094033f2
commit d7a25eb292
13 changed files with 282 additions and 233 deletions

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,24 @@
# -*- coding: utf-8 -*-
# @Date : 2020-07-01
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
# @Link : https://www.shawnshan.com/
__version__ = '0.0.2'
from .differentiator import FawkesMaskGeneration
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
Faces
from .protection import main
import logging
import sys
import os
logging.getLogger('tensorflow').disabled = True
__all__ = (
'__version__',
'FawkesMaskGeneration', 'load_extractor',
'init_gpu',
'select_target_label', 'dump_image', 'reverse_process_cloaked', 'Faces', 'main'
)

4
fawkes/__main__.py Normal file
View File

@ -0,0 +1,4 @@
from .protection import main
if __name__ == '__main__':
main()

View File

@ -1,6 +1,5 @@
import detect_face
from .detect_face import detect_face, create_mtcnn
import numpy as np
import tensorflow as tf
# modify the default parameters of np.load
np_load_old = np.load
@ -15,7 +14,7 @@ def to_rgb(img):
def aligner(sess):
pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
pnet, rnet, onet = create_mtcnn(sess, None)
return [pnet, rnet, onet]
@ -31,7 +30,7 @@ def align(orig_img, aligner, margin=0.8, detect_multiple_faces=True):
orig_img = to_rgb(orig_img)
orig_img = orig_img[:, :, 0:3]
bounding_boxes, _ = detect_face.detect_face(orig_img, minsize, pnet, rnet, onet, threshold, factor)
bounding_boxes, _ = detect_face(orig_img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]

View File

@ -29,7 +29,6 @@ from __future__ import print_function
import os
# from math import floor
import cv2
import numpy as np
import tensorflow as tf

View File

@ -10,7 +10,7 @@ from decimal import Decimal
import numpy as np
import tensorflow as tf
from utils import preprocess, reverse_preprocess
from .utils import preprocess, reverse_preprocess
class FawkesMaskGeneration:

View File

@ -1,3 +1,7 @@
# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function
import argparse
import glob
import os
@ -5,26 +9,28 @@ import random
import sys
import numpy as np
from differentiator import FawkesMaskGeneration
from utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
from .differentiator import FawkesMaskGeneration
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
Faces
random.seed(12243)
np.random.seed(122412)
BATCH_SIZE = 10
BATCH_SIZE = 32
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None):
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None, sd=1e9, lr=2,
max_step=500):
batch_size = BATCH_SIZE if len(image_X) > BATCH_SIZE else len(image_X)
differentiator = FawkesMaskGeneration(sess, feature_extractors,
batch_size=batch_size,
mimic_img=True,
intensity_range='imagenet',
initial_const=args.sd,
learning_rate=args.lr,
max_iterations=args.max_step,
initial_const=sd,
learning_rate=lr,
max_iterations=max_step,
l_threshold=th,
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:],
faces=faces)
@ -33,26 +39,6 @@ def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th
return cloaked_image_X
def get_mode_config(mode):
if mode == 'low':
args.feature_extractor = "low_extract"
# args.th = 0.003
args.th = 0.001
elif mode == 'mid':
args.feature_extractor = "mid_extract"
args.th = 0.004
elif mode == 'high':
args.feature_extractor = "high_extract"
args.th = 0.004
elif mode == 'ultra':
args.feature_extractor = "high_extract"
args.th = 0.03
elif mode == 'custom':
pass
else:
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
def check_imgs(imgs):
if np.max(imgs) <= 1 and np.min(imgs) >= 0:
imgs = imgs * 255.0
@ -63,20 +49,72 @@ def check_imgs(imgs):
return imgs
def fawkes():
def main(*argv):
if not argv:
argv = list(sys.argv)
# attach SIGPIPE handler to properly handle broken pipe
try: # sigpipe not available under windows. just ignore in this case
import signal
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
except Exception as e:
pass
parser = argparse.ArgumentParser()
parser.add_argument('--directory', '-d', type=str,
help='directory that contain images for cloaking', default='imgs/')
parser.add_argument('--gpu', type=str,
help='GPU id', default='0')
parser.add_argument('--mode', type=str,
help='cloak generation mode', default='high')
parser.add_argument('--feature-extractor', type=str,
help="name of the feature extractor used for optimization",
default="high_extract")
parser.add_argument('--th', type=float, default=0.01)
parser.add_argument('--max-step', type=int, default=500)
parser.add_argument('--sd', type=int, default=1e9)
parser.add_argument('--lr', type=float, default=2)
parser.add_argument('--separate_target', action='store_true')
parser.add_argument('--format', type=str,
help="final image format",
default="jpg")
args = parser.parse_args(argv[1:])
if args.mode == 'low':
args.feature_extractor = "high_extract"
args.th = 0.003
elif args.mode == 'mid':
args.feature_extractor = "high_extract"
args.th = 0.005
elif args.mode == 'high':
args.feature_extractor = "high_extract"
args.th = 0.007
elif args.mode == 'ultra':
args.feature_extractor = "high_extract"
args.th = 0.01
elif args.mode == 'custom':
pass
else:
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
assert args.format in ['png', 'jpg', 'jpeg']
if args.format == 'jpg':
args.format = 'jpeg'
get_mode_config(args.mode)
sess = init_gpu(args.gpu)
# feature_extractors_ls = [load_extractor(args.feature_extractor)]
# fs_names = ['mid_extract', 'high_extract']
fs_names = [args.feature_extractor]
feature_extractors_ls = [load_extractor(name) for name in fs_names]
image_paths = glob.glob(os.path.join(args.directory, "*"))
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
if not image_paths:
print("No images in the directory")
exit(1)
faces = Faces(image_paths, sess)
@ -94,7 +132,8 @@ def fawkes():
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
target_emb=target_embedding, th=args.th, faces=faces)
target_emb=target_embedding, th=args.th, faces=faces, sd=args.sd,
lr=args.lr, max_step=args.max_step)
faces.cloaked_cropped_faces = protected_images
@ -102,42 +141,9 @@ def fawkes():
final_images = faces.merge_faces(cloak_perturbation)
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
file_name = "{}_{}_{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.th,
args.feature_extractor, args.format)
file_name = "{}_{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.th, args.format)
dump_image(p_img, file_name, format=args.format)
#
# file_name = "{}_{}_{}_{}_cloaked_cropped.png".format(".".join(path.split(".")[:-1]), args.mode, args.th,
# args.feature_extractor)
# dump_image(reverse_process_cloaked(cloaked_img), file_name, format="png")
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--directory', '-d', type=str,
help='directory that contain images for cloaking', default='imgs/')
parser.add_argument('--gpu', type=str,
help='GPU id', default='0')
parser.add_argument('--mode', type=str,
help='cloak generation mode', default='high')
parser.add_argument('--feature-extractor', type=str,
help="name of the feature extractor used for optimization",
default="high_extract")
parser.add_argument('--th', type=float, default=0.01)
parser.add_argument('--max-step', type=int, default=200)
parser.add_argument('--sd', type=int, default=1e9)
parser.add_argument('--lr', type=float, default=10)
parser.add_argument('--separate_target', action='store_true')
parser.add_argument('--format', type=str,
help="final image format",
default="jpg")
return parser.parse_args(argv)
if __name__ == '__main__':
args = parse_arguments(sys.argv[1:])
fawkes()
main(*sys.argv)

View File

@ -4,21 +4,26 @@ import json
import os
import pickle
import random
import sys
stderr = sys.stderr
sys.stderr = open(os.devnull, 'w')
import keras
sys.stderr = stderr
import keras.backend as K
import numpy as np
import tensorflow as tf
from align_face import align, aligner
from keras.applications.vgg16 import preprocess_input
from PIL import Image, ExifTags
# from keras.applications.vgg16 import preprocess_input
from keras.layers import Dense, Activation
from keras.models import Model
from keras.preprocessing import image
from keras.utils import get_file
from keras.utils import to_categorical
from skimage.transform import resize
from sklearn.metrics import pairwise_distances
from PIL import Image, ExifTags
from .align_face import align, aligner
def clip_img(X, preprocessing='raw'):
@ -81,7 +86,14 @@ class Faces(object):
self.cropped_index.extend(cur_index)
self.callback_idx.extend([i] * len(cur_faces_square))
self.cropped_faces = preprocess_input(np.array(self.cropped_faces))
if not self.cropped_faces:
print("No faces detected")
exit(1)
self.cropped_faces = np.array(self.cropped_faces)
self.cropped_faces = preprocess(self.cropped_faces, 'imagenet')
self.cloaked_cropped_faces = None
self.cloaked_faces = np.copy(self.org_faces)
@ -89,8 +101,6 @@ class Faces(object):
return self.cropped_faces
def merge_faces(self, cloaks):
# import pdb
# pdb.set_trace()
self.cloaked_faces = np.copy(self.org_faces)
@ -300,7 +310,6 @@ def load_extractor(name):
return model
def get_dataset_path(dataset):
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
if not os.path.exists(os.path.join(model_dir, "config.json")):
@ -335,7 +344,7 @@ def load_dir(path):
im = image.img_to_array(im)
x_ls.append(im)
raw_x = np.array(x_ls)
return preprocess_input(raw_x)
return preprocess(raw_x, 'imagenet')
def load_embeddings(feature_extractors_names):
@ -394,10 +403,19 @@ def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, m
max_sum = np.min(pair_dist, axis=0)
max_id = np.argmax(max_sum)
image_paths = glob.glob(os.path.join(model_dir, "target_data/{}/*".format(paths[int(max_id)])))
target_data_id = paths[int(max_id)]
image_dir = os.path.join(model_dir, "target_data/{}/*".format(target_data_id))
if not os.path.exists(image_dir):
get_file("{}.h5".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/target_images".format(name),
cache_dir=model_dir, cache_subdir='')
image_paths = glob.glob(image_dir)
target_images = [image.img_to_array(image.load_img(cur_path)) for cur_path in
image_paths]
target_images = preprocess_input(np.array([resize(x, (224, 224)) for x in target_images]))
target_images = np.array([resize(x, (224, 224)) for x in target_images])
target_images = preprocess(target_images, 'imagenet')
target_images = list(target_images)
while len(target_images) < len(imgs):
@ -406,152 +424,151 @@ def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, m
target_images = random.sample(target_images, len(imgs))
return np.array(target_images)
class CloakData(object):
def __init__(self, protect_directory=None, img_shape=(224, 224)):
self.img_shape = img_shape
# self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
# self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
self.protect_directory = protect_directory
self.protect_X = self.load_label_data(self.protect_directory)
self.cloaked_protect_train_X = None
self.label2path_train, self.label2path_test, self.path2idx = self.build_data_mapping()
self.all_training_path = self.get_all_data_path(self.label2path_train)
self.all_test_path = self.get_all_data_path(self.label2path_test)
self.protect_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.protect_class))
def get_class_image_files(self, path):
return [os.path.join(path, f) for f in os.listdir(path)]
def extractor_ls_predict(self, feature_extractors_ls, X):
feature_ls = []
for extractor in feature_extractors_ls:
cur_features = extractor.predict(X)
feature_ls.append(cur_features)
concated_feature_ls = np.concatenate(feature_ls, axis=1)
concated_feature_ls = normalize(concated_feature_ls)
return concated_feature_ls
def load_embeddings(self, feature_extractors_names):
dictionaries = []
for extractor_name in feature_extractors_names:
path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
dictionaries.append(path2emb)
merge_dict = {}
for k in dictionaries[0].keys():
cur_emb = [dic[k] for dic in dictionaries]
merge_dict[k] = np.concatenate(cur_emb)
return merge_dict
def select_target_label(self, feature_extractors_ls, feature_extractors_names, metric='l2'):
original_feature_x = self.extractor_ls_predict(feature_extractors_ls, self.protect_train_X)
path2emb = self.load_embeddings(feature_extractors_names)
items = list(path2emb.items())
paths = [p[0] for p in items]
embs = [p[1] for p in items]
embs = np.array(embs)
pair_dist = pairwise_distances(original_feature_x, embs, metric)
max_sum = np.min(pair_dist, axis=0)
sorted_idx = np.argsort(max_sum)[::-1]
highest_num = 0
paired_target_X = None
final_target_class_path = None
for idx in sorted_idx[:5]:
target_class_path = paths[idx]
cur_target_X = self.load_dir(target_class_path)
cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
cur_tot_sum, cur_paired_target_X = self.calculate_dist_score(self.protect_train_X, cur_target_X,
feature_extractors_ls,
metric=metric)
if cur_tot_sum > highest_num:
highest_num = cur_tot_sum
paired_target_X = cur_paired_target_X
final_target_class_path = target_class_path
np.random.shuffle(paired_target_X)
return final_target_class_path, paired_target_X
def calculate_dist_score(self, a, b, feature_extractors_ls, metric='l2'):
features1 = self.extractor_ls_predict(feature_extractors_ls, a)
features2 = self.extractor_ls_predict(feature_extractors_ls, b)
pair_cos = pairwise_distances(features1, features2, metric)
max_sum = np.min(pair_cos, axis=0)
max_sum_arg = np.argsort(max_sum)[::-1]
max_sum_arg = max_sum_arg[:len(a)]
max_sum = [max_sum[i] for i in max_sum_arg]
paired_target_X = [b[j] for j in max_sum_arg]
paired_target_X = np.array(paired_target_X)
return np.min(max_sum), paired_target_X
def get_all_data_path(self, label2path):
all_paths = []
for k, v in label2path.items():
cur_all_paths = [os.path.join(k, cur_p) for cur_p in v]
all_paths.extend(cur_all_paths)
return all_paths
def load_label_data(self, label):
train_label_path = os.path.join(self.train_data_dir, label)
test_label_path = os.path.join(self.test_data_dir, label)
train_X = self.load_dir(train_label_path)
test_X = self.load_dir(test_label_path)
return train_X, test_X
def load_dir(self, path):
assert os.path.exists(path)
x_ls = []
for file in os.listdir(path):
cur_path = os.path.join(path, file)
im = image.load_img(cur_path, target_size=self.img_shape)
im = image.img_to_array(im)
x_ls.append(im)
raw_x = np.array(x_ls)
return preprocess_input(raw_x)
def build_data_mapping(self):
label2path_train = {}
label2path_test = {}
idx = 0
path2idx = {}
for label_name in self.all_labels:
full_path_train = os.path.join(self.train_data_dir, label_name)
full_path_test = os.path.join(self.test_data_dir, label_name)
label2path_train[full_path_train] = list(os.listdir(full_path_train))
label2path_test[full_path_test] = list(os.listdir(full_path_test))
for img_file in os.listdir(full_path_train):
path2idx[os.path.join(full_path_train, img_file)] = idx
for img_file in os.listdir(full_path_test):
path2idx[os.path.join(full_path_test, img_file)] = idx
idx += 1
return label2path_train, label2path_test, path2idx
def generate_data_post_cloak(self, sybil=False):
assert self.cloaked_protect_train_X is not None
while True:
batch_X = []
batch_Y = []
cur_batch_path = random.sample(self.all_training_path, 32)
for p in cur_batch_path:
cur_y = self.path2idx[p]
if p in self.protect_class_path:
cur_x = random.choice(self.cloaked_protect_train_X)
elif sybil and (p in self.sybil_class):
cur_x = random.choice(self.cloaked_sybil_train_X)
else:
im = image.load_img(p, target_size=self.img_shape)
im = image.img_to_array(im)
cur_x = preprocess_input(im)
batch_X.append(cur_x)
batch_Y.append(cur_y)
batch_X = np.array(batch_X)
batch_Y = to_categorical(np.array(batch_Y), num_classes=self.number_classes)
yield batch_X, batch_Y
# class CloakData(object):
# def __init__(self, protect_directory=None, img_shape=(224, 224)):
#
# self.img_shape = img_shape
# # self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
# # self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
# self.protect_directory = protect_directory
#
# self.protect_X = self.load_label_data(self.protect_directory)
#
# self.cloaked_protect_train_X = None
#
# self.label2path_train, self.label2path_test, self.path2idx = self.build_data_mapping()
# self.all_training_path = self.get_all_data_path(self.label2path_train)
# self.all_test_path = self.get_all_data_path(self.label2path_test)
# self.protect_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.protect_class))
#
# def get_class_image_files(self, path):
# return [os.path.join(path, f) for f in os.listdir(path)]
#
# def extractor_ls_predict(self, feature_extractors_ls, X):
# feature_ls = []
# for extractor in feature_extractors_ls:
# cur_features = extractor.predict(X)
# feature_ls.append(cur_features)
# concated_feature_ls = np.concatenate(feature_ls, axis=1)
# concated_feature_ls = normalize(concated_feature_ls)
# return concated_feature_ls
#
# def load_embeddings(self, feature_extractors_names):
# dictionaries = []
# for extractor_name in feature_extractors_names:
# path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
# dictionaries.append(path2emb)
#
# merge_dict = {}
# for k in dictionaries[0].keys():
# cur_emb = [dic[k] for dic in dictionaries]
# merge_dict[k] = np.concatenate(cur_emb)
# return merge_dict
#
# def select_target_label(self, feature_extractors_ls, feature_extractors_names, metric='l2'):
# original_feature_x = self.extractor_ls_predict(feature_extractors_ls, self.protect_train_X)
#
# path2emb = self.load_embeddings(feature_extractors_names)
# items = list(path2emb.items())
# paths = [p[0] for p in items]
# embs = [p[1] for p in items]
# embs = np.array(embs)
#
# pair_dist = pairwise_distances(original_feature_x, embs, metric)
# max_sum = np.min(pair_dist, axis=0)
# sorted_idx = np.argsort(max_sum)[::-1]
#
# highest_num = 0
# paired_target_X = None
# final_target_class_path = None
# for idx in sorted_idx[:5]:
# target_class_path = paths[idx]
# cur_target_X = self.load_dir(target_class_path)
# cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
# cur_tot_sum, cur_paired_target_X = self.calculate_dist_score(self.protect_train_X, cur_target_X,
# feature_extractors_ls,
# metric=metric)
# if cur_tot_sum > highest_num:
# highest_num = cur_tot_sum
# paired_target_X = cur_paired_target_X
# final_target_class_path = target_class_path
#
# np.random.shuffle(paired_target_X)
# return final_target_class_path, paired_target_X
#
# def calculate_dist_score(self, a, b, feature_extractors_ls, metric='l2'):
# features1 = self.extractor_ls_predict(feature_extractors_ls, a)
# features2 = self.extractor_ls_predict(feature_extractors_ls, b)
#
# pair_cos = pairwise_distances(features1, features2, metric)
# max_sum = np.min(pair_cos, axis=0)
# max_sum_arg = np.argsort(max_sum)[::-1]
# max_sum_arg = max_sum_arg[:len(a)]
# max_sum = [max_sum[i] for i in max_sum_arg]
# paired_target_X = [b[j] for j in max_sum_arg]
# paired_target_X = np.array(paired_target_X)
# return np.min(max_sum), paired_target_X
#
# def get_all_data_path(self, label2path):
# all_paths = []
# for k, v in label2path.items():
# cur_all_paths = [os.path.join(k, cur_p) for cur_p in v]
# all_paths.extend(cur_all_paths)
# return all_paths
#
# def load_label_data(self, label):
# train_label_path = os.path.join(self.train_data_dir, label)
# test_label_path = os.path.join(self.test_data_dir, label)
# train_X = self.load_dir(train_label_path)
# test_X = self.load_dir(test_label_path)
# return train_X, test_X
#
# def load_dir(self, path):
# assert os.path.exists(path)
# x_ls = []
# for file in os.listdir(path):
# cur_path = os.path.join(path, file)
# im = image.load_img(cur_path, target_size=self.img_shape)
# im = image.img_to_array(im)
# x_ls.append(im)
# raw_x = np.array(x_ls)
# return preprocess_input(raw_x)
#
# def build_data_mapping(self):
# label2path_train = {}
# label2path_test = {}
# idx = 0
# path2idx = {}
# for label_name in self.all_labels:
# full_path_train = os.path.join(self.train_data_dir, label_name)
# full_path_test = os.path.join(self.test_data_dir, label_name)
# label2path_train[full_path_train] = list(os.listdir(full_path_train))
# label2path_test[full_path_test] = list(os.listdir(full_path_test))
# for img_file in os.listdir(full_path_train):
# path2idx[os.path.join(full_path_train, img_file)] = idx
# for img_file in os.listdir(full_path_test):
# path2idx[os.path.join(full_path_test, img_file)] = idx
# idx += 1
# return label2path_train, label2path_test, path2idx
#
# def generate_data_post_cloak(self, sybil=False):
# assert self.cloaked_protect_train_X is not None
# while True:
# batch_X = []
# batch_Y = []
# cur_batch_path = random.sample(self.all_training_path, 32)
# for p in cur_batch_path:
# cur_y = self.path2idx[p]
# if p in self.protect_class_path:
# cur_x = random.choice(self.cloaked_protect_train_X)
# elif sybil and (p in self.sybil_class):
# cur_x = random.choice(self.cloaked_sybil_train_X)
# else:
# im = image.load_img(p, target_size=self.img_shape)
# im = image.img_to_array(im)
# cur_x = preprocess_input(im)
# batch_X.append(cur_x)
# batch_Y.append(cur_y)
# batch_X = np.array(batch_X)
# batch_Y = to_categorical(np.array(batch_Y), num_classes=self.number_classes)
# yield batch_X, batch_Y