mirror of
https://github.com/Shawn-Shan/fawkes.git
synced 2025-01-22 17:37:49 +05:30
cli
Former-commit-id: c3687684a19c18309f97b69f8161af7a31fe0fb8 [formerly b68719d5e14a54377fafbea9f2c7c9b996bea583] Former-commit-id: f17d9cbb79833f56450e0518d978603997037e94
This commit is contained in:
parent
71094033f2
commit
d7a25eb292
BIN
dist/fawkes-0.0.1-py3-none-any.whl
vendored
BIN
dist/fawkes-0.0.1-py3-none-any.whl
vendored
Binary file not shown.
BIN
dist/fawkes-0.0.1.tar.gz
vendored
BIN
dist/fawkes-0.0.1.tar.gz
vendored
Binary file not shown.
@ -0,0 +1,24 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Date : 2020-07-01
|
||||
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
|
||||
# @Link : https://www.shawnshan.com/
|
||||
|
||||
|
||||
__version__ = '0.0.2'
|
||||
|
||||
from .differentiator import FawkesMaskGeneration
|
||||
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
||||
Faces
|
||||
from .protection import main
|
||||
import logging
|
||||
import sys
|
||||
import os
|
||||
logging.getLogger('tensorflow').disabled = True
|
||||
|
||||
|
||||
__all__ = (
|
||||
'__version__',
|
||||
'FawkesMaskGeneration', 'load_extractor',
|
||||
'init_gpu',
|
||||
'select_target_label', 'dump_image', 'reverse_process_cloaked', 'Faces', 'main'
|
||||
)
|
4
fawkes/__main__.py
Normal file
4
fawkes/__main__.py
Normal file
@ -0,0 +1,4 @@
|
||||
from .protection import main
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,6 +1,5 @@
|
||||
import detect_face
|
||||
from .detect_face import detect_face, create_mtcnn
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
# modify the default parameters of np.load
|
||||
np_load_old = np.load
|
||||
@ -15,7 +14,7 @@ def to_rgb(img):
|
||||
|
||||
|
||||
def aligner(sess):
|
||||
pnet, rnet, onet = detect_face.create_mtcnn(sess, None)
|
||||
pnet, rnet, onet = create_mtcnn(sess, None)
|
||||
return [pnet, rnet, onet]
|
||||
|
||||
|
||||
@ -31,7 +30,7 @@ def align(orig_img, aligner, margin=0.8, detect_multiple_faces=True):
|
||||
orig_img = to_rgb(orig_img)
|
||||
orig_img = orig_img[:, :, 0:3]
|
||||
|
||||
bounding_boxes, _ = detect_face.detect_face(orig_img, minsize, pnet, rnet, onet, threshold, factor)
|
||||
bounding_boxes, _ = detect_face(orig_img, minsize, pnet, rnet, onet, threshold, factor)
|
||||
nrof_faces = bounding_boxes.shape[0]
|
||||
if nrof_faces > 0:
|
||||
det = bounding_boxes[:, 0:4]
|
||||
|
@ -29,7 +29,6 @@ from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
# from math import floor
|
||||
import cv2
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
@ -10,7 +10,7 @@ from decimal import Decimal
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from utils import preprocess, reverse_preprocess
|
||||
from .utils import preprocess, reverse_preprocess
|
||||
|
||||
|
||||
class FawkesMaskGeneration:
|
||||
|
@ -1,3 +1,7 @@
|
||||
# from __future__ import absolute_import
|
||||
# from __future__ import division
|
||||
# from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
@ -5,26 +9,28 @@ import random
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
from differentiator import FawkesMaskGeneration
|
||||
from utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
||||
|
||||
from .differentiator import FawkesMaskGeneration
|
||||
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
||||
Faces
|
||||
|
||||
random.seed(12243)
|
||||
np.random.seed(122412)
|
||||
|
||||
BATCH_SIZE = 10
|
||||
BATCH_SIZE = 32
|
||||
|
||||
|
||||
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None):
|
||||
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None, sd=1e9, lr=2,
|
||||
max_step=500):
|
||||
batch_size = BATCH_SIZE if len(image_X) > BATCH_SIZE else len(image_X)
|
||||
|
||||
differentiator = FawkesMaskGeneration(sess, feature_extractors,
|
||||
batch_size=batch_size,
|
||||
mimic_img=True,
|
||||
intensity_range='imagenet',
|
||||
initial_const=args.sd,
|
||||
learning_rate=args.lr,
|
||||
max_iterations=args.max_step,
|
||||
initial_const=sd,
|
||||
learning_rate=lr,
|
||||
max_iterations=max_step,
|
||||
l_threshold=th,
|
||||
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:],
|
||||
faces=faces)
|
||||
@ -33,26 +39,6 @@ def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th
|
||||
return cloaked_image_X
|
||||
|
||||
|
||||
def get_mode_config(mode):
|
||||
if mode == 'low':
|
||||
args.feature_extractor = "low_extract"
|
||||
# args.th = 0.003
|
||||
args.th = 0.001
|
||||
elif mode == 'mid':
|
||||
args.feature_extractor = "mid_extract"
|
||||
args.th = 0.004
|
||||
elif mode == 'high':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.004
|
||||
elif mode == 'ultra':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.03
|
||||
elif mode == 'custom':
|
||||
pass
|
||||
else:
|
||||
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
|
||||
|
||||
|
||||
def check_imgs(imgs):
|
||||
if np.max(imgs) <= 1 and np.min(imgs) >= 0:
|
||||
imgs = imgs * 255.0
|
||||
@ -63,20 +49,72 @@ def check_imgs(imgs):
|
||||
return imgs
|
||||
|
||||
|
||||
def fawkes():
|
||||
def main(*argv):
|
||||
if not argv:
|
||||
argv = list(sys.argv)
|
||||
|
||||
# attach SIGPIPE handler to properly handle broken pipe
|
||||
try: # sigpipe not available under windows. just ignore in this case
|
||||
import signal
|
||||
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--directory', '-d', type=str,
|
||||
help='directory that contain images for cloaking', default='imgs/')
|
||||
|
||||
parser.add_argument('--gpu', type=str,
|
||||
help='GPU id', default='0')
|
||||
|
||||
parser.add_argument('--mode', type=str,
|
||||
help='cloak generation mode', default='high')
|
||||
parser.add_argument('--feature-extractor', type=str,
|
||||
help="name of the feature extractor used for optimization",
|
||||
default="high_extract")
|
||||
|
||||
parser.add_argument('--th', type=float, default=0.01)
|
||||
parser.add_argument('--max-step', type=int, default=500)
|
||||
parser.add_argument('--sd', type=int, default=1e9)
|
||||
parser.add_argument('--lr', type=float, default=2)
|
||||
|
||||
parser.add_argument('--separate_target', action='store_true')
|
||||
|
||||
parser.add_argument('--format', type=str,
|
||||
help="final image format",
|
||||
default="jpg")
|
||||
args = parser.parse_args(argv[1:])
|
||||
|
||||
if args.mode == 'low':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.003
|
||||
elif args.mode == 'mid':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.005
|
||||
elif args.mode == 'high':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.007
|
||||
elif args.mode == 'ultra':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.01
|
||||
elif args.mode == 'custom':
|
||||
pass
|
||||
else:
|
||||
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
|
||||
|
||||
assert args.format in ['png', 'jpg', 'jpeg']
|
||||
if args.format == 'jpg':
|
||||
args.format = 'jpeg'
|
||||
get_mode_config(args.mode)
|
||||
|
||||
sess = init_gpu(args.gpu)
|
||||
# feature_extractors_ls = [load_extractor(args.feature_extractor)]
|
||||
# fs_names = ['mid_extract', 'high_extract']
|
||||
fs_names = [args.feature_extractor]
|
||||
feature_extractors_ls = [load_extractor(name) for name in fs_names]
|
||||
|
||||
image_paths = glob.glob(os.path.join(args.directory, "*"))
|
||||
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
|
||||
if not image_paths:
|
||||
print("No images in the directory")
|
||||
exit(1)
|
||||
|
||||
faces = Faces(image_paths, sess)
|
||||
|
||||
@ -94,7 +132,8 @@ def fawkes():
|
||||
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
|
||||
|
||||
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
|
||||
target_emb=target_embedding, th=args.th, faces=faces)
|
||||
target_emb=target_embedding, th=args.th, faces=faces, sd=args.sd,
|
||||
lr=args.lr, max_step=args.max_step)
|
||||
|
||||
faces.cloaked_cropped_faces = protected_images
|
||||
|
||||
@ -102,42 +141,9 @@ def fawkes():
|
||||
final_images = faces.merge_faces(cloak_perturbation)
|
||||
|
||||
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
|
||||
file_name = "{}_{}_{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.th,
|
||||
args.feature_extractor, args.format)
|
||||
file_name = "{}_{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.th, args.format)
|
||||
dump_image(p_img, file_name, format=args.format)
|
||||
#
|
||||
# file_name = "{}_{}_{}_{}_cloaked_cropped.png".format(".".join(path.split(".")[:-1]), args.mode, args.th,
|
||||
# args.feature_extractor)
|
||||
# dump_image(reverse_process_cloaked(cloaked_img), file_name, format="png")
|
||||
|
||||
|
||||
def parse_arguments(argv):
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--directory', '-d', type=str,
|
||||
help='directory that contain images for cloaking', default='imgs/')
|
||||
|
||||
parser.add_argument('--gpu', type=str,
|
||||
help='GPU id', default='0')
|
||||
|
||||
parser.add_argument('--mode', type=str,
|
||||
help='cloak generation mode', default='high')
|
||||
parser.add_argument('--feature-extractor', type=str,
|
||||
help="name of the feature extractor used for optimization",
|
||||
default="high_extract")
|
||||
|
||||
parser.add_argument('--th', type=float, default=0.01)
|
||||
parser.add_argument('--max-step', type=int, default=200)
|
||||
parser.add_argument('--sd', type=int, default=1e9)
|
||||
parser.add_argument('--lr', type=float, default=10)
|
||||
|
||||
parser.add_argument('--separate_target', action='store_true')
|
||||
|
||||
parser.add_argument('--format', type=str,
|
||||
help="final image format",
|
||||
default="jpg")
|
||||
return parser.parse_args(argv)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_arguments(sys.argv[1:])
|
||||
fawkes()
|
||||
main(*sys.argv)
|
||||
|
337
fawkes/utils.py
337
fawkes/utils.py
@ -4,21 +4,26 @@ import json
|
||||
import os
|
||||
import pickle
|
||||
import random
|
||||
import sys
|
||||
|
||||
stderr = sys.stderr
|
||||
sys.stderr = open(os.devnull, 'w')
|
||||
import keras
|
||||
|
||||
sys.stderr = stderr
|
||||
import keras.backend as K
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from align_face import align, aligner
|
||||
from keras.applications.vgg16 import preprocess_input
|
||||
from PIL import Image, ExifTags
|
||||
# from keras.applications.vgg16 import preprocess_input
|
||||
from keras.layers import Dense, Activation
|
||||
from keras.models import Model
|
||||
from keras.preprocessing import image
|
||||
from keras.utils import get_file
|
||||
from keras.utils import to_categorical
|
||||
from skimage.transform import resize
|
||||
from sklearn.metrics import pairwise_distances
|
||||
from PIL import Image, ExifTags
|
||||
|
||||
from .align_face import align, aligner
|
||||
|
||||
|
||||
def clip_img(X, preprocessing='raw'):
|
||||
@ -81,7 +86,14 @@ class Faces(object):
|
||||
self.cropped_index.extend(cur_index)
|
||||
self.callback_idx.extend([i] * len(cur_faces_square))
|
||||
|
||||
self.cropped_faces = preprocess_input(np.array(self.cropped_faces))
|
||||
if not self.cropped_faces:
|
||||
print("No faces detected")
|
||||
exit(1)
|
||||
|
||||
self.cropped_faces = np.array(self.cropped_faces)
|
||||
|
||||
self.cropped_faces = preprocess(self.cropped_faces, 'imagenet')
|
||||
|
||||
self.cloaked_cropped_faces = None
|
||||
self.cloaked_faces = np.copy(self.org_faces)
|
||||
|
||||
@ -89,8 +101,6 @@ class Faces(object):
|
||||
return self.cropped_faces
|
||||
|
||||
def merge_faces(self, cloaks):
|
||||
# import pdb
|
||||
# pdb.set_trace()
|
||||
|
||||
self.cloaked_faces = np.copy(self.org_faces)
|
||||
|
||||
@ -300,7 +310,6 @@ def load_extractor(name):
|
||||
return model
|
||||
|
||||
|
||||
|
||||
def get_dataset_path(dataset):
|
||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
||||
if not os.path.exists(os.path.join(model_dir, "config.json")):
|
||||
@ -335,7 +344,7 @@ def load_dir(path):
|
||||
im = image.img_to_array(im)
|
||||
x_ls.append(im)
|
||||
raw_x = np.array(x_ls)
|
||||
return preprocess_input(raw_x)
|
||||
return preprocess(raw_x, 'imagenet')
|
||||
|
||||
|
||||
def load_embeddings(feature_extractors_names):
|
||||
@ -394,10 +403,19 @@ def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, m
|
||||
max_sum = np.min(pair_dist, axis=0)
|
||||
max_id = np.argmax(max_sum)
|
||||
|
||||
image_paths = glob.glob(os.path.join(model_dir, "target_data/{}/*".format(paths[int(max_id)])))
|
||||
target_data_id = paths[int(max_id)]
|
||||
image_dir = os.path.join(model_dir, "target_data/{}/*".format(target_data_id))
|
||||
if not os.path.exists(image_dir):
|
||||
get_file("{}.h5".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/target_images".format(name),
|
||||
cache_dir=model_dir, cache_subdir='')
|
||||
|
||||
image_paths = glob.glob(image_dir)
|
||||
|
||||
target_images = [image.img_to_array(image.load_img(cur_path)) for cur_path in
|
||||
image_paths]
|
||||
target_images = preprocess_input(np.array([resize(x, (224, 224)) for x in target_images]))
|
||||
|
||||
target_images = np.array([resize(x, (224, 224)) for x in target_images])
|
||||
target_images = preprocess(target_images, 'imagenet')
|
||||
|
||||
target_images = list(target_images)
|
||||
while len(target_images) < len(imgs):
|
||||
@ -406,152 +424,151 @@ def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, m
|
||||
target_images = random.sample(target_images, len(imgs))
|
||||
return np.array(target_images)
|
||||
|
||||
|
||||
class CloakData(object):
|
||||
def __init__(self, protect_directory=None, img_shape=(224, 224)):
|
||||
|
||||
self.img_shape = img_shape
|
||||
# self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
|
||||
# self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
|
||||
self.protect_directory = protect_directory
|
||||
|
||||
self.protect_X = self.load_label_data(self.protect_directory)
|
||||
|
||||
self.cloaked_protect_train_X = None
|
||||
|
||||
self.label2path_train, self.label2path_test, self.path2idx = self.build_data_mapping()
|
||||
self.all_training_path = self.get_all_data_path(self.label2path_train)
|
||||
self.all_test_path = self.get_all_data_path(self.label2path_test)
|
||||
self.protect_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.protect_class))
|
||||
|
||||
def get_class_image_files(self, path):
|
||||
return [os.path.join(path, f) for f in os.listdir(path)]
|
||||
|
||||
def extractor_ls_predict(self, feature_extractors_ls, X):
|
||||
feature_ls = []
|
||||
for extractor in feature_extractors_ls:
|
||||
cur_features = extractor.predict(X)
|
||||
feature_ls.append(cur_features)
|
||||
concated_feature_ls = np.concatenate(feature_ls, axis=1)
|
||||
concated_feature_ls = normalize(concated_feature_ls)
|
||||
return concated_feature_ls
|
||||
|
||||
def load_embeddings(self, feature_extractors_names):
|
||||
dictionaries = []
|
||||
for extractor_name in feature_extractors_names:
|
||||
path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
|
||||
dictionaries.append(path2emb)
|
||||
|
||||
merge_dict = {}
|
||||
for k in dictionaries[0].keys():
|
||||
cur_emb = [dic[k] for dic in dictionaries]
|
||||
merge_dict[k] = np.concatenate(cur_emb)
|
||||
return merge_dict
|
||||
|
||||
def select_target_label(self, feature_extractors_ls, feature_extractors_names, metric='l2'):
|
||||
original_feature_x = self.extractor_ls_predict(feature_extractors_ls, self.protect_train_X)
|
||||
|
||||
path2emb = self.load_embeddings(feature_extractors_names)
|
||||
items = list(path2emb.items())
|
||||
paths = [p[0] for p in items]
|
||||
embs = [p[1] for p in items]
|
||||
embs = np.array(embs)
|
||||
|
||||
pair_dist = pairwise_distances(original_feature_x, embs, metric)
|
||||
max_sum = np.min(pair_dist, axis=0)
|
||||
sorted_idx = np.argsort(max_sum)[::-1]
|
||||
|
||||
highest_num = 0
|
||||
paired_target_X = None
|
||||
final_target_class_path = None
|
||||
for idx in sorted_idx[:5]:
|
||||
target_class_path = paths[idx]
|
||||
cur_target_X = self.load_dir(target_class_path)
|
||||
cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
|
||||
cur_tot_sum, cur_paired_target_X = self.calculate_dist_score(self.protect_train_X, cur_target_X,
|
||||
feature_extractors_ls,
|
||||
metric=metric)
|
||||
if cur_tot_sum > highest_num:
|
||||
highest_num = cur_tot_sum
|
||||
paired_target_X = cur_paired_target_X
|
||||
final_target_class_path = target_class_path
|
||||
|
||||
np.random.shuffle(paired_target_X)
|
||||
return final_target_class_path, paired_target_X
|
||||
|
||||
def calculate_dist_score(self, a, b, feature_extractors_ls, metric='l2'):
|
||||
features1 = self.extractor_ls_predict(feature_extractors_ls, a)
|
||||
features2 = self.extractor_ls_predict(feature_extractors_ls, b)
|
||||
|
||||
pair_cos = pairwise_distances(features1, features2, metric)
|
||||
max_sum = np.min(pair_cos, axis=0)
|
||||
max_sum_arg = np.argsort(max_sum)[::-1]
|
||||
max_sum_arg = max_sum_arg[:len(a)]
|
||||
max_sum = [max_sum[i] for i in max_sum_arg]
|
||||
paired_target_X = [b[j] for j in max_sum_arg]
|
||||
paired_target_X = np.array(paired_target_X)
|
||||
return np.min(max_sum), paired_target_X
|
||||
|
||||
def get_all_data_path(self, label2path):
|
||||
all_paths = []
|
||||
for k, v in label2path.items():
|
||||
cur_all_paths = [os.path.join(k, cur_p) for cur_p in v]
|
||||
all_paths.extend(cur_all_paths)
|
||||
return all_paths
|
||||
|
||||
def load_label_data(self, label):
|
||||
train_label_path = os.path.join(self.train_data_dir, label)
|
||||
test_label_path = os.path.join(self.test_data_dir, label)
|
||||
train_X = self.load_dir(train_label_path)
|
||||
test_X = self.load_dir(test_label_path)
|
||||
return train_X, test_X
|
||||
|
||||
def load_dir(self, path):
|
||||
assert os.path.exists(path)
|
||||
x_ls = []
|
||||
for file in os.listdir(path):
|
||||
cur_path = os.path.join(path, file)
|
||||
im = image.load_img(cur_path, target_size=self.img_shape)
|
||||
im = image.img_to_array(im)
|
||||
x_ls.append(im)
|
||||
raw_x = np.array(x_ls)
|
||||
return preprocess_input(raw_x)
|
||||
|
||||
def build_data_mapping(self):
|
||||
label2path_train = {}
|
||||
label2path_test = {}
|
||||
idx = 0
|
||||
path2idx = {}
|
||||
for label_name in self.all_labels:
|
||||
full_path_train = os.path.join(self.train_data_dir, label_name)
|
||||
full_path_test = os.path.join(self.test_data_dir, label_name)
|
||||
label2path_train[full_path_train] = list(os.listdir(full_path_train))
|
||||
label2path_test[full_path_test] = list(os.listdir(full_path_test))
|
||||
for img_file in os.listdir(full_path_train):
|
||||
path2idx[os.path.join(full_path_train, img_file)] = idx
|
||||
for img_file in os.listdir(full_path_test):
|
||||
path2idx[os.path.join(full_path_test, img_file)] = idx
|
||||
idx += 1
|
||||
return label2path_train, label2path_test, path2idx
|
||||
|
||||
def generate_data_post_cloak(self, sybil=False):
|
||||
assert self.cloaked_protect_train_X is not None
|
||||
while True:
|
||||
batch_X = []
|
||||
batch_Y = []
|
||||
cur_batch_path = random.sample(self.all_training_path, 32)
|
||||
for p in cur_batch_path:
|
||||
cur_y = self.path2idx[p]
|
||||
if p in self.protect_class_path:
|
||||
cur_x = random.choice(self.cloaked_protect_train_X)
|
||||
elif sybil and (p in self.sybil_class):
|
||||
cur_x = random.choice(self.cloaked_sybil_train_X)
|
||||
else:
|
||||
im = image.load_img(p, target_size=self.img_shape)
|
||||
im = image.img_to_array(im)
|
||||
cur_x = preprocess_input(im)
|
||||
batch_X.append(cur_x)
|
||||
batch_Y.append(cur_y)
|
||||
batch_X = np.array(batch_X)
|
||||
batch_Y = to_categorical(np.array(batch_Y), num_classes=self.number_classes)
|
||||
yield batch_X, batch_Y
|
||||
# class CloakData(object):
|
||||
# def __init__(self, protect_directory=None, img_shape=(224, 224)):
|
||||
#
|
||||
# self.img_shape = img_shape
|
||||
# # self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
|
||||
# # self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
|
||||
# self.protect_directory = protect_directory
|
||||
#
|
||||
# self.protect_X = self.load_label_data(self.protect_directory)
|
||||
#
|
||||
# self.cloaked_protect_train_X = None
|
||||
#
|
||||
# self.label2path_train, self.label2path_test, self.path2idx = self.build_data_mapping()
|
||||
# self.all_training_path = self.get_all_data_path(self.label2path_train)
|
||||
# self.all_test_path = self.get_all_data_path(self.label2path_test)
|
||||
# self.protect_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.protect_class))
|
||||
#
|
||||
# def get_class_image_files(self, path):
|
||||
# return [os.path.join(path, f) for f in os.listdir(path)]
|
||||
#
|
||||
# def extractor_ls_predict(self, feature_extractors_ls, X):
|
||||
# feature_ls = []
|
||||
# for extractor in feature_extractors_ls:
|
||||
# cur_features = extractor.predict(X)
|
||||
# feature_ls.append(cur_features)
|
||||
# concated_feature_ls = np.concatenate(feature_ls, axis=1)
|
||||
# concated_feature_ls = normalize(concated_feature_ls)
|
||||
# return concated_feature_ls
|
||||
#
|
||||
# def load_embeddings(self, feature_extractors_names):
|
||||
# dictionaries = []
|
||||
# for extractor_name in feature_extractors_names:
|
||||
# path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
|
||||
# dictionaries.append(path2emb)
|
||||
#
|
||||
# merge_dict = {}
|
||||
# for k in dictionaries[0].keys():
|
||||
# cur_emb = [dic[k] for dic in dictionaries]
|
||||
# merge_dict[k] = np.concatenate(cur_emb)
|
||||
# return merge_dict
|
||||
#
|
||||
# def select_target_label(self, feature_extractors_ls, feature_extractors_names, metric='l2'):
|
||||
# original_feature_x = self.extractor_ls_predict(feature_extractors_ls, self.protect_train_X)
|
||||
#
|
||||
# path2emb = self.load_embeddings(feature_extractors_names)
|
||||
# items = list(path2emb.items())
|
||||
# paths = [p[0] for p in items]
|
||||
# embs = [p[1] for p in items]
|
||||
# embs = np.array(embs)
|
||||
#
|
||||
# pair_dist = pairwise_distances(original_feature_x, embs, metric)
|
||||
# max_sum = np.min(pair_dist, axis=0)
|
||||
# sorted_idx = np.argsort(max_sum)[::-1]
|
||||
#
|
||||
# highest_num = 0
|
||||
# paired_target_X = None
|
||||
# final_target_class_path = None
|
||||
# for idx in sorted_idx[:5]:
|
||||
# target_class_path = paths[idx]
|
||||
# cur_target_X = self.load_dir(target_class_path)
|
||||
# cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
|
||||
# cur_tot_sum, cur_paired_target_X = self.calculate_dist_score(self.protect_train_X, cur_target_X,
|
||||
# feature_extractors_ls,
|
||||
# metric=metric)
|
||||
# if cur_tot_sum > highest_num:
|
||||
# highest_num = cur_tot_sum
|
||||
# paired_target_X = cur_paired_target_X
|
||||
# final_target_class_path = target_class_path
|
||||
#
|
||||
# np.random.shuffle(paired_target_X)
|
||||
# return final_target_class_path, paired_target_X
|
||||
#
|
||||
# def calculate_dist_score(self, a, b, feature_extractors_ls, metric='l2'):
|
||||
# features1 = self.extractor_ls_predict(feature_extractors_ls, a)
|
||||
# features2 = self.extractor_ls_predict(feature_extractors_ls, b)
|
||||
#
|
||||
# pair_cos = pairwise_distances(features1, features2, metric)
|
||||
# max_sum = np.min(pair_cos, axis=0)
|
||||
# max_sum_arg = np.argsort(max_sum)[::-1]
|
||||
# max_sum_arg = max_sum_arg[:len(a)]
|
||||
# max_sum = [max_sum[i] for i in max_sum_arg]
|
||||
# paired_target_X = [b[j] for j in max_sum_arg]
|
||||
# paired_target_X = np.array(paired_target_X)
|
||||
# return np.min(max_sum), paired_target_X
|
||||
#
|
||||
# def get_all_data_path(self, label2path):
|
||||
# all_paths = []
|
||||
# for k, v in label2path.items():
|
||||
# cur_all_paths = [os.path.join(k, cur_p) for cur_p in v]
|
||||
# all_paths.extend(cur_all_paths)
|
||||
# return all_paths
|
||||
#
|
||||
# def load_label_data(self, label):
|
||||
# train_label_path = os.path.join(self.train_data_dir, label)
|
||||
# test_label_path = os.path.join(self.test_data_dir, label)
|
||||
# train_X = self.load_dir(train_label_path)
|
||||
# test_X = self.load_dir(test_label_path)
|
||||
# return train_X, test_X
|
||||
#
|
||||
# def load_dir(self, path):
|
||||
# assert os.path.exists(path)
|
||||
# x_ls = []
|
||||
# for file in os.listdir(path):
|
||||
# cur_path = os.path.join(path, file)
|
||||
# im = image.load_img(cur_path, target_size=self.img_shape)
|
||||
# im = image.img_to_array(im)
|
||||
# x_ls.append(im)
|
||||
# raw_x = np.array(x_ls)
|
||||
# return preprocess_input(raw_x)
|
||||
#
|
||||
# def build_data_mapping(self):
|
||||
# label2path_train = {}
|
||||
# label2path_test = {}
|
||||
# idx = 0
|
||||
# path2idx = {}
|
||||
# for label_name in self.all_labels:
|
||||
# full_path_train = os.path.join(self.train_data_dir, label_name)
|
||||
# full_path_test = os.path.join(self.test_data_dir, label_name)
|
||||
# label2path_train[full_path_train] = list(os.listdir(full_path_train))
|
||||
# label2path_test[full_path_test] = list(os.listdir(full_path_test))
|
||||
# for img_file in os.listdir(full_path_train):
|
||||
# path2idx[os.path.join(full_path_train, img_file)] = idx
|
||||
# for img_file in os.listdir(full_path_test):
|
||||
# path2idx[os.path.join(full_path_test, img_file)] = idx
|
||||
# idx += 1
|
||||
# return label2path_train, label2path_test, path2idx
|
||||
#
|
||||
# def generate_data_post_cloak(self, sybil=False):
|
||||
# assert self.cloaked_protect_train_X is not None
|
||||
# while True:
|
||||
# batch_X = []
|
||||
# batch_Y = []
|
||||
# cur_batch_path = random.sample(self.all_training_path, 32)
|
||||
# for p in cur_batch_path:
|
||||
# cur_y = self.path2idx[p]
|
||||
# if p in self.protect_class_path:
|
||||
# cur_x = random.choice(self.cloaked_protect_train_X)
|
||||
# elif sybil and (p in self.sybil_class):
|
||||
# cur_x = random.choice(self.cloaked_sybil_train_X)
|
||||
# else:
|
||||
# im = image.load_img(p, target_size=self.img_shape)
|
||||
# im = image.img_to_array(im)
|
||||
# cur_x = preprocess_input(im)
|
||||
# batch_X.append(cur_x)
|
||||
# batch_Y.append(cur_y)
|
||||
# batch_X = np.array(batch_X)
|
||||
# batch_Y = to_categorical(np.array(batch_Y), num_classes=self.number_classes)
|
||||
# yield batch_X, batch_Y
|
||||
|
Loading…
Reference in New Issue
Block a user