mirror of
https://github.com/Shawn-Shan/fawkes.git
synced 2025-01-22 17:37:49 +05:30
0.0.6
Former-commit-id: 0d06b05f52d562111c7985d1debd51f69517076e [formerly 2d7f95e1dd9a4101e36f2f021e05e7d33d75d4ae] Former-commit-id: c2e240e6f2474545763a525b4db91c9a86f60bd0
This commit is contained in:
parent
e9f1a50653
commit
de75fceca7
2
.gitignore
vendored
2
.gitignore
vendored
@ -12,6 +12,8 @@ fawkes.egg-info
|
||||
.coverage
|
||||
.cache
|
||||
.pytest_cache
|
||||
fawkes_dev/api_key.txt
|
||||
fawkes_dev/protect_personId.txt
|
||||
|
||||
# developer environments
|
||||
.idea
|
||||
|
@ -1,24 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Date : 2020-07-01
|
||||
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
|
||||
# @Link : https://www.shawnshan.com/
|
||||
|
||||
|
||||
__version__ = '0.0.2'
|
||||
|
||||
from .differentiator import FawkesMaskGeneration
|
||||
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
||||
Faces
|
||||
from .protection import main
|
||||
import logging
|
||||
import sys
|
||||
import os
|
||||
logging.getLogger('tensorflow').disabled = True
|
||||
|
||||
|
||||
__all__ = (
|
||||
'__version__',
|
||||
'FawkesMaskGeneration', 'load_extractor',
|
||||
'init_gpu',
|
||||
'select_target_label', 'dump_image', 'reverse_process_cloaked', 'Faces', 'main'
|
||||
)
|
@ -1,449 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Date : 2020-05-17
|
||||
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
|
||||
# @Link : https://www.shawnshan.com/
|
||||
|
||||
import datetime
|
||||
import time
|
||||
from decimal import Decimal
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from .utils import preprocess, reverse_preprocess
|
||||
|
||||
|
||||
class FawkesMaskGeneration:
|
||||
# if the attack is trying to mimic a target image or a neuron vector
|
||||
MIMIC_IMG = True
|
||||
# number of iterations to perform gradient descent
|
||||
MAX_ITERATIONS = 10000
|
||||
# larger values converge faster to less accurate results
|
||||
LEARNING_RATE = 1e-2
|
||||
# the initial constant c to pick as a first guess
|
||||
INITIAL_CONST = 1
|
||||
# pixel intensity range
|
||||
INTENSITY_RANGE = 'imagenet'
|
||||
# threshold for distance
|
||||
L_THRESHOLD = 0.03
|
||||
# whether keep the final result or the best result
|
||||
KEEP_FINAL = False
|
||||
# max_val of image
|
||||
MAX_VAL = 255
|
||||
# The following variables are used by DSSIM, should keep as default
|
||||
# filter size in SSIM
|
||||
FILTER_SIZE = 11
|
||||
# filter sigma in SSIM
|
||||
FILTER_SIGMA = 1.5
|
||||
# weights used in MS-SSIM
|
||||
SCALE_WEIGHTS = None
|
||||
MAXIMIZE = False
|
||||
IMAGE_SHAPE = (224, 224, 3)
|
||||
RATIO = 1.0
|
||||
LIMIT_DIST = False
|
||||
|
||||
def __init__(self, sess, bottleneck_model_ls, mimic_img=MIMIC_IMG,
|
||||
batch_size=1, learning_rate=LEARNING_RATE,
|
||||
max_iterations=MAX_ITERATIONS, initial_const=INITIAL_CONST,
|
||||
intensity_range=INTENSITY_RANGE, l_threshold=L_THRESHOLD,
|
||||
max_val=MAX_VAL, keep_final=KEEP_FINAL, maximize=MAXIMIZE, image_shape=IMAGE_SHAPE,
|
||||
verbose=0, ratio=RATIO, limit_dist=LIMIT_DIST, faces=None):
|
||||
|
||||
assert intensity_range in {'raw', 'imagenet', 'inception', 'mnist'}
|
||||
|
||||
# constant used for tanh transformation to avoid corner cases
|
||||
self.tanh_constant = 2 - 1e-6
|
||||
self.sess = sess
|
||||
self.MIMIC_IMG = mimic_img
|
||||
self.LEARNING_RATE = learning_rate
|
||||
self.MAX_ITERATIONS = max_iterations
|
||||
self.initial_const = initial_const
|
||||
self.batch_size = batch_size
|
||||
self.intensity_range = intensity_range
|
||||
self.l_threshold = l_threshold
|
||||
self.max_val = max_val
|
||||
self.keep_final = keep_final
|
||||
self.verbose = verbose
|
||||
self.maximize = maximize
|
||||
self.learning_rate = learning_rate
|
||||
self.ratio = ratio
|
||||
self.limit_dist = limit_dist
|
||||
self.single_shape = list(image_shape)
|
||||
self.faces = faces
|
||||
|
||||
self.input_shape = tuple([self.batch_size] + self.single_shape)
|
||||
|
||||
self.bottleneck_shape = tuple([self.batch_size] + self.single_shape)
|
||||
# self.bottleneck_shape = tuple([self.batch_size, bottleneck_model_ls[0].output_shape[-1]])
|
||||
|
||||
# the variable we're going to optimize over
|
||||
self.modifier = tf.Variable(np.zeros(self.input_shape, dtype=np.float32))
|
||||
|
||||
# target image in tanh space
|
||||
if self.MIMIC_IMG:
|
||||
self.timg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
|
||||
else:
|
||||
self.bottleneck_t_raw = tf.Variable(np.zeros(self.bottleneck_shape), dtype=np.float32)
|
||||
# source image in tanh space
|
||||
self.simg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
|
||||
|
||||
self.const = tf.Variable(np.ones(batch_size), dtype=np.float32)
|
||||
self.mask = tf.Variable(np.ones((batch_size), dtype=np.bool))
|
||||
self.weights = tf.Variable(np.ones(self.bottleneck_shape,
|
||||
dtype=np.float32))
|
||||
|
||||
# and here's what we use to assign them
|
||||
self.assign_modifier = tf.placeholder(tf.float32, self.input_shape)
|
||||
if self.MIMIC_IMG:
|
||||
self.assign_timg_tanh = tf.placeholder(
|
||||
tf.float32, self.input_shape)
|
||||
else:
|
||||
self.assign_bottleneck_t_raw = tf.placeholder(
|
||||
tf.float32, self.bottleneck_shape)
|
||||
self.assign_simg_tanh = tf.placeholder(tf.float32, self.input_shape)
|
||||
self.assign_const = tf.placeholder(tf.float32, (batch_size))
|
||||
self.assign_mask = tf.placeholder(tf.bool, (batch_size))
|
||||
self.assign_weights = tf.placeholder(tf.float32, self.bottleneck_shape)
|
||||
|
||||
# the resulting image, tanh'd to keep bounded from -0.5 to 0.5
|
||||
# adversarial image in raw space
|
||||
self.aimg_raw = (tf.tanh(self.modifier + self.simg_tanh) /
|
||||
self.tanh_constant +
|
||||
0.5) * 255.0
|
||||
# source image in raw space
|
||||
self.simg_raw = (tf.tanh(self.simg_tanh) /
|
||||
self.tanh_constant +
|
||||
0.5) * 255.0
|
||||
if self.MIMIC_IMG:
|
||||
# target image in raw space
|
||||
self.timg_raw = (tf.tanh(self.timg_tanh) /
|
||||
self.tanh_constant +
|
||||
0.5) * 255.0
|
||||
|
||||
# convert source and adversarial image into input space
|
||||
if self.intensity_range == 'imagenet':
|
||||
mean = tf.constant(np.repeat([[[[103.939, 116.779, 123.68]]]], self.batch_size, axis=0), dtype=tf.float32,
|
||||
name='img_mean')
|
||||
self.aimg_input = (self.aimg_raw[..., ::-1] - mean)
|
||||
self.simg_input = (self.simg_raw[..., ::-1] - mean)
|
||||
if self.MIMIC_IMG:
|
||||
self.timg_input = (self.timg_raw[..., ::-1] - mean)
|
||||
|
||||
elif self.intensity_range == 'raw':
|
||||
self.aimg_input = self.aimg_raw
|
||||
self.simg_input = self.simg_raw
|
||||
if self.MIMIC_IMG:
|
||||
self.timg_input = self.timg_raw
|
||||
|
||||
def batch_gen_DSSIM(aimg_raw_split, simg_raw_split):
|
||||
msssim_split = tf.image.ssim(aimg_raw_split, simg_raw_split, max_val=255.0)
|
||||
dist = (1.0 - tf.stack(msssim_split)) / 2.0
|
||||
# dist = tf.square(aimg_raw_split - simg_raw_split)
|
||||
return dist
|
||||
|
||||
# raw value of DSSIM distance
|
||||
self.dist_raw = batch_gen_DSSIM(self.aimg_raw, self.simg_raw)
|
||||
# distance value after applying threshold
|
||||
self.dist = tf.maximum(self.dist_raw - self.l_threshold, 0.0)
|
||||
# self.dist = self.dist_raw
|
||||
self.dist_raw_sum = tf.reduce_sum(
|
||||
tf.where(self.mask,
|
||||
self.dist_raw,
|
||||
tf.zeros_like(self.dist_raw)))
|
||||
self.dist_sum = tf.reduce_sum(tf.where(self.mask, self.dist, tf.zeros_like(self.dist)))
|
||||
|
||||
def resize_tensor(input_tensor, model_input_shape):
|
||||
if input_tensor.shape[1:] == model_input_shape or model_input_shape[1] is None:
|
||||
return input_tensor
|
||||
resized_tensor = tf.image.resize(input_tensor, model_input_shape[:2])
|
||||
return resized_tensor
|
||||
|
||||
def calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input):
|
||||
target_features = bottleneck_model(cur_timg_input)
|
||||
return target_features
|
||||
|
||||
self.bottlesim = 0.0
|
||||
self.bottlesim_sum = 0.0
|
||||
self.bottlesim_push = 0.0
|
||||
for bottleneck_model in bottleneck_model_ls:
|
||||
model_input_shape = bottleneck_model.input_shape[1:]
|
||||
cur_aimg_input = resize_tensor(self.aimg_input, model_input_shape)
|
||||
|
||||
self.bottleneck_a = bottleneck_model(cur_aimg_input)
|
||||
if self.MIMIC_IMG:
|
||||
cur_timg_input = self.timg_input
|
||||
cur_simg_input = self.simg_input
|
||||
self.bottleneck_t = calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input)
|
||||
else:
|
||||
self.bottleneck_t = self.bottleneck_t_raw
|
||||
|
||||
bottleneck_diff = self.bottleneck_t - self.bottleneck_a
|
||||
|
||||
scale_factor = tf.sqrt(tf.reduce_sum(tf.square(self.bottleneck_t), axis=1))
|
||||
|
||||
cur_bottlesim = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_diff), axis=1))
|
||||
cur_bottlesim = cur_bottlesim / scale_factor
|
||||
cur_bottlesim_sum = tf.reduce_sum(cur_bottlesim)
|
||||
|
||||
self.bottlesim += cur_bottlesim
|
||||
|
||||
self.bottlesim_sum += cur_bottlesim_sum
|
||||
|
||||
# sum up the losses
|
||||
if self.maximize:
|
||||
self.loss = self.const * tf.square(self.dist) - self.bottlesim
|
||||
else:
|
||||
self.loss = self.const * tf.square(self.dist) + self.bottlesim
|
||||
|
||||
self.loss_sum = tf.reduce_sum(tf.where(self.mask,
|
||||
self.loss,
|
||||
tf.zeros_like(self.loss)))
|
||||
|
||||
start_vars = set(x.name for x in tf.global_variables())
|
||||
self.learning_rate_holder = tf.placeholder(tf.float32, shape=[])
|
||||
|
||||
optimizer = tf.train.AdadeltaOptimizer(self.learning_rate_holder)
|
||||
# optimizer = tf.train.AdamOptimizer(self.learning_rate_holder)
|
||||
|
||||
self.train = optimizer.minimize(self.loss_sum, var_list=[self.modifier])
|
||||
end_vars = tf.global_variables()
|
||||
new_vars = [x for x in end_vars if x.name not in start_vars]
|
||||
|
||||
# these are the variables to initialize when we run
|
||||
self.setup = []
|
||||
self.setup.append(self.modifier.assign(self.assign_modifier))
|
||||
if self.MIMIC_IMG:
|
||||
self.setup.append(self.timg_tanh.assign(self.assign_timg_tanh))
|
||||
else:
|
||||
self.setup.append(self.bottleneck_t_raw.assign(
|
||||
self.assign_bottleneck_t_raw))
|
||||
self.setup.append(self.simg_tanh.assign(self.assign_simg_tanh))
|
||||
self.setup.append(self.const.assign(self.assign_const))
|
||||
self.setup.append(self.mask.assign(self.assign_mask))
|
||||
self.setup.append(self.weights.assign(self.assign_weights))
|
||||
|
||||
self.init = tf.variables_initializer(var_list=[self.modifier] + new_vars)
|
||||
|
||||
print('Attacker loaded')
|
||||
|
||||
def preprocess_arctanh(self, imgs):
|
||||
|
||||
imgs = reverse_preprocess(imgs, self.intensity_range)
|
||||
imgs /= 255.0
|
||||
imgs -= 0.5
|
||||
imgs *= self.tanh_constant
|
||||
tanh_imgs = np.arctanh(imgs)
|
||||
|
||||
return tanh_imgs
|
||||
|
||||
def clipping(self, imgs):
|
||||
|
||||
imgs = reverse_preprocess(imgs, self.intensity_range)
|
||||
imgs = np.clip(imgs, 0, self.max_val)
|
||||
imgs = preprocess(imgs, self.intensity_range)
|
||||
|
||||
return imgs
|
||||
|
||||
def attack(self, source_imgs, target_imgs, weights=None):
|
||||
|
||||
if weights is None:
|
||||
weights = np.ones([source_imgs.shape[0]] +
|
||||
list(self.bottleneck_shape[1:]))
|
||||
|
||||
assert weights.shape[1:] == self.bottleneck_shape[1:]
|
||||
assert source_imgs.shape[1:] == self.input_shape[1:]
|
||||
assert source_imgs.shape[0] == weights.shape[0]
|
||||
if self.MIMIC_IMG:
|
||||
assert target_imgs.shape[1:] == self.input_shape[1:]
|
||||
assert source_imgs.shape[0] == target_imgs.shape[0]
|
||||
else:
|
||||
assert target_imgs.shape[1:] == self.bottleneck_shape[1:]
|
||||
assert source_imgs.shape[0] == target_imgs.shape[0]
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
adv_imgs = []
|
||||
print('%d batches in total'
|
||||
% int(np.ceil(len(source_imgs) / self.batch_size)))
|
||||
|
||||
for idx in range(0, len(source_imgs), self.batch_size):
|
||||
print('processing batch %d at %s' % (idx, datetime.datetime.now()))
|
||||
adv_img = self.attack_batch(source_imgs[idx:idx + self.batch_size],
|
||||
target_imgs[idx:idx + self.batch_size],
|
||||
weights[idx:idx + self.batch_size])
|
||||
adv_imgs.extend(adv_img)
|
||||
|
||||
elapsed_time = time.time() - start_time
|
||||
print('attack cost %f s' % (elapsed_time))
|
||||
|
||||
return np.array(adv_imgs)
|
||||
|
||||
def attack_batch(self, source_imgs, target_imgs, weights):
|
||||
|
||||
"""
|
||||
Run the attack on a batch of images and labels.
|
||||
"""
|
||||
|
||||
LR = self.learning_rate
|
||||
nb_imgs = source_imgs.shape[0]
|
||||
mask = [True] * nb_imgs + [False] * (self.batch_size - nb_imgs)
|
||||
# mask = [True] * self.batch_size
|
||||
mask = np.array(mask, dtype=np.bool)
|
||||
|
||||
source_imgs = np.array(source_imgs)
|
||||
target_imgs = np.array(target_imgs)
|
||||
|
||||
# convert to tanh-space
|
||||
simg_tanh = self.preprocess_arctanh(source_imgs)
|
||||
if self.MIMIC_IMG:
|
||||
timg_tanh = self.preprocess_arctanh(target_imgs)
|
||||
else:
|
||||
timg_tanh = target_imgs
|
||||
|
||||
CONST = np.ones(self.batch_size) * self.initial_const
|
||||
|
||||
self.sess.run(self.init)
|
||||
simg_tanh_batch = np.zeros(self.input_shape)
|
||||
if self.MIMIC_IMG:
|
||||
timg_tanh_batch = np.zeros(self.input_shape)
|
||||
else:
|
||||
timg_tanh_batch = np.zeros(self.bottleneck_shape)
|
||||
|
||||
weights_batch = np.zeros(self.bottleneck_shape)
|
||||
simg_tanh_batch[:nb_imgs] = simg_tanh[:nb_imgs]
|
||||
timg_tanh_batch[:nb_imgs] = timg_tanh[:nb_imgs]
|
||||
weights_batch[:nb_imgs] = weights[:nb_imgs]
|
||||
modifier_batch = np.ones(self.input_shape) * 1e-6
|
||||
|
||||
temp_images = []
|
||||
|
||||
# set the variables so that we don't have to send them over again
|
||||
if self.MIMIC_IMG:
|
||||
self.sess.run(self.setup,
|
||||
{self.assign_timg_tanh: timg_tanh_batch,
|
||||
self.assign_simg_tanh: simg_tanh_batch,
|
||||
self.assign_const: CONST,
|
||||
self.assign_mask: mask,
|
||||
self.assign_weights: weights_batch,
|
||||
self.assign_modifier: modifier_batch})
|
||||
else:
|
||||
# if directly mimicking a vector, use assign_bottleneck_t_raw
|
||||
# in setup
|
||||
self.sess.run(self.setup,
|
||||
{self.assign_bottleneck_t_raw: timg_tanh_batch,
|
||||
self.assign_simg_tanh: simg_tanh_batch,
|
||||
self.assign_const: CONST,
|
||||
self.assign_mask: mask,
|
||||
self.assign_weights: weights_batch,
|
||||
self.assign_modifier: modifier_batch})
|
||||
|
||||
best_bottlesim = [0] * nb_imgs if self.maximize else [np.inf] * nb_imgs
|
||||
best_adv = np.zeros_like(source_imgs)
|
||||
|
||||
if self.verbose == 1:
|
||||
loss_sum = float(self.sess.run(self.loss_sum))
|
||||
dist_sum = float(self.sess.run(self.dist_sum))
|
||||
thresh_over = (dist_sum / self.batch_size / self.l_threshold * 100)
|
||||
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
|
||||
bottlesim_sum = self.sess.run(self.bottlesim_sum)
|
||||
print('START: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
|
||||
% (Decimal(loss_sum),
|
||||
dist_sum,
|
||||
thresh_over,
|
||||
dist_raw_sum,
|
||||
bottlesim_sum / nb_imgs))
|
||||
|
||||
finished_idx = set()
|
||||
try:
|
||||
total_distance = [0] * nb_imgs
|
||||
|
||||
if self.limit_dist:
|
||||
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
|
||||
[self.dist_raw,
|
||||
self.bottlesim,
|
||||
self.aimg_input])
|
||||
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
|
||||
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
|
||||
if e >= nb_imgs:
|
||||
break
|
||||
total_distance[e] = bottlesim
|
||||
|
||||
for iteration in range(self.MAX_ITERATIONS):
|
||||
|
||||
self.sess.run([self.train], feed_dict={self.learning_rate_holder: LR})
|
||||
|
||||
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
|
||||
[self.dist_raw,
|
||||
self.bottlesim,
|
||||
self.aimg_input])
|
||||
|
||||
all_clear = True
|
||||
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
|
||||
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
|
||||
|
||||
if e in finished_idx:
|
||||
continue
|
||||
|
||||
if e >= nb_imgs:
|
||||
break
|
||||
if (bottlesim < best_bottlesim[e] and bottlesim > total_distance[e] * 0.1 and (
|
||||
not self.maximize)) or (
|
||||
bottlesim > best_bottlesim[e] and self.maximize):
|
||||
best_bottlesim[e] = bottlesim
|
||||
best_adv[e] = aimg_input
|
||||
|
||||
# if iteration > 20 and (dist_raw >= self.l_threshold or iteration == self.MAX_ITERATIONS - 1):
|
||||
# finished_idx.add(e)
|
||||
# print("{} finished at dist {}".format(e, dist_raw))
|
||||
# best_bottlesim[e] = bottlesim
|
||||
# best_adv[e] = aimg_input
|
||||
#
|
||||
all_clear = False
|
||||
|
||||
if all_clear:
|
||||
break
|
||||
|
||||
if iteration != 0 and iteration % (self.MAX_ITERATIONS // 2) == 0:
|
||||
LR = LR / 2
|
||||
print("Learning Rate: ", LR)
|
||||
|
||||
if iteration % (self.MAX_ITERATIONS // 5) == 0:
|
||||
if self.verbose == 1:
|
||||
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
|
||||
bottlesim_sum = self.sess.run(self.bottlesim_sum)
|
||||
print('ITER %4d perturb: %.5f; sim: %f'
|
||||
% (iteration, dist_raw_sum / nb_imgs, bottlesim_sum / nb_imgs))
|
||||
|
||||
# protected_images = aimg_input_list
|
||||
#
|
||||
# orginal_images = np.copy(self.faces.cropped_faces)
|
||||
# cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(
|
||||
# orginal_images)
|
||||
# final_images = self.faces.merge_faces(cloak_perturbation)
|
||||
#
|
||||
# for p_img, img in zip(protected_images, final_images):
|
||||
# dump_image(reverse_process_cloaked(p_img),
|
||||
# "/home/shansixioing/fawkes/data/emily/emily_cloaked_cropped{}.png".format(iteration),
|
||||
# format='png')
|
||||
#
|
||||
# dump_image(img,
|
||||
# "/home/shansixioing/fawkes/data/emily/emily_cloaked_{}.png".format(iteration),
|
||||
# format='png')
|
||||
|
||||
except KeyboardInterrupt:
|
||||
pass
|
||||
|
||||
if self.verbose == 1:
|
||||
loss_sum = float(self.sess.run(self.loss_sum))
|
||||
dist_sum = float(self.sess.run(self.dist_sum))
|
||||
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
|
||||
bottlesim_sum = float(self.sess.run(self.bottlesim_sum))
|
||||
print('END: Total loss: %.4E; perturb: %.6f (raw: %.6f); sim: %f'
|
||||
% (Decimal(loss_sum),
|
||||
dist_sum,
|
||||
dist_raw_sum,
|
||||
bottlesim_sum / nb_imgs))
|
||||
|
||||
best_adv = self.clipping(best_adv[:nb_imgs])
|
||||
|
||||
return best_adv
|
@ -1,149 +0,0 @@
|
||||
# from __future__ import absolute_import
|
||||
# from __future__ import division
|
||||
# from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .differentiator import FawkesMaskGeneration
|
||||
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
||||
Faces
|
||||
|
||||
random.seed(12243)
|
||||
np.random.seed(122412)
|
||||
|
||||
BATCH_SIZE = 32
|
||||
|
||||
|
||||
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None, sd=1e9, lr=2,
|
||||
max_step=500):
|
||||
batch_size = BATCH_SIZE if len(image_X) > BATCH_SIZE else len(image_X)
|
||||
|
||||
differentiator = FawkesMaskGeneration(sess, feature_extractors,
|
||||
batch_size=batch_size,
|
||||
mimic_img=True,
|
||||
intensity_range='imagenet',
|
||||
initial_const=sd,
|
||||
learning_rate=lr,
|
||||
max_iterations=max_step,
|
||||
l_threshold=th,
|
||||
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:],
|
||||
faces=faces)
|
||||
|
||||
cloaked_image_X = differentiator.attack(image_X, target_emb)
|
||||
return cloaked_image_X
|
||||
|
||||
|
||||
def check_imgs(imgs):
|
||||
if np.max(imgs) <= 1 and np.min(imgs) >= 0:
|
||||
imgs = imgs * 255.0
|
||||
elif np.max(imgs) <= 255 and np.min(imgs) >= 0:
|
||||
pass
|
||||
else:
|
||||
raise Exception("Image values ")
|
||||
return imgs
|
||||
|
||||
|
||||
def main(*argv):
|
||||
if not argv:
|
||||
argv = list(sys.argv)
|
||||
|
||||
# attach SIGPIPE handler to properly handle broken pipe
|
||||
try: # sigpipe not available under windows. just ignore in this case
|
||||
import signal
|
||||
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--directory', '-d', type=str,
|
||||
help='directory that contain images for cloaking', default='imgs/')
|
||||
|
||||
parser.add_argument('--gpu', type=str,
|
||||
help='GPU id', default='0')
|
||||
|
||||
parser.add_argument('--mode', type=str,
|
||||
help='cloak generation mode', default='high')
|
||||
parser.add_argument('--feature-extractor', type=str,
|
||||
help="name of the feature extractor used for optimization",
|
||||
default="high_extract")
|
||||
|
||||
parser.add_argument('--th', type=float, default=0.01)
|
||||
parser.add_argument('--max-step', type=int, default=500)
|
||||
parser.add_argument('--sd', type=int, default=1e9)
|
||||
parser.add_argument('--lr', type=float, default=2)
|
||||
|
||||
parser.add_argument('--separate_target', action='store_true')
|
||||
|
||||
parser.add_argument('--format', type=str,
|
||||
help="final image format",
|
||||
default="jpg")
|
||||
args = parser.parse_args(argv[1:])
|
||||
|
||||
if args.mode == 'low':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.003
|
||||
elif args.mode == 'mid':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.005
|
||||
elif args.mode == 'high':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.007
|
||||
elif args.mode == 'ultra':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.01
|
||||
elif args.mode == 'custom':
|
||||
pass
|
||||
else:
|
||||
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
|
||||
|
||||
assert args.format in ['png', 'jpg', 'jpeg']
|
||||
if args.format == 'jpg':
|
||||
args.format = 'jpeg'
|
||||
|
||||
sess = init_gpu(args.gpu)
|
||||
fs_names = [args.feature_extractor]
|
||||
feature_extractors_ls = [load_extractor(name) for name in fs_names]
|
||||
|
||||
image_paths = glob.glob(os.path.join(args.directory, "*"))
|
||||
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
|
||||
if not image_paths:
|
||||
print("No images in the directory")
|
||||
exit(1)
|
||||
|
||||
faces = Faces(image_paths, sess)
|
||||
|
||||
orginal_images = faces.cropped_faces
|
||||
orginal_images = np.array(orginal_images)
|
||||
|
||||
if args.separate_target:
|
||||
target_embedding = []
|
||||
for org_img in orginal_images:
|
||||
org_img = org_img.reshape([1] + list(org_img.shape))
|
||||
tar_emb = select_target_label(org_img, feature_extractors_ls, fs_names)
|
||||
target_embedding.append(tar_emb)
|
||||
target_embedding = np.concatenate(target_embedding)
|
||||
else:
|
||||
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
|
||||
|
||||
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
|
||||
target_emb=target_embedding, th=args.th, faces=faces, sd=args.sd,
|
||||
lr=args.lr, max_step=args.max_step)
|
||||
|
||||
faces.cloaked_cropped_faces = protected_images
|
||||
|
||||
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
|
||||
final_images = faces.merge_faces(cloak_perturbation)
|
||||
|
||||
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
|
||||
file_name = "{}_{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.th, args.format)
|
||||
dump_image(p_img, file_name, format=args.format)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main(*sys.argv)
|
@ -1,574 +0,0 @@
|
||||
import glob
|
||||
import gzip
|
||||
import json
|
||||
import os
|
||||
import pickle
|
||||
import random
|
||||
import sys
|
||||
|
||||
stderr = sys.stderr
|
||||
sys.stderr = open(os.devnull, 'w')
|
||||
import keras
|
||||
|
||||
sys.stderr = stderr
|
||||
import keras.backend as K
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from PIL import Image, ExifTags
|
||||
# from keras.applications.vgg16 import preprocess_input
|
||||
from keras.layers import Dense, Activation
|
||||
from keras.models import Model
|
||||
from keras.preprocessing import image
|
||||
from keras.utils import get_file
|
||||
from skimage.transform import resize
|
||||
from sklearn.metrics import pairwise_distances
|
||||
|
||||
from .align_face import align, aligner
|
||||
|
||||
|
||||
def clip_img(X, preprocessing='raw'):
|
||||
X = reverse_preprocess(X, preprocessing)
|
||||
X = np.clip(X, 0.0, 255.0)
|
||||
X = preprocess(X, preprocessing)
|
||||
return X
|
||||
|
||||
|
||||
def load_image(path):
|
||||
img = Image.open(path)
|
||||
if img._getexif() is not None:
|
||||
for orientation in ExifTags.TAGS.keys():
|
||||
if ExifTags.TAGS[orientation] == 'Orientation':
|
||||
break
|
||||
|
||||
exif = dict(img._getexif().items())
|
||||
if orientation in exif.keys():
|
||||
if exif[orientation] == 3:
|
||||
img = img.rotate(180, expand=True)
|
||||
elif exif[orientation] == 6:
|
||||
img = img.rotate(270, expand=True)
|
||||
elif exif[orientation] == 8:
|
||||
img = img.rotate(90, expand=True)
|
||||
else:
|
||||
pass
|
||||
img = img.convert('RGB')
|
||||
image_array = image.img_to_array(img)
|
||||
|
||||
return image_array
|
||||
|
||||
|
||||
class Faces(object):
|
||||
def __init__(self, image_paths, sess):
|
||||
self.aligner = aligner(sess)
|
||||
self.org_faces = []
|
||||
self.cropped_faces = []
|
||||
self.cropped_faces_shape = []
|
||||
self.cropped_index = []
|
||||
self.callback_idx = []
|
||||
for i, p in enumerate(image_paths):
|
||||
cur_img = load_image(p)
|
||||
self.org_faces.append(cur_img)
|
||||
align_img = align(cur_img, self.aligner, margin=0.7)
|
||||
cur_faces = align_img[0]
|
||||
|
||||
cur_shapes = [f.shape[:-1] for f in cur_faces]
|
||||
|
||||
cur_faces_square = []
|
||||
for img in cur_faces:
|
||||
long_size = max([img.shape[1], img.shape[0]])
|
||||
base = np.zeros((long_size, long_size, 3))
|
||||
base[0:img.shape[0], 0:img.shape[1], :] = img
|
||||
cur_faces_square.append(base)
|
||||
|
||||
cur_index = align_img[1]
|
||||
cur_faces_square = [resize(f, (224, 224)) for f in cur_faces_square]
|
||||
self.cropped_faces_shape.extend(cur_shapes)
|
||||
self.cropped_faces.extend(cur_faces_square)
|
||||
self.cropped_index.extend(cur_index)
|
||||
self.callback_idx.extend([i] * len(cur_faces_square))
|
||||
|
||||
if not self.cropped_faces:
|
||||
print("No faces detected")
|
||||
exit(1)
|
||||
|
||||
self.cropped_faces = np.array(self.cropped_faces)
|
||||
|
||||
self.cropped_faces = preprocess(self.cropped_faces, 'imagenet')
|
||||
|
||||
self.cloaked_cropped_faces = None
|
||||
self.cloaked_faces = np.copy(self.org_faces)
|
||||
|
||||
def get_faces(self):
|
||||
return self.cropped_faces
|
||||
|
||||
def merge_faces(self, cloaks):
|
||||
|
||||
self.cloaked_faces = np.copy(self.org_faces)
|
||||
|
||||
for i in range(len(self.cropped_faces)):
|
||||
cur_cloak = cloaks[i]
|
||||
org_shape = self.cropped_faces_shape[i]
|
||||
old_square_shape = max([org_shape[0], org_shape[1]])
|
||||
reshape_cloak = resize(cur_cloak, (old_square_shape, old_square_shape))
|
||||
reshape_cloak = reshape_cloak[0:org_shape[0], 0:org_shape[1], :]
|
||||
|
||||
callback_id = self.callback_idx[i]
|
||||
bb = self.cropped_index[i]
|
||||
self.cloaked_faces[callback_id][bb[1]:bb[3], bb[0]:bb[2], :] += reshape_cloak
|
||||
|
||||
return self.cloaked_faces
|
||||
|
||||
|
||||
def dump_dictionary_as_json(dict, outfile):
|
||||
j = json.dumps(dict)
|
||||
with open(outfile, "wb") as f:
|
||||
f.write(j.encode())
|
||||
|
||||
|
||||
def fix_gpu_memory(mem_fraction=1):
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
tf_config = None
|
||||
if tf.test.is_gpu_available():
|
||||
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=mem_fraction)
|
||||
tf_config = tf.ConfigProto(gpu_options=gpu_options)
|
||||
tf_config.gpu_options.allow_growth = True
|
||||
tf_config.log_device_placement = False
|
||||
init_op = tf.global_variables_initializer()
|
||||
sess = tf.Session(config=tf_config)
|
||||
sess.run(init_op)
|
||||
K.set_session(sess)
|
||||
return sess
|
||||
|
||||
|
||||
def load_victim_model(number_classes, teacher_model=None, end2end=False):
|
||||
for l in teacher_model.layers:
|
||||
l.trainable = end2end
|
||||
x = teacher_model.layers[-1].output
|
||||
x = Dense(number_classes)(x)
|
||||
x = Activation('softmax', name="act")(x)
|
||||
model = Model(teacher_model.input, x)
|
||||
opt = keras.optimizers.Adadelta()
|
||||
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
|
||||
return model
|
||||
|
||||
|
||||
def init_gpu(gpu_index, force=False):
|
||||
if isinstance(gpu_index, list):
|
||||
gpu_num = ','.join([str(i) for i in gpu_index])
|
||||
else:
|
||||
gpu_num = str(gpu_index)
|
||||
if "CUDA_VISIBLE_DEVICES" in os.environ and os.environ["CUDA_VISIBLE_DEVICES"] and not force:
|
||||
print('GPU already initiated')
|
||||
return
|
||||
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_num
|
||||
sess = fix_gpu_memory()
|
||||
return sess
|
||||
|
||||
|
||||
def preprocess(X, method):
|
||||
assert method in {'raw', 'imagenet', 'inception', 'mnist'}
|
||||
|
||||
if method is 'raw':
|
||||
pass
|
||||
elif method is 'imagenet':
|
||||
X = imagenet_preprocessing(X)
|
||||
else:
|
||||
raise Exception('unknown method %s' % method)
|
||||
|
||||
return X
|
||||
|
||||
|
||||
def reverse_preprocess(X, method):
|
||||
assert method in {'raw', 'imagenet', 'inception', 'mnist'}
|
||||
|
||||
if method is 'raw':
|
||||
pass
|
||||
elif method is 'imagenet':
|
||||
X = imagenet_reverse_preprocessing(X)
|
||||
else:
|
||||
raise Exception('unknown method %s' % method)
|
||||
|
||||
return X
|
||||
|
||||
|
||||
def imagenet_preprocessing(x, data_format=None):
|
||||
if data_format is None:
|
||||
data_format = K.image_data_format()
|
||||
assert data_format in ('channels_last', 'channels_first')
|
||||
|
||||
x = np.array(x)
|
||||
if data_format == 'channels_first':
|
||||
# 'RGB'->'BGR'
|
||||
if x.ndim == 3:
|
||||
x = x[::-1, ...]
|
||||
else:
|
||||
x = x[:, ::-1, ...]
|
||||
else:
|
||||
# 'RGB'->'BGR'
|
||||
x = x[..., ::-1]
|
||||
|
||||
mean = [103.939, 116.779, 123.68]
|
||||
std = None
|
||||
|
||||
# Zero-center by mean pixel
|
||||
if data_format == 'channels_first':
|
||||
if x.ndim == 3:
|
||||
x[0, :, :] -= mean[0]
|
||||
x[1, :, :] -= mean[1]
|
||||
x[2, :, :] -= mean[2]
|
||||
if std is not None:
|
||||
x[0, :, :] /= std[0]
|
||||
x[1, :, :] /= std[1]
|
||||
x[2, :, :] /= std[2]
|
||||
else:
|
||||
x[:, 0, :, :] -= mean[0]
|
||||
x[:, 1, :, :] -= mean[1]
|
||||
x[:, 2, :, :] -= mean[2]
|
||||
if std is not None:
|
||||
x[:, 0, :, :] /= std[0]
|
||||
x[:, 1, :, :] /= std[1]
|
||||
x[:, 2, :, :] /= std[2]
|
||||
else:
|
||||
x[..., 0] -= mean[0]
|
||||
x[..., 1] -= mean[1]
|
||||
x[..., 2] -= mean[2]
|
||||
if std is not None:
|
||||
x[..., 0] /= std[0]
|
||||
x[..., 1] /= std[1]
|
||||
x[..., 2] /= std[2]
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def imagenet_reverse_preprocessing(x, data_format=None):
|
||||
import keras.backend as K
|
||||
x = np.array(x)
|
||||
if data_format is None:
|
||||
data_format = K.image_data_format()
|
||||
assert data_format in ('channels_last', 'channels_first')
|
||||
|
||||
if data_format == 'channels_first':
|
||||
if x.ndim == 3:
|
||||
# Zero-center by mean pixel
|
||||
x[0, :, :] += 103.939
|
||||
x[1, :, :] += 116.779
|
||||
x[2, :, :] += 123.68
|
||||
# 'BGR'->'RGB'
|
||||
x = x[::-1, :, :]
|
||||
else:
|
||||
x[:, 0, :, :] += 103.939
|
||||
x[:, 1, :, :] += 116.779
|
||||
x[:, 2, :, :] += 123.68
|
||||
x = x[:, ::-1, :, :]
|
||||
else:
|
||||
# Zero-center by mean pixel
|
||||
x[..., 0] += 103.939
|
||||
x[..., 1] += 116.779
|
||||
x[..., 2] += 123.68
|
||||
# 'BGR'->'RGB'
|
||||
x = x[..., ::-1]
|
||||
return x
|
||||
|
||||
|
||||
def reverse_process_cloaked(x, preprocess='imagenet'):
|
||||
x = clip_img(x, preprocess)
|
||||
return reverse_preprocess(x, preprocess)
|
||||
|
||||
|
||||
def build_bottleneck_model(model, cut_off):
|
||||
bottleneck_model = Model(model.input, model.get_layer(cut_off).output)
|
||||
bottleneck_model.compile(loss='categorical_crossentropy',
|
||||
optimizer='adam',
|
||||
metrics=['accuracy'])
|
||||
return bottleneck_model
|
||||
|
||||
|
||||
def load_extractor(name):
|
||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
model_file = os.path.join(model_dir, "{}.h5".format(name))
|
||||
if os.path.exists(model_file):
|
||||
model = keras.models.load_model(model_file)
|
||||
else:
|
||||
get_file("{}.h5".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/{}.h5".format(name),
|
||||
cache_dir=model_dir, cache_subdir='')
|
||||
|
||||
get_file("{}_emb.p.gz".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/{}_emb.p.gz".format(name),
|
||||
cache_dir=model_dir, cache_subdir='')
|
||||
|
||||
model = keras.models.load_model(model_file)
|
||||
|
||||
if hasattr(model.layers[-1], "activation") and model.layers[-1].activation == "softmax":
|
||||
raise Exception(
|
||||
"Given extractor's last layer is softmax, need to remove the top layers to make it into a feature extractor")
|
||||
# if "extract" in name.split("/")[-1]:
|
||||
# pass
|
||||
# else:
|
||||
# print("Convert a model to a feature extractor")
|
||||
# model = build_bottleneck_model(model, model.layers[layer_idx].name)
|
||||
# model.save(name + "extract")
|
||||
# model = keras.models.load_model(name + "extract")
|
||||
return model
|
||||
|
||||
|
||||
def get_dataset_path(dataset):
|
||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
||||
if not os.path.exists(os.path.join(model_dir, "config.json")):
|
||||
raise Exception("Please config the datasets before running protection code. See more in README and config.py.")
|
||||
|
||||
config = json.load(open(os.path.join(model_dir, "config.json"), 'r'))
|
||||
if dataset not in config:
|
||||
raise Exception(
|
||||
"Dataset {} does not exist, please download to data/ and add the path to this function... Abort".format(
|
||||
dataset))
|
||||
return config[dataset]['train_dir'], config[dataset]['test_dir'], config[dataset]['num_classes'], config[dataset][
|
||||
'num_images']
|
||||
|
||||
|
||||
def normalize(x):
|
||||
return x / np.linalg.norm(x, axis=1, keepdims=True)
|
||||
|
||||
|
||||
def dump_image(x, filename, format="png", scale=False):
|
||||
# img = image.array_to_img(x, scale=scale)
|
||||
img = image.array_to_img(x)
|
||||
img.save(filename, format)
|
||||
return
|
||||
|
||||
|
||||
def load_dir(path):
|
||||
assert os.path.exists(path)
|
||||
x_ls = []
|
||||
for file in os.listdir(path):
|
||||
cur_path = os.path.join(path, file)
|
||||
im = image.load_img(cur_path, target_size=(224, 224))
|
||||
im = image.img_to_array(im)
|
||||
x_ls.append(im)
|
||||
raw_x = np.array(x_ls)
|
||||
return preprocess(raw_x, 'imagenet')
|
||||
|
||||
|
||||
def load_embeddings(feature_extractors_names):
|
||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
||||
dictionaries = []
|
||||
for extractor_name in feature_extractors_names:
|
||||
fp = gzip.open(os.path.join(model_dir, "{}_emb.p.gz".format(extractor_name)), 'rb')
|
||||
path2emb = pickle.load(fp)
|
||||
fp.close()
|
||||
|
||||
dictionaries.append(path2emb)
|
||||
|
||||
merge_dict = {}
|
||||
for k in dictionaries[0].keys():
|
||||
cur_emb = [dic[k] for dic in dictionaries]
|
||||
merge_dict[k] = np.concatenate(cur_emb)
|
||||
return merge_dict
|
||||
|
||||
|
||||
def extractor_ls_predict(feature_extractors_ls, X):
|
||||
feature_ls = []
|
||||
for extractor in feature_extractors_ls:
|
||||
cur_features = extractor.predict(X)
|
||||
feature_ls.append(cur_features)
|
||||
concated_feature_ls = np.concatenate(feature_ls, axis=1)
|
||||
concated_feature_ls = normalize(concated_feature_ls)
|
||||
return concated_feature_ls
|
||||
|
||||
|
||||
def calculate_dist_score(a, b, feature_extractors_ls, metric='l2'):
|
||||
features1 = extractor_ls_predict(feature_extractors_ls, a)
|
||||
features2 = extractor_ls_predict(feature_extractors_ls, b)
|
||||
|
||||
pair_cos = pairwise_distances(features1, features2, metric)
|
||||
max_sum = np.min(pair_cos, axis=0)
|
||||
max_sum_arg = np.argsort(max_sum)[::-1]
|
||||
max_sum_arg = max_sum_arg[:len(a)]
|
||||
max_sum = [max_sum[i] for i in max_sum_arg]
|
||||
paired_target_X = [b[j] for j in max_sum_arg]
|
||||
paired_target_X = np.array(paired_target_X)
|
||||
return np.min(max_sum), paired_target_X
|
||||
|
||||
|
||||
def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, metric='l2'):
|
||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
||||
|
||||
original_feature_x = extractor_ls_predict(feature_extractors_ls, imgs)
|
||||
|
||||
path2emb = load_embeddings(feature_extractors_names)
|
||||
items = list(path2emb.items())
|
||||
paths = [p[0] for p in items]
|
||||
embs = [p[1] for p in items]
|
||||
embs = np.array(embs)
|
||||
|
||||
pair_dist = pairwise_distances(original_feature_x, embs, metric)
|
||||
max_sum = np.min(pair_dist, axis=0)
|
||||
max_id = np.argmax(max_sum)
|
||||
|
||||
target_data_id = paths[int(max_id)]
|
||||
image_dir = os.path.join(model_dir, "target_data/{}/*".format(target_data_id))
|
||||
if not os.path.exists(image_dir):
|
||||
get_file("{}.h5".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/target_images".format(name),
|
||||
cache_dir=model_dir, cache_subdir='')
|
||||
|
||||
image_paths = glob.glob(image_dir)
|
||||
|
||||
target_images = [image.img_to_array(image.load_img(cur_path)) for cur_path in
|
||||
image_paths]
|
||||
|
||||
target_images = np.array([resize(x, (224, 224)) for x in target_images])
|
||||
target_images = preprocess(target_images, 'imagenet')
|
||||
|
||||
target_images = list(target_images)
|
||||
while len(target_images) < len(imgs):
|
||||
target_images += target_images
|
||||
|
||||
target_images = random.sample(target_images, len(imgs))
|
||||
return np.array(target_images)
|
||||
|
||||
# class CloakData(object):
|
||||
# def __init__(self, protect_directory=None, img_shape=(224, 224)):
|
||||
#
|
||||
# self.img_shape = img_shape
|
||||
# # self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
|
||||
# # self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
|
||||
# self.protect_directory = protect_directory
|
||||
#
|
||||
# self.protect_X = self.load_label_data(self.protect_directory)
|
||||
#
|
||||
# self.cloaked_protect_train_X = None
|
||||
#
|
||||
# self.label2path_train, self.label2path_test, self.path2idx = self.build_data_mapping()
|
||||
# self.all_training_path = self.get_all_data_path(self.label2path_train)
|
||||
# self.all_test_path = self.get_all_data_path(self.label2path_test)
|
||||
# self.protect_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.protect_class))
|
||||
#
|
||||
# def get_class_image_files(self, path):
|
||||
# return [os.path.join(path, f) for f in os.listdir(path)]
|
||||
#
|
||||
# def extractor_ls_predict(self, feature_extractors_ls, X):
|
||||
# feature_ls = []
|
||||
# for extractor in feature_extractors_ls:
|
||||
# cur_features = extractor.predict(X)
|
||||
# feature_ls.append(cur_features)
|
||||
# concated_feature_ls = np.concatenate(feature_ls, axis=1)
|
||||
# concated_feature_ls = normalize(concated_feature_ls)
|
||||
# return concated_feature_ls
|
||||
#
|
||||
# def load_embeddings(self, feature_extractors_names):
|
||||
# dictionaries = []
|
||||
# for extractor_name in feature_extractors_names:
|
||||
# path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
|
||||
# dictionaries.append(path2emb)
|
||||
#
|
||||
# merge_dict = {}
|
||||
# for k in dictionaries[0].keys():
|
||||
# cur_emb = [dic[k] for dic in dictionaries]
|
||||
# merge_dict[k] = np.concatenate(cur_emb)
|
||||
# return merge_dict
|
||||
#
|
||||
# def select_target_label(self, feature_extractors_ls, feature_extractors_names, metric='l2'):
|
||||
# original_feature_x = self.extractor_ls_predict(feature_extractors_ls, self.protect_train_X)
|
||||
#
|
||||
# path2emb = self.load_embeddings(feature_extractors_names)
|
||||
# items = list(path2emb.items())
|
||||
# paths = [p[0] for p in items]
|
||||
# embs = [p[1] for p in items]
|
||||
# embs = np.array(embs)
|
||||
#
|
||||
# pair_dist = pairwise_distances(original_feature_x, embs, metric)
|
||||
# max_sum = np.min(pair_dist, axis=0)
|
||||
# sorted_idx = np.argsort(max_sum)[::-1]
|
||||
#
|
||||
# highest_num = 0
|
||||
# paired_target_X = None
|
||||
# final_target_class_path = None
|
||||
# for idx in sorted_idx[:5]:
|
||||
# target_class_path = paths[idx]
|
||||
# cur_target_X = self.load_dir(target_class_path)
|
||||
# cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
|
||||
# cur_tot_sum, cur_paired_target_X = self.calculate_dist_score(self.protect_train_X, cur_target_X,
|
||||
# feature_extractors_ls,
|
||||
# metric=metric)
|
||||
# if cur_tot_sum > highest_num:
|
||||
# highest_num = cur_tot_sum
|
||||
# paired_target_X = cur_paired_target_X
|
||||
# final_target_class_path = target_class_path
|
||||
#
|
||||
# np.random.shuffle(paired_target_X)
|
||||
# return final_target_class_path, paired_target_X
|
||||
#
|
||||
# def calculate_dist_score(self, a, b, feature_extractors_ls, metric='l2'):
|
||||
# features1 = self.extractor_ls_predict(feature_extractors_ls, a)
|
||||
# features2 = self.extractor_ls_predict(feature_extractors_ls, b)
|
||||
#
|
||||
# pair_cos = pairwise_distances(features1, features2, metric)
|
||||
# max_sum = np.min(pair_cos, axis=0)
|
||||
# max_sum_arg = np.argsort(max_sum)[::-1]
|
||||
# max_sum_arg = max_sum_arg[:len(a)]
|
||||
# max_sum = [max_sum[i] for i in max_sum_arg]
|
||||
# paired_target_X = [b[j] for j in max_sum_arg]
|
||||
# paired_target_X = np.array(paired_target_X)
|
||||
# return np.min(max_sum), paired_target_X
|
||||
#
|
||||
# def get_all_data_path(self, label2path):
|
||||
# all_paths = []
|
||||
# for k, v in label2path.items():
|
||||
# cur_all_paths = [os.path.join(k, cur_p) for cur_p in v]
|
||||
# all_paths.extend(cur_all_paths)
|
||||
# return all_paths
|
||||
#
|
||||
# def load_label_data(self, label):
|
||||
# train_label_path = os.path.join(self.train_data_dir, label)
|
||||
# test_label_path = os.path.join(self.test_data_dir, label)
|
||||
# train_X = self.load_dir(train_label_path)
|
||||
# test_X = self.load_dir(test_label_path)
|
||||
# return train_X, test_X
|
||||
#
|
||||
# def load_dir(self, path):
|
||||
# assert os.path.exists(path)
|
||||
# x_ls = []
|
||||
# for file in os.listdir(path):
|
||||
# cur_path = os.path.join(path, file)
|
||||
# im = image.load_img(cur_path, target_size=self.img_shape)
|
||||
# im = image.img_to_array(im)
|
||||
# x_ls.append(im)
|
||||
# raw_x = np.array(x_ls)
|
||||
# return preprocess_input(raw_x)
|
||||
#
|
||||
# def build_data_mapping(self):
|
||||
# label2path_train = {}
|
||||
# label2path_test = {}
|
||||
# idx = 0
|
||||
# path2idx = {}
|
||||
# for label_name in self.all_labels:
|
||||
# full_path_train = os.path.join(self.train_data_dir, label_name)
|
||||
# full_path_test = os.path.join(self.test_data_dir, label_name)
|
||||
# label2path_train[full_path_train] = list(os.listdir(full_path_train))
|
||||
# label2path_test[full_path_test] = list(os.listdir(full_path_test))
|
||||
# for img_file in os.listdir(full_path_train):
|
||||
# path2idx[os.path.join(full_path_train, img_file)] = idx
|
||||
# for img_file in os.listdir(full_path_test):
|
||||
# path2idx[os.path.join(full_path_test, img_file)] = idx
|
||||
# idx += 1
|
||||
# return label2path_train, label2path_test, path2idx
|
||||
#
|
||||
# def generate_data_post_cloak(self, sybil=False):
|
||||
# assert self.cloaked_protect_train_X is not None
|
||||
# while True:
|
||||
# batch_X = []
|
||||
# batch_Y = []
|
||||
# cur_batch_path = random.sample(self.all_training_path, 32)
|
||||
# for p in cur_batch_path:
|
||||
# cur_y = self.path2idx[p]
|
||||
# if p in self.protect_class_path:
|
||||
# cur_x = random.choice(self.cloaked_protect_train_X)
|
||||
# elif sybil and (p in self.sybil_class):
|
||||
# cur_x = random.choice(self.cloaked_sybil_train_X)
|
||||
# else:
|
||||
# im = image.load_img(p, target_size=self.img_shape)
|
||||
# im = image.img_to_array(im)
|
||||
# cur_x = preprocess_input(im)
|
||||
# batch_X.append(cur_x)
|
||||
# batch_Y.append(cur_y)
|
||||
# batch_X = np.array(batch_X)
|
||||
# batch_Y = to_categorical(np.array(batch_Y), num_classes=self.number_classes)
|
||||
# yield batch_X, batch_Y
|
Loading…
Reference in New Issue
Block a user