mirror of
https://github.com/Shawn-Shan/fawkes.git
synced 2024-11-09 13:41:31 +05:30
0.0.6
Former-commit-id: 0d06b05f52d562111c7985d1debd51f69517076e [formerly 2d7f95e1dd9a4101e36f2f021e05e7d33d75d4ae] Former-commit-id: c2e240e6f2474545763a525b4db91c9a86f60bd0
This commit is contained in:
parent
e9f1a50653
commit
de75fceca7
2
.gitignore
vendored
2
.gitignore
vendored
@ -12,6 +12,8 @@ fawkes.egg-info
|
|||||||
.coverage
|
.coverage
|
||||||
.cache
|
.cache
|
||||||
.pytest_cache
|
.pytest_cache
|
||||||
|
fawkes_dev/api_key.txt
|
||||||
|
fawkes_dev/protect_personId.txt
|
||||||
|
|
||||||
# developer environments
|
# developer environments
|
||||||
.idea
|
.idea
|
||||||
|
@ -1,24 +0,0 @@
|
|||||||
# -*- coding: utf-8 -*-
|
|
||||||
# @Date : 2020-07-01
|
|
||||||
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
|
|
||||||
# @Link : https://www.shawnshan.com/
|
|
||||||
|
|
||||||
|
|
||||||
__version__ = '0.0.2'
|
|
||||||
|
|
||||||
from .differentiator import FawkesMaskGeneration
|
|
||||||
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
|
||||||
Faces
|
|
||||||
from .protection import main
|
|
||||||
import logging
|
|
||||||
import sys
|
|
||||||
import os
|
|
||||||
logging.getLogger('tensorflow').disabled = True
|
|
||||||
|
|
||||||
|
|
||||||
__all__ = (
|
|
||||||
'__version__',
|
|
||||||
'FawkesMaskGeneration', 'load_extractor',
|
|
||||||
'init_gpu',
|
|
||||||
'select_target_label', 'dump_image', 'reverse_process_cloaked', 'Faces', 'main'
|
|
||||||
)
|
|
@ -1,449 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
# -*- coding: utf-8 -*-
|
|
||||||
# @Date : 2020-05-17
|
|
||||||
# @Author : Shawn Shan (shansixiong@cs.uchicago.edu)
|
|
||||||
# @Link : https://www.shawnshan.com/
|
|
||||||
|
|
||||||
import datetime
|
|
||||||
import time
|
|
||||||
from decimal import Decimal
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import tensorflow as tf
|
|
||||||
from .utils import preprocess, reverse_preprocess
|
|
||||||
|
|
||||||
|
|
||||||
class FawkesMaskGeneration:
|
|
||||||
# if the attack is trying to mimic a target image or a neuron vector
|
|
||||||
MIMIC_IMG = True
|
|
||||||
# number of iterations to perform gradient descent
|
|
||||||
MAX_ITERATIONS = 10000
|
|
||||||
# larger values converge faster to less accurate results
|
|
||||||
LEARNING_RATE = 1e-2
|
|
||||||
# the initial constant c to pick as a first guess
|
|
||||||
INITIAL_CONST = 1
|
|
||||||
# pixel intensity range
|
|
||||||
INTENSITY_RANGE = 'imagenet'
|
|
||||||
# threshold for distance
|
|
||||||
L_THRESHOLD = 0.03
|
|
||||||
# whether keep the final result or the best result
|
|
||||||
KEEP_FINAL = False
|
|
||||||
# max_val of image
|
|
||||||
MAX_VAL = 255
|
|
||||||
# The following variables are used by DSSIM, should keep as default
|
|
||||||
# filter size in SSIM
|
|
||||||
FILTER_SIZE = 11
|
|
||||||
# filter sigma in SSIM
|
|
||||||
FILTER_SIGMA = 1.5
|
|
||||||
# weights used in MS-SSIM
|
|
||||||
SCALE_WEIGHTS = None
|
|
||||||
MAXIMIZE = False
|
|
||||||
IMAGE_SHAPE = (224, 224, 3)
|
|
||||||
RATIO = 1.0
|
|
||||||
LIMIT_DIST = False
|
|
||||||
|
|
||||||
def __init__(self, sess, bottleneck_model_ls, mimic_img=MIMIC_IMG,
|
|
||||||
batch_size=1, learning_rate=LEARNING_RATE,
|
|
||||||
max_iterations=MAX_ITERATIONS, initial_const=INITIAL_CONST,
|
|
||||||
intensity_range=INTENSITY_RANGE, l_threshold=L_THRESHOLD,
|
|
||||||
max_val=MAX_VAL, keep_final=KEEP_FINAL, maximize=MAXIMIZE, image_shape=IMAGE_SHAPE,
|
|
||||||
verbose=0, ratio=RATIO, limit_dist=LIMIT_DIST, faces=None):
|
|
||||||
|
|
||||||
assert intensity_range in {'raw', 'imagenet', 'inception', 'mnist'}
|
|
||||||
|
|
||||||
# constant used for tanh transformation to avoid corner cases
|
|
||||||
self.tanh_constant = 2 - 1e-6
|
|
||||||
self.sess = sess
|
|
||||||
self.MIMIC_IMG = mimic_img
|
|
||||||
self.LEARNING_RATE = learning_rate
|
|
||||||
self.MAX_ITERATIONS = max_iterations
|
|
||||||
self.initial_const = initial_const
|
|
||||||
self.batch_size = batch_size
|
|
||||||
self.intensity_range = intensity_range
|
|
||||||
self.l_threshold = l_threshold
|
|
||||||
self.max_val = max_val
|
|
||||||
self.keep_final = keep_final
|
|
||||||
self.verbose = verbose
|
|
||||||
self.maximize = maximize
|
|
||||||
self.learning_rate = learning_rate
|
|
||||||
self.ratio = ratio
|
|
||||||
self.limit_dist = limit_dist
|
|
||||||
self.single_shape = list(image_shape)
|
|
||||||
self.faces = faces
|
|
||||||
|
|
||||||
self.input_shape = tuple([self.batch_size] + self.single_shape)
|
|
||||||
|
|
||||||
self.bottleneck_shape = tuple([self.batch_size] + self.single_shape)
|
|
||||||
# self.bottleneck_shape = tuple([self.batch_size, bottleneck_model_ls[0].output_shape[-1]])
|
|
||||||
|
|
||||||
# the variable we're going to optimize over
|
|
||||||
self.modifier = tf.Variable(np.zeros(self.input_shape, dtype=np.float32))
|
|
||||||
|
|
||||||
# target image in tanh space
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
self.timg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
|
|
||||||
else:
|
|
||||||
self.bottleneck_t_raw = tf.Variable(np.zeros(self.bottleneck_shape), dtype=np.float32)
|
|
||||||
# source image in tanh space
|
|
||||||
self.simg_tanh = tf.Variable(np.zeros(self.input_shape), dtype=np.float32)
|
|
||||||
|
|
||||||
self.const = tf.Variable(np.ones(batch_size), dtype=np.float32)
|
|
||||||
self.mask = tf.Variable(np.ones((batch_size), dtype=np.bool))
|
|
||||||
self.weights = tf.Variable(np.ones(self.bottleneck_shape,
|
|
||||||
dtype=np.float32))
|
|
||||||
|
|
||||||
# and here's what we use to assign them
|
|
||||||
self.assign_modifier = tf.placeholder(tf.float32, self.input_shape)
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
self.assign_timg_tanh = tf.placeholder(
|
|
||||||
tf.float32, self.input_shape)
|
|
||||||
else:
|
|
||||||
self.assign_bottleneck_t_raw = tf.placeholder(
|
|
||||||
tf.float32, self.bottleneck_shape)
|
|
||||||
self.assign_simg_tanh = tf.placeholder(tf.float32, self.input_shape)
|
|
||||||
self.assign_const = tf.placeholder(tf.float32, (batch_size))
|
|
||||||
self.assign_mask = tf.placeholder(tf.bool, (batch_size))
|
|
||||||
self.assign_weights = tf.placeholder(tf.float32, self.bottleneck_shape)
|
|
||||||
|
|
||||||
# the resulting image, tanh'd to keep bounded from -0.5 to 0.5
|
|
||||||
# adversarial image in raw space
|
|
||||||
self.aimg_raw = (tf.tanh(self.modifier + self.simg_tanh) /
|
|
||||||
self.tanh_constant +
|
|
||||||
0.5) * 255.0
|
|
||||||
# source image in raw space
|
|
||||||
self.simg_raw = (tf.tanh(self.simg_tanh) /
|
|
||||||
self.tanh_constant +
|
|
||||||
0.5) * 255.0
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
# target image in raw space
|
|
||||||
self.timg_raw = (tf.tanh(self.timg_tanh) /
|
|
||||||
self.tanh_constant +
|
|
||||||
0.5) * 255.0
|
|
||||||
|
|
||||||
# convert source and adversarial image into input space
|
|
||||||
if self.intensity_range == 'imagenet':
|
|
||||||
mean = tf.constant(np.repeat([[[[103.939, 116.779, 123.68]]]], self.batch_size, axis=0), dtype=tf.float32,
|
|
||||||
name='img_mean')
|
|
||||||
self.aimg_input = (self.aimg_raw[..., ::-1] - mean)
|
|
||||||
self.simg_input = (self.simg_raw[..., ::-1] - mean)
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
self.timg_input = (self.timg_raw[..., ::-1] - mean)
|
|
||||||
|
|
||||||
elif self.intensity_range == 'raw':
|
|
||||||
self.aimg_input = self.aimg_raw
|
|
||||||
self.simg_input = self.simg_raw
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
self.timg_input = self.timg_raw
|
|
||||||
|
|
||||||
def batch_gen_DSSIM(aimg_raw_split, simg_raw_split):
|
|
||||||
msssim_split = tf.image.ssim(aimg_raw_split, simg_raw_split, max_val=255.0)
|
|
||||||
dist = (1.0 - tf.stack(msssim_split)) / 2.0
|
|
||||||
# dist = tf.square(aimg_raw_split - simg_raw_split)
|
|
||||||
return dist
|
|
||||||
|
|
||||||
# raw value of DSSIM distance
|
|
||||||
self.dist_raw = batch_gen_DSSIM(self.aimg_raw, self.simg_raw)
|
|
||||||
# distance value after applying threshold
|
|
||||||
self.dist = tf.maximum(self.dist_raw - self.l_threshold, 0.0)
|
|
||||||
# self.dist = self.dist_raw
|
|
||||||
self.dist_raw_sum = tf.reduce_sum(
|
|
||||||
tf.where(self.mask,
|
|
||||||
self.dist_raw,
|
|
||||||
tf.zeros_like(self.dist_raw)))
|
|
||||||
self.dist_sum = tf.reduce_sum(tf.where(self.mask, self.dist, tf.zeros_like(self.dist)))
|
|
||||||
|
|
||||||
def resize_tensor(input_tensor, model_input_shape):
|
|
||||||
if input_tensor.shape[1:] == model_input_shape or model_input_shape[1] is None:
|
|
||||||
return input_tensor
|
|
||||||
resized_tensor = tf.image.resize(input_tensor, model_input_shape[:2])
|
|
||||||
return resized_tensor
|
|
||||||
|
|
||||||
def calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input):
|
|
||||||
target_features = bottleneck_model(cur_timg_input)
|
|
||||||
return target_features
|
|
||||||
|
|
||||||
self.bottlesim = 0.0
|
|
||||||
self.bottlesim_sum = 0.0
|
|
||||||
self.bottlesim_push = 0.0
|
|
||||||
for bottleneck_model in bottleneck_model_ls:
|
|
||||||
model_input_shape = bottleneck_model.input_shape[1:]
|
|
||||||
cur_aimg_input = resize_tensor(self.aimg_input, model_input_shape)
|
|
||||||
|
|
||||||
self.bottleneck_a = bottleneck_model(cur_aimg_input)
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
cur_timg_input = self.timg_input
|
|
||||||
cur_simg_input = self.simg_input
|
|
||||||
self.bottleneck_t = calculate_direction(bottleneck_model, cur_timg_input, cur_simg_input)
|
|
||||||
else:
|
|
||||||
self.bottleneck_t = self.bottleneck_t_raw
|
|
||||||
|
|
||||||
bottleneck_diff = self.bottleneck_t - self.bottleneck_a
|
|
||||||
|
|
||||||
scale_factor = tf.sqrt(tf.reduce_sum(tf.square(self.bottleneck_t), axis=1))
|
|
||||||
|
|
||||||
cur_bottlesim = tf.sqrt(tf.reduce_sum(tf.square(bottleneck_diff), axis=1))
|
|
||||||
cur_bottlesim = cur_bottlesim / scale_factor
|
|
||||||
cur_bottlesim_sum = tf.reduce_sum(cur_bottlesim)
|
|
||||||
|
|
||||||
self.bottlesim += cur_bottlesim
|
|
||||||
|
|
||||||
self.bottlesim_sum += cur_bottlesim_sum
|
|
||||||
|
|
||||||
# sum up the losses
|
|
||||||
if self.maximize:
|
|
||||||
self.loss = self.const * tf.square(self.dist) - self.bottlesim
|
|
||||||
else:
|
|
||||||
self.loss = self.const * tf.square(self.dist) + self.bottlesim
|
|
||||||
|
|
||||||
self.loss_sum = tf.reduce_sum(tf.where(self.mask,
|
|
||||||
self.loss,
|
|
||||||
tf.zeros_like(self.loss)))
|
|
||||||
|
|
||||||
start_vars = set(x.name for x in tf.global_variables())
|
|
||||||
self.learning_rate_holder = tf.placeholder(tf.float32, shape=[])
|
|
||||||
|
|
||||||
optimizer = tf.train.AdadeltaOptimizer(self.learning_rate_holder)
|
|
||||||
# optimizer = tf.train.AdamOptimizer(self.learning_rate_holder)
|
|
||||||
|
|
||||||
self.train = optimizer.minimize(self.loss_sum, var_list=[self.modifier])
|
|
||||||
end_vars = tf.global_variables()
|
|
||||||
new_vars = [x for x in end_vars if x.name not in start_vars]
|
|
||||||
|
|
||||||
# these are the variables to initialize when we run
|
|
||||||
self.setup = []
|
|
||||||
self.setup.append(self.modifier.assign(self.assign_modifier))
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
self.setup.append(self.timg_tanh.assign(self.assign_timg_tanh))
|
|
||||||
else:
|
|
||||||
self.setup.append(self.bottleneck_t_raw.assign(
|
|
||||||
self.assign_bottleneck_t_raw))
|
|
||||||
self.setup.append(self.simg_tanh.assign(self.assign_simg_tanh))
|
|
||||||
self.setup.append(self.const.assign(self.assign_const))
|
|
||||||
self.setup.append(self.mask.assign(self.assign_mask))
|
|
||||||
self.setup.append(self.weights.assign(self.assign_weights))
|
|
||||||
|
|
||||||
self.init = tf.variables_initializer(var_list=[self.modifier] + new_vars)
|
|
||||||
|
|
||||||
print('Attacker loaded')
|
|
||||||
|
|
||||||
def preprocess_arctanh(self, imgs):
|
|
||||||
|
|
||||||
imgs = reverse_preprocess(imgs, self.intensity_range)
|
|
||||||
imgs /= 255.0
|
|
||||||
imgs -= 0.5
|
|
||||||
imgs *= self.tanh_constant
|
|
||||||
tanh_imgs = np.arctanh(imgs)
|
|
||||||
|
|
||||||
return tanh_imgs
|
|
||||||
|
|
||||||
def clipping(self, imgs):
|
|
||||||
|
|
||||||
imgs = reverse_preprocess(imgs, self.intensity_range)
|
|
||||||
imgs = np.clip(imgs, 0, self.max_val)
|
|
||||||
imgs = preprocess(imgs, self.intensity_range)
|
|
||||||
|
|
||||||
return imgs
|
|
||||||
|
|
||||||
def attack(self, source_imgs, target_imgs, weights=None):
|
|
||||||
|
|
||||||
if weights is None:
|
|
||||||
weights = np.ones([source_imgs.shape[0]] +
|
|
||||||
list(self.bottleneck_shape[1:]))
|
|
||||||
|
|
||||||
assert weights.shape[1:] == self.bottleneck_shape[1:]
|
|
||||||
assert source_imgs.shape[1:] == self.input_shape[1:]
|
|
||||||
assert source_imgs.shape[0] == weights.shape[0]
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
assert target_imgs.shape[1:] == self.input_shape[1:]
|
|
||||||
assert source_imgs.shape[0] == target_imgs.shape[0]
|
|
||||||
else:
|
|
||||||
assert target_imgs.shape[1:] == self.bottleneck_shape[1:]
|
|
||||||
assert source_imgs.shape[0] == target_imgs.shape[0]
|
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
|
|
||||||
adv_imgs = []
|
|
||||||
print('%d batches in total'
|
|
||||||
% int(np.ceil(len(source_imgs) / self.batch_size)))
|
|
||||||
|
|
||||||
for idx in range(0, len(source_imgs), self.batch_size):
|
|
||||||
print('processing batch %d at %s' % (idx, datetime.datetime.now()))
|
|
||||||
adv_img = self.attack_batch(source_imgs[idx:idx + self.batch_size],
|
|
||||||
target_imgs[idx:idx + self.batch_size],
|
|
||||||
weights[idx:idx + self.batch_size])
|
|
||||||
adv_imgs.extend(adv_img)
|
|
||||||
|
|
||||||
elapsed_time = time.time() - start_time
|
|
||||||
print('attack cost %f s' % (elapsed_time))
|
|
||||||
|
|
||||||
return np.array(adv_imgs)
|
|
||||||
|
|
||||||
def attack_batch(self, source_imgs, target_imgs, weights):
|
|
||||||
|
|
||||||
"""
|
|
||||||
Run the attack on a batch of images and labels.
|
|
||||||
"""
|
|
||||||
|
|
||||||
LR = self.learning_rate
|
|
||||||
nb_imgs = source_imgs.shape[0]
|
|
||||||
mask = [True] * nb_imgs + [False] * (self.batch_size - nb_imgs)
|
|
||||||
# mask = [True] * self.batch_size
|
|
||||||
mask = np.array(mask, dtype=np.bool)
|
|
||||||
|
|
||||||
source_imgs = np.array(source_imgs)
|
|
||||||
target_imgs = np.array(target_imgs)
|
|
||||||
|
|
||||||
# convert to tanh-space
|
|
||||||
simg_tanh = self.preprocess_arctanh(source_imgs)
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
timg_tanh = self.preprocess_arctanh(target_imgs)
|
|
||||||
else:
|
|
||||||
timg_tanh = target_imgs
|
|
||||||
|
|
||||||
CONST = np.ones(self.batch_size) * self.initial_const
|
|
||||||
|
|
||||||
self.sess.run(self.init)
|
|
||||||
simg_tanh_batch = np.zeros(self.input_shape)
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
timg_tanh_batch = np.zeros(self.input_shape)
|
|
||||||
else:
|
|
||||||
timg_tanh_batch = np.zeros(self.bottleneck_shape)
|
|
||||||
|
|
||||||
weights_batch = np.zeros(self.bottleneck_shape)
|
|
||||||
simg_tanh_batch[:nb_imgs] = simg_tanh[:nb_imgs]
|
|
||||||
timg_tanh_batch[:nb_imgs] = timg_tanh[:nb_imgs]
|
|
||||||
weights_batch[:nb_imgs] = weights[:nb_imgs]
|
|
||||||
modifier_batch = np.ones(self.input_shape) * 1e-6
|
|
||||||
|
|
||||||
temp_images = []
|
|
||||||
|
|
||||||
# set the variables so that we don't have to send them over again
|
|
||||||
if self.MIMIC_IMG:
|
|
||||||
self.sess.run(self.setup,
|
|
||||||
{self.assign_timg_tanh: timg_tanh_batch,
|
|
||||||
self.assign_simg_tanh: simg_tanh_batch,
|
|
||||||
self.assign_const: CONST,
|
|
||||||
self.assign_mask: mask,
|
|
||||||
self.assign_weights: weights_batch,
|
|
||||||
self.assign_modifier: modifier_batch})
|
|
||||||
else:
|
|
||||||
# if directly mimicking a vector, use assign_bottleneck_t_raw
|
|
||||||
# in setup
|
|
||||||
self.sess.run(self.setup,
|
|
||||||
{self.assign_bottleneck_t_raw: timg_tanh_batch,
|
|
||||||
self.assign_simg_tanh: simg_tanh_batch,
|
|
||||||
self.assign_const: CONST,
|
|
||||||
self.assign_mask: mask,
|
|
||||||
self.assign_weights: weights_batch,
|
|
||||||
self.assign_modifier: modifier_batch})
|
|
||||||
|
|
||||||
best_bottlesim = [0] * nb_imgs if self.maximize else [np.inf] * nb_imgs
|
|
||||||
best_adv = np.zeros_like(source_imgs)
|
|
||||||
|
|
||||||
if self.verbose == 1:
|
|
||||||
loss_sum = float(self.sess.run(self.loss_sum))
|
|
||||||
dist_sum = float(self.sess.run(self.dist_sum))
|
|
||||||
thresh_over = (dist_sum / self.batch_size / self.l_threshold * 100)
|
|
||||||
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
|
|
||||||
bottlesim_sum = self.sess.run(self.bottlesim_sum)
|
|
||||||
print('START: Total loss: %.4E; perturb: %.6f (%.2f%% over, raw: %.6f); sim: %f'
|
|
||||||
% (Decimal(loss_sum),
|
|
||||||
dist_sum,
|
|
||||||
thresh_over,
|
|
||||||
dist_raw_sum,
|
|
||||||
bottlesim_sum / nb_imgs))
|
|
||||||
|
|
||||||
finished_idx = set()
|
|
||||||
try:
|
|
||||||
total_distance = [0] * nb_imgs
|
|
||||||
|
|
||||||
if self.limit_dist:
|
|
||||||
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
|
|
||||||
[self.dist_raw,
|
|
||||||
self.bottlesim,
|
|
||||||
self.aimg_input])
|
|
||||||
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
|
|
||||||
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
|
|
||||||
if e >= nb_imgs:
|
|
||||||
break
|
|
||||||
total_distance[e] = bottlesim
|
|
||||||
|
|
||||||
for iteration in range(self.MAX_ITERATIONS):
|
|
||||||
|
|
||||||
self.sess.run([self.train], feed_dict={self.learning_rate_holder: LR})
|
|
||||||
|
|
||||||
dist_raw_list, bottlesim_list, aimg_input_list = self.sess.run(
|
|
||||||
[self.dist_raw,
|
|
||||||
self.bottlesim,
|
|
||||||
self.aimg_input])
|
|
||||||
|
|
||||||
all_clear = True
|
|
||||||
for e, (dist_raw, bottlesim, aimg_input) in enumerate(
|
|
||||||
zip(dist_raw_list, bottlesim_list, aimg_input_list)):
|
|
||||||
|
|
||||||
if e in finished_idx:
|
|
||||||
continue
|
|
||||||
|
|
||||||
if e >= nb_imgs:
|
|
||||||
break
|
|
||||||
if (bottlesim < best_bottlesim[e] and bottlesim > total_distance[e] * 0.1 and (
|
|
||||||
not self.maximize)) or (
|
|
||||||
bottlesim > best_bottlesim[e] and self.maximize):
|
|
||||||
best_bottlesim[e] = bottlesim
|
|
||||||
best_adv[e] = aimg_input
|
|
||||||
|
|
||||||
# if iteration > 20 and (dist_raw >= self.l_threshold or iteration == self.MAX_ITERATIONS - 1):
|
|
||||||
# finished_idx.add(e)
|
|
||||||
# print("{} finished at dist {}".format(e, dist_raw))
|
|
||||||
# best_bottlesim[e] = bottlesim
|
|
||||||
# best_adv[e] = aimg_input
|
|
||||||
#
|
|
||||||
all_clear = False
|
|
||||||
|
|
||||||
if all_clear:
|
|
||||||
break
|
|
||||||
|
|
||||||
if iteration != 0 and iteration % (self.MAX_ITERATIONS // 2) == 0:
|
|
||||||
LR = LR / 2
|
|
||||||
print("Learning Rate: ", LR)
|
|
||||||
|
|
||||||
if iteration % (self.MAX_ITERATIONS // 5) == 0:
|
|
||||||
if self.verbose == 1:
|
|
||||||
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
|
|
||||||
bottlesim_sum = self.sess.run(self.bottlesim_sum)
|
|
||||||
print('ITER %4d perturb: %.5f; sim: %f'
|
|
||||||
% (iteration, dist_raw_sum / nb_imgs, bottlesim_sum / nb_imgs))
|
|
||||||
|
|
||||||
# protected_images = aimg_input_list
|
|
||||||
#
|
|
||||||
# orginal_images = np.copy(self.faces.cropped_faces)
|
|
||||||
# cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(
|
|
||||||
# orginal_images)
|
|
||||||
# final_images = self.faces.merge_faces(cloak_perturbation)
|
|
||||||
#
|
|
||||||
# for p_img, img in zip(protected_images, final_images):
|
|
||||||
# dump_image(reverse_process_cloaked(p_img),
|
|
||||||
# "/home/shansixioing/fawkes/data/emily/emily_cloaked_cropped{}.png".format(iteration),
|
|
||||||
# format='png')
|
|
||||||
#
|
|
||||||
# dump_image(img,
|
|
||||||
# "/home/shansixioing/fawkes/data/emily/emily_cloaked_{}.png".format(iteration),
|
|
||||||
# format='png')
|
|
||||||
|
|
||||||
except KeyboardInterrupt:
|
|
||||||
pass
|
|
||||||
|
|
||||||
if self.verbose == 1:
|
|
||||||
loss_sum = float(self.sess.run(self.loss_sum))
|
|
||||||
dist_sum = float(self.sess.run(self.dist_sum))
|
|
||||||
dist_raw_sum = float(self.sess.run(self.dist_raw_sum))
|
|
||||||
bottlesim_sum = float(self.sess.run(self.bottlesim_sum))
|
|
||||||
print('END: Total loss: %.4E; perturb: %.6f (raw: %.6f); sim: %f'
|
|
||||||
% (Decimal(loss_sum),
|
|
||||||
dist_sum,
|
|
||||||
dist_raw_sum,
|
|
||||||
bottlesim_sum / nb_imgs))
|
|
||||||
|
|
||||||
best_adv = self.clipping(best_adv[:nb_imgs])
|
|
||||||
|
|
||||||
return best_adv
|
|
@ -1,149 +0,0 @@
|
|||||||
# from __future__ import absolute_import
|
|
||||||
# from __future__ import division
|
|
||||||
# from __future__ import print_function
|
|
||||||
|
|
||||||
import argparse
|
|
||||||
import glob
|
|
||||||
import os
|
|
||||||
import random
|
|
||||||
import sys
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from .differentiator import FawkesMaskGeneration
|
|
||||||
from .utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
|
||||||
Faces
|
|
||||||
|
|
||||||
random.seed(12243)
|
|
||||||
np.random.seed(122412)
|
|
||||||
|
|
||||||
BATCH_SIZE = 32
|
|
||||||
|
|
||||||
|
|
||||||
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None, sd=1e9, lr=2,
|
|
||||||
max_step=500):
|
|
||||||
batch_size = BATCH_SIZE if len(image_X) > BATCH_SIZE else len(image_X)
|
|
||||||
|
|
||||||
differentiator = FawkesMaskGeneration(sess, feature_extractors,
|
|
||||||
batch_size=batch_size,
|
|
||||||
mimic_img=True,
|
|
||||||
intensity_range='imagenet',
|
|
||||||
initial_const=sd,
|
|
||||||
learning_rate=lr,
|
|
||||||
max_iterations=max_step,
|
|
||||||
l_threshold=th,
|
|
||||||
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:],
|
|
||||||
faces=faces)
|
|
||||||
|
|
||||||
cloaked_image_X = differentiator.attack(image_X, target_emb)
|
|
||||||
return cloaked_image_X
|
|
||||||
|
|
||||||
|
|
||||||
def check_imgs(imgs):
|
|
||||||
if np.max(imgs) <= 1 and np.min(imgs) >= 0:
|
|
||||||
imgs = imgs * 255.0
|
|
||||||
elif np.max(imgs) <= 255 and np.min(imgs) >= 0:
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
raise Exception("Image values ")
|
|
||||||
return imgs
|
|
||||||
|
|
||||||
|
|
||||||
def main(*argv):
|
|
||||||
if not argv:
|
|
||||||
argv = list(sys.argv)
|
|
||||||
|
|
||||||
# attach SIGPIPE handler to properly handle broken pipe
|
|
||||||
try: # sigpipe not available under windows. just ignore in this case
|
|
||||||
import signal
|
|
||||||
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
|
|
||||||
except Exception as e:
|
|
||||||
pass
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
|
||||||
parser.add_argument('--directory', '-d', type=str,
|
|
||||||
help='directory that contain images for cloaking', default='imgs/')
|
|
||||||
|
|
||||||
parser.add_argument('--gpu', type=str,
|
|
||||||
help='GPU id', default='0')
|
|
||||||
|
|
||||||
parser.add_argument('--mode', type=str,
|
|
||||||
help='cloak generation mode', default='high')
|
|
||||||
parser.add_argument('--feature-extractor', type=str,
|
|
||||||
help="name of the feature extractor used for optimization",
|
|
||||||
default="high_extract")
|
|
||||||
|
|
||||||
parser.add_argument('--th', type=float, default=0.01)
|
|
||||||
parser.add_argument('--max-step', type=int, default=500)
|
|
||||||
parser.add_argument('--sd', type=int, default=1e9)
|
|
||||||
parser.add_argument('--lr', type=float, default=2)
|
|
||||||
|
|
||||||
parser.add_argument('--separate_target', action='store_true')
|
|
||||||
|
|
||||||
parser.add_argument('--format', type=str,
|
|
||||||
help="final image format",
|
|
||||||
default="jpg")
|
|
||||||
args = parser.parse_args(argv[1:])
|
|
||||||
|
|
||||||
if args.mode == 'low':
|
|
||||||
args.feature_extractor = "high_extract"
|
|
||||||
args.th = 0.003
|
|
||||||
elif args.mode == 'mid':
|
|
||||||
args.feature_extractor = "high_extract"
|
|
||||||
args.th = 0.005
|
|
||||||
elif args.mode == 'high':
|
|
||||||
args.feature_extractor = "high_extract"
|
|
||||||
args.th = 0.007
|
|
||||||
elif args.mode == 'ultra':
|
|
||||||
args.feature_extractor = "high_extract"
|
|
||||||
args.th = 0.01
|
|
||||||
elif args.mode == 'custom':
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
|
|
||||||
|
|
||||||
assert args.format in ['png', 'jpg', 'jpeg']
|
|
||||||
if args.format == 'jpg':
|
|
||||||
args.format = 'jpeg'
|
|
||||||
|
|
||||||
sess = init_gpu(args.gpu)
|
|
||||||
fs_names = [args.feature_extractor]
|
|
||||||
feature_extractors_ls = [load_extractor(name) for name in fs_names]
|
|
||||||
|
|
||||||
image_paths = glob.glob(os.path.join(args.directory, "*"))
|
|
||||||
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
|
|
||||||
if not image_paths:
|
|
||||||
print("No images in the directory")
|
|
||||||
exit(1)
|
|
||||||
|
|
||||||
faces = Faces(image_paths, sess)
|
|
||||||
|
|
||||||
orginal_images = faces.cropped_faces
|
|
||||||
orginal_images = np.array(orginal_images)
|
|
||||||
|
|
||||||
if args.separate_target:
|
|
||||||
target_embedding = []
|
|
||||||
for org_img in orginal_images:
|
|
||||||
org_img = org_img.reshape([1] + list(org_img.shape))
|
|
||||||
tar_emb = select_target_label(org_img, feature_extractors_ls, fs_names)
|
|
||||||
target_embedding.append(tar_emb)
|
|
||||||
target_embedding = np.concatenate(target_embedding)
|
|
||||||
else:
|
|
||||||
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
|
|
||||||
|
|
||||||
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
|
|
||||||
target_emb=target_embedding, th=args.th, faces=faces, sd=args.sd,
|
|
||||||
lr=args.lr, max_step=args.max_step)
|
|
||||||
|
|
||||||
faces.cloaked_cropped_faces = protected_images
|
|
||||||
|
|
||||||
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
|
|
||||||
final_images = faces.merge_faces(cloak_perturbation)
|
|
||||||
|
|
||||||
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
|
|
||||||
file_name = "{}_{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.th, args.format)
|
|
||||||
dump_image(p_img, file_name, format=args.format)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main(*sys.argv)
|
|
@ -1,574 +0,0 @@
|
|||||||
import glob
|
|
||||||
import gzip
|
|
||||||
import json
|
|
||||||
import os
|
|
||||||
import pickle
|
|
||||||
import random
|
|
||||||
import sys
|
|
||||||
|
|
||||||
stderr = sys.stderr
|
|
||||||
sys.stderr = open(os.devnull, 'w')
|
|
||||||
import keras
|
|
||||||
|
|
||||||
sys.stderr = stderr
|
|
||||||
import keras.backend as K
|
|
||||||
import numpy as np
|
|
||||||
import tensorflow as tf
|
|
||||||
from PIL import Image, ExifTags
|
|
||||||
# from keras.applications.vgg16 import preprocess_input
|
|
||||||
from keras.layers import Dense, Activation
|
|
||||||
from keras.models import Model
|
|
||||||
from keras.preprocessing import image
|
|
||||||
from keras.utils import get_file
|
|
||||||
from skimage.transform import resize
|
|
||||||
from sklearn.metrics import pairwise_distances
|
|
||||||
|
|
||||||
from .align_face import align, aligner
|
|
||||||
|
|
||||||
|
|
||||||
def clip_img(X, preprocessing='raw'):
|
|
||||||
X = reverse_preprocess(X, preprocessing)
|
|
||||||
X = np.clip(X, 0.0, 255.0)
|
|
||||||
X = preprocess(X, preprocessing)
|
|
||||||
return X
|
|
||||||
|
|
||||||
|
|
||||||
def load_image(path):
|
|
||||||
img = Image.open(path)
|
|
||||||
if img._getexif() is not None:
|
|
||||||
for orientation in ExifTags.TAGS.keys():
|
|
||||||
if ExifTags.TAGS[orientation] == 'Orientation':
|
|
||||||
break
|
|
||||||
|
|
||||||
exif = dict(img._getexif().items())
|
|
||||||
if orientation in exif.keys():
|
|
||||||
if exif[orientation] == 3:
|
|
||||||
img = img.rotate(180, expand=True)
|
|
||||||
elif exif[orientation] == 6:
|
|
||||||
img = img.rotate(270, expand=True)
|
|
||||||
elif exif[orientation] == 8:
|
|
||||||
img = img.rotate(90, expand=True)
|
|
||||||
else:
|
|
||||||
pass
|
|
||||||
img = img.convert('RGB')
|
|
||||||
image_array = image.img_to_array(img)
|
|
||||||
|
|
||||||
return image_array
|
|
||||||
|
|
||||||
|
|
||||||
class Faces(object):
|
|
||||||
def __init__(self, image_paths, sess):
|
|
||||||
self.aligner = aligner(sess)
|
|
||||||
self.org_faces = []
|
|
||||||
self.cropped_faces = []
|
|
||||||
self.cropped_faces_shape = []
|
|
||||||
self.cropped_index = []
|
|
||||||
self.callback_idx = []
|
|
||||||
for i, p in enumerate(image_paths):
|
|
||||||
cur_img = load_image(p)
|
|
||||||
self.org_faces.append(cur_img)
|
|
||||||
align_img = align(cur_img, self.aligner, margin=0.7)
|
|
||||||
cur_faces = align_img[0]
|
|
||||||
|
|
||||||
cur_shapes = [f.shape[:-1] for f in cur_faces]
|
|
||||||
|
|
||||||
cur_faces_square = []
|
|
||||||
for img in cur_faces:
|
|
||||||
long_size = max([img.shape[1], img.shape[0]])
|
|
||||||
base = np.zeros((long_size, long_size, 3))
|
|
||||||
base[0:img.shape[0], 0:img.shape[1], :] = img
|
|
||||||
cur_faces_square.append(base)
|
|
||||||
|
|
||||||
cur_index = align_img[1]
|
|
||||||
cur_faces_square = [resize(f, (224, 224)) for f in cur_faces_square]
|
|
||||||
self.cropped_faces_shape.extend(cur_shapes)
|
|
||||||
self.cropped_faces.extend(cur_faces_square)
|
|
||||||
self.cropped_index.extend(cur_index)
|
|
||||||
self.callback_idx.extend([i] * len(cur_faces_square))
|
|
||||||
|
|
||||||
if not self.cropped_faces:
|
|
||||||
print("No faces detected")
|
|
||||||
exit(1)
|
|
||||||
|
|
||||||
self.cropped_faces = np.array(self.cropped_faces)
|
|
||||||
|
|
||||||
self.cropped_faces = preprocess(self.cropped_faces, 'imagenet')
|
|
||||||
|
|
||||||
self.cloaked_cropped_faces = None
|
|
||||||
self.cloaked_faces = np.copy(self.org_faces)
|
|
||||||
|
|
||||||
def get_faces(self):
|
|
||||||
return self.cropped_faces
|
|
||||||
|
|
||||||
def merge_faces(self, cloaks):
|
|
||||||
|
|
||||||
self.cloaked_faces = np.copy(self.org_faces)
|
|
||||||
|
|
||||||
for i in range(len(self.cropped_faces)):
|
|
||||||
cur_cloak = cloaks[i]
|
|
||||||
org_shape = self.cropped_faces_shape[i]
|
|
||||||
old_square_shape = max([org_shape[0], org_shape[1]])
|
|
||||||
reshape_cloak = resize(cur_cloak, (old_square_shape, old_square_shape))
|
|
||||||
reshape_cloak = reshape_cloak[0:org_shape[0], 0:org_shape[1], :]
|
|
||||||
|
|
||||||
callback_id = self.callback_idx[i]
|
|
||||||
bb = self.cropped_index[i]
|
|
||||||
self.cloaked_faces[callback_id][bb[1]:bb[3], bb[0]:bb[2], :] += reshape_cloak
|
|
||||||
|
|
||||||
return self.cloaked_faces
|
|
||||||
|
|
||||||
|
|
||||||
def dump_dictionary_as_json(dict, outfile):
|
|
||||||
j = json.dumps(dict)
|
|
||||||
with open(outfile, "wb") as f:
|
|
||||||
f.write(j.encode())
|
|
||||||
|
|
||||||
|
|
||||||
def fix_gpu_memory(mem_fraction=1):
|
|
||||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
||||||
tf_config = None
|
|
||||||
if tf.test.is_gpu_available():
|
|
||||||
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=mem_fraction)
|
|
||||||
tf_config = tf.ConfigProto(gpu_options=gpu_options)
|
|
||||||
tf_config.gpu_options.allow_growth = True
|
|
||||||
tf_config.log_device_placement = False
|
|
||||||
init_op = tf.global_variables_initializer()
|
|
||||||
sess = tf.Session(config=tf_config)
|
|
||||||
sess.run(init_op)
|
|
||||||
K.set_session(sess)
|
|
||||||
return sess
|
|
||||||
|
|
||||||
|
|
||||||
def load_victim_model(number_classes, teacher_model=None, end2end=False):
|
|
||||||
for l in teacher_model.layers:
|
|
||||||
l.trainable = end2end
|
|
||||||
x = teacher_model.layers[-1].output
|
|
||||||
x = Dense(number_classes)(x)
|
|
||||||
x = Activation('softmax', name="act")(x)
|
|
||||||
model = Model(teacher_model.input, x)
|
|
||||||
opt = keras.optimizers.Adadelta()
|
|
||||||
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def init_gpu(gpu_index, force=False):
|
|
||||||
if isinstance(gpu_index, list):
|
|
||||||
gpu_num = ','.join([str(i) for i in gpu_index])
|
|
||||||
else:
|
|
||||||
gpu_num = str(gpu_index)
|
|
||||||
if "CUDA_VISIBLE_DEVICES" in os.environ and os.environ["CUDA_VISIBLE_DEVICES"] and not force:
|
|
||||||
print('GPU already initiated')
|
|
||||||
return
|
|
||||||
os.environ["CUDA_VISIBLE_DEVICES"] = gpu_num
|
|
||||||
sess = fix_gpu_memory()
|
|
||||||
return sess
|
|
||||||
|
|
||||||
|
|
||||||
def preprocess(X, method):
|
|
||||||
assert method in {'raw', 'imagenet', 'inception', 'mnist'}
|
|
||||||
|
|
||||||
if method is 'raw':
|
|
||||||
pass
|
|
||||||
elif method is 'imagenet':
|
|
||||||
X = imagenet_preprocessing(X)
|
|
||||||
else:
|
|
||||||
raise Exception('unknown method %s' % method)
|
|
||||||
|
|
||||||
return X
|
|
||||||
|
|
||||||
|
|
||||||
def reverse_preprocess(X, method):
|
|
||||||
assert method in {'raw', 'imagenet', 'inception', 'mnist'}
|
|
||||||
|
|
||||||
if method is 'raw':
|
|
||||||
pass
|
|
||||||
elif method is 'imagenet':
|
|
||||||
X = imagenet_reverse_preprocessing(X)
|
|
||||||
else:
|
|
||||||
raise Exception('unknown method %s' % method)
|
|
||||||
|
|
||||||
return X
|
|
||||||
|
|
||||||
|
|
||||||
def imagenet_preprocessing(x, data_format=None):
|
|
||||||
if data_format is None:
|
|
||||||
data_format = K.image_data_format()
|
|
||||||
assert data_format in ('channels_last', 'channels_first')
|
|
||||||
|
|
||||||
x = np.array(x)
|
|
||||||
if data_format == 'channels_first':
|
|
||||||
# 'RGB'->'BGR'
|
|
||||||
if x.ndim == 3:
|
|
||||||
x = x[::-1, ...]
|
|
||||||
else:
|
|
||||||
x = x[:, ::-1, ...]
|
|
||||||
else:
|
|
||||||
# 'RGB'->'BGR'
|
|
||||||
x = x[..., ::-1]
|
|
||||||
|
|
||||||
mean = [103.939, 116.779, 123.68]
|
|
||||||
std = None
|
|
||||||
|
|
||||||
# Zero-center by mean pixel
|
|
||||||
if data_format == 'channels_first':
|
|
||||||
if x.ndim == 3:
|
|
||||||
x[0, :, :] -= mean[0]
|
|
||||||
x[1, :, :] -= mean[1]
|
|
||||||
x[2, :, :] -= mean[2]
|
|
||||||
if std is not None:
|
|
||||||
x[0, :, :] /= std[0]
|
|
||||||
x[1, :, :] /= std[1]
|
|
||||||
x[2, :, :] /= std[2]
|
|
||||||
else:
|
|
||||||
x[:, 0, :, :] -= mean[0]
|
|
||||||
x[:, 1, :, :] -= mean[1]
|
|
||||||
x[:, 2, :, :] -= mean[2]
|
|
||||||
if std is not None:
|
|
||||||
x[:, 0, :, :] /= std[0]
|
|
||||||
x[:, 1, :, :] /= std[1]
|
|
||||||
x[:, 2, :, :] /= std[2]
|
|
||||||
else:
|
|
||||||
x[..., 0] -= mean[0]
|
|
||||||
x[..., 1] -= mean[1]
|
|
||||||
x[..., 2] -= mean[2]
|
|
||||||
if std is not None:
|
|
||||||
x[..., 0] /= std[0]
|
|
||||||
x[..., 1] /= std[1]
|
|
||||||
x[..., 2] /= std[2]
|
|
||||||
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def imagenet_reverse_preprocessing(x, data_format=None):
|
|
||||||
import keras.backend as K
|
|
||||||
x = np.array(x)
|
|
||||||
if data_format is None:
|
|
||||||
data_format = K.image_data_format()
|
|
||||||
assert data_format in ('channels_last', 'channels_first')
|
|
||||||
|
|
||||||
if data_format == 'channels_first':
|
|
||||||
if x.ndim == 3:
|
|
||||||
# Zero-center by mean pixel
|
|
||||||
x[0, :, :] += 103.939
|
|
||||||
x[1, :, :] += 116.779
|
|
||||||
x[2, :, :] += 123.68
|
|
||||||
# 'BGR'->'RGB'
|
|
||||||
x = x[::-1, :, :]
|
|
||||||
else:
|
|
||||||
x[:, 0, :, :] += 103.939
|
|
||||||
x[:, 1, :, :] += 116.779
|
|
||||||
x[:, 2, :, :] += 123.68
|
|
||||||
x = x[:, ::-1, :, :]
|
|
||||||
else:
|
|
||||||
# Zero-center by mean pixel
|
|
||||||
x[..., 0] += 103.939
|
|
||||||
x[..., 1] += 116.779
|
|
||||||
x[..., 2] += 123.68
|
|
||||||
# 'BGR'->'RGB'
|
|
||||||
x = x[..., ::-1]
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def reverse_process_cloaked(x, preprocess='imagenet'):
|
|
||||||
x = clip_img(x, preprocess)
|
|
||||||
return reverse_preprocess(x, preprocess)
|
|
||||||
|
|
||||||
|
|
||||||
def build_bottleneck_model(model, cut_off):
|
|
||||||
bottleneck_model = Model(model.input, model.get_layer(cut_off).output)
|
|
||||||
bottleneck_model.compile(loss='categorical_crossentropy',
|
|
||||||
optimizer='adam',
|
|
||||||
metrics=['accuracy'])
|
|
||||||
return bottleneck_model
|
|
||||||
|
|
||||||
|
|
||||||
def load_extractor(name):
|
|
||||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
|
||||||
os.makedirs(model_dir, exist_ok=True)
|
|
||||||
model_file = os.path.join(model_dir, "{}.h5".format(name))
|
|
||||||
if os.path.exists(model_file):
|
|
||||||
model = keras.models.load_model(model_file)
|
|
||||||
else:
|
|
||||||
get_file("{}.h5".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/{}.h5".format(name),
|
|
||||||
cache_dir=model_dir, cache_subdir='')
|
|
||||||
|
|
||||||
get_file("{}_emb.p.gz".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/{}_emb.p.gz".format(name),
|
|
||||||
cache_dir=model_dir, cache_subdir='')
|
|
||||||
|
|
||||||
model = keras.models.load_model(model_file)
|
|
||||||
|
|
||||||
if hasattr(model.layers[-1], "activation") and model.layers[-1].activation == "softmax":
|
|
||||||
raise Exception(
|
|
||||||
"Given extractor's last layer is softmax, need to remove the top layers to make it into a feature extractor")
|
|
||||||
# if "extract" in name.split("/")[-1]:
|
|
||||||
# pass
|
|
||||||
# else:
|
|
||||||
# print("Convert a model to a feature extractor")
|
|
||||||
# model = build_bottleneck_model(model, model.layers[layer_idx].name)
|
|
||||||
# model.save(name + "extract")
|
|
||||||
# model = keras.models.load_model(name + "extract")
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def get_dataset_path(dataset):
|
|
||||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
|
||||||
if not os.path.exists(os.path.join(model_dir, "config.json")):
|
|
||||||
raise Exception("Please config the datasets before running protection code. See more in README and config.py.")
|
|
||||||
|
|
||||||
config = json.load(open(os.path.join(model_dir, "config.json"), 'r'))
|
|
||||||
if dataset not in config:
|
|
||||||
raise Exception(
|
|
||||||
"Dataset {} does not exist, please download to data/ and add the path to this function... Abort".format(
|
|
||||||
dataset))
|
|
||||||
return config[dataset]['train_dir'], config[dataset]['test_dir'], config[dataset]['num_classes'], config[dataset][
|
|
||||||
'num_images']
|
|
||||||
|
|
||||||
|
|
||||||
def normalize(x):
|
|
||||||
return x / np.linalg.norm(x, axis=1, keepdims=True)
|
|
||||||
|
|
||||||
|
|
||||||
def dump_image(x, filename, format="png", scale=False):
|
|
||||||
# img = image.array_to_img(x, scale=scale)
|
|
||||||
img = image.array_to_img(x)
|
|
||||||
img.save(filename, format)
|
|
||||||
return
|
|
||||||
|
|
||||||
|
|
||||||
def load_dir(path):
|
|
||||||
assert os.path.exists(path)
|
|
||||||
x_ls = []
|
|
||||||
for file in os.listdir(path):
|
|
||||||
cur_path = os.path.join(path, file)
|
|
||||||
im = image.load_img(cur_path, target_size=(224, 224))
|
|
||||||
im = image.img_to_array(im)
|
|
||||||
x_ls.append(im)
|
|
||||||
raw_x = np.array(x_ls)
|
|
||||||
return preprocess(raw_x, 'imagenet')
|
|
||||||
|
|
||||||
|
|
||||||
def load_embeddings(feature_extractors_names):
|
|
||||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
|
||||||
dictionaries = []
|
|
||||||
for extractor_name in feature_extractors_names:
|
|
||||||
fp = gzip.open(os.path.join(model_dir, "{}_emb.p.gz".format(extractor_name)), 'rb')
|
|
||||||
path2emb = pickle.load(fp)
|
|
||||||
fp.close()
|
|
||||||
|
|
||||||
dictionaries.append(path2emb)
|
|
||||||
|
|
||||||
merge_dict = {}
|
|
||||||
for k in dictionaries[0].keys():
|
|
||||||
cur_emb = [dic[k] for dic in dictionaries]
|
|
||||||
merge_dict[k] = np.concatenate(cur_emb)
|
|
||||||
return merge_dict
|
|
||||||
|
|
||||||
|
|
||||||
def extractor_ls_predict(feature_extractors_ls, X):
|
|
||||||
feature_ls = []
|
|
||||||
for extractor in feature_extractors_ls:
|
|
||||||
cur_features = extractor.predict(X)
|
|
||||||
feature_ls.append(cur_features)
|
|
||||||
concated_feature_ls = np.concatenate(feature_ls, axis=1)
|
|
||||||
concated_feature_ls = normalize(concated_feature_ls)
|
|
||||||
return concated_feature_ls
|
|
||||||
|
|
||||||
|
|
||||||
def calculate_dist_score(a, b, feature_extractors_ls, metric='l2'):
|
|
||||||
features1 = extractor_ls_predict(feature_extractors_ls, a)
|
|
||||||
features2 = extractor_ls_predict(feature_extractors_ls, b)
|
|
||||||
|
|
||||||
pair_cos = pairwise_distances(features1, features2, metric)
|
|
||||||
max_sum = np.min(pair_cos, axis=0)
|
|
||||||
max_sum_arg = np.argsort(max_sum)[::-1]
|
|
||||||
max_sum_arg = max_sum_arg[:len(a)]
|
|
||||||
max_sum = [max_sum[i] for i in max_sum_arg]
|
|
||||||
paired_target_X = [b[j] for j in max_sum_arg]
|
|
||||||
paired_target_X = np.array(paired_target_X)
|
|
||||||
return np.min(max_sum), paired_target_X
|
|
||||||
|
|
||||||
|
|
||||||
def select_target_label(imgs, feature_extractors_ls, feature_extractors_names, metric='l2'):
|
|
||||||
model_dir = os.path.join(os.path.expanduser('~'), '.fawkes')
|
|
||||||
|
|
||||||
original_feature_x = extractor_ls_predict(feature_extractors_ls, imgs)
|
|
||||||
|
|
||||||
path2emb = load_embeddings(feature_extractors_names)
|
|
||||||
items = list(path2emb.items())
|
|
||||||
paths = [p[0] for p in items]
|
|
||||||
embs = [p[1] for p in items]
|
|
||||||
embs = np.array(embs)
|
|
||||||
|
|
||||||
pair_dist = pairwise_distances(original_feature_x, embs, metric)
|
|
||||||
max_sum = np.min(pair_dist, axis=0)
|
|
||||||
max_id = np.argmax(max_sum)
|
|
||||||
|
|
||||||
target_data_id = paths[int(max_id)]
|
|
||||||
image_dir = os.path.join(model_dir, "target_data/{}/*".format(target_data_id))
|
|
||||||
if not os.path.exists(image_dir):
|
|
||||||
get_file("{}.h5".format(name), "http://sandlab.cs.uchicago.edu/fawkes/files/target_images".format(name),
|
|
||||||
cache_dir=model_dir, cache_subdir='')
|
|
||||||
|
|
||||||
image_paths = glob.glob(image_dir)
|
|
||||||
|
|
||||||
target_images = [image.img_to_array(image.load_img(cur_path)) for cur_path in
|
|
||||||
image_paths]
|
|
||||||
|
|
||||||
target_images = np.array([resize(x, (224, 224)) for x in target_images])
|
|
||||||
target_images = preprocess(target_images, 'imagenet')
|
|
||||||
|
|
||||||
target_images = list(target_images)
|
|
||||||
while len(target_images) < len(imgs):
|
|
||||||
target_images += target_images
|
|
||||||
|
|
||||||
target_images = random.sample(target_images, len(imgs))
|
|
||||||
return np.array(target_images)
|
|
||||||
|
|
||||||
# class CloakData(object):
|
|
||||||
# def __init__(self, protect_directory=None, img_shape=(224, 224)):
|
|
||||||
#
|
|
||||||
# self.img_shape = img_shape
|
|
||||||
# # self.train_data_dir, self.test_data_dir, self.number_classes, self.number_samples = get_dataset_path(dataset)
|
|
||||||
# # self.all_labels = sorted(list(os.listdir(self.train_data_dir)))
|
|
||||||
# self.protect_directory = protect_directory
|
|
||||||
#
|
|
||||||
# self.protect_X = self.load_label_data(self.protect_directory)
|
|
||||||
#
|
|
||||||
# self.cloaked_protect_train_X = None
|
|
||||||
#
|
|
||||||
# self.label2path_train, self.label2path_test, self.path2idx = self.build_data_mapping()
|
|
||||||
# self.all_training_path = self.get_all_data_path(self.label2path_train)
|
|
||||||
# self.all_test_path = self.get_all_data_path(self.label2path_test)
|
|
||||||
# self.protect_class_path = self.get_class_image_files(os.path.join(self.train_data_dir, self.protect_class))
|
|
||||||
#
|
|
||||||
# def get_class_image_files(self, path):
|
|
||||||
# return [os.path.join(path, f) for f in os.listdir(path)]
|
|
||||||
#
|
|
||||||
# def extractor_ls_predict(self, feature_extractors_ls, X):
|
|
||||||
# feature_ls = []
|
|
||||||
# for extractor in feature_extractors_ls:
|
|
||||||
# cur_features = extractor.predict(X)
|
|
||||||
# feature_ls.append(cur_features)
|
|
||||||
# concated_feature_ls = np.concatenate(feature_ls, axis=1)
|
|
||||||
# concated_feature_ls = normalize(concated_feature_ls)
|
|
||||||
# return concated_feature_ls
|
|
||||||
#
|
|
||||||
# def load_embeddings(self, feature_extractors_names):
|
|
||||||
# dictionaries = []
|
|
||||||
# for extractor_name in feature_extractors_names:
|
|
||||||
# path2emb = pickle.load(open("../feature_extractors/embeddings/{}_emb_norm.p".format(extractor_name), "rb"))
|
|
||||||
# dictionaries.append(path2emb)
|
|
||||||
#
|
|
||||||
# merge_dict = {}
|
|
||||||
# for k in dictionaries[0].keys():
|
|
||||||
# cur_emb = [dic[k] for dic in dictionaries]
|
|
||||||
# merge_dict[k] = np.concatenate(cur_emb)
|
|
||||||
# return merge_dict
|
|
||||||
#
|
|
||||||
# def select_target_label(self, feature_extractors_ls, feature_extractors_names, metric='l2'):
|
|
||||||
# original_feature_x = self.extractor_ls_predict(feature_extractors_ls, self.protect_train_X)
|
|
||||||
#
|
|
||||||
# path2emb = self.load_embeddings(feature_extractors_names)
|
|
||||||
# items = list(path2emb.items())
|
|
||||||
# paths = [p[0] for p in items]
|
|
||||||
# embs = [p[1] for p in items]
|
|
||||||
# embs = np.array(embs)
|
|
||||||
#
|
|
||||||
# pair_dist = pairwise_distances(original_feature_x, embs, metric)
|
|
||||||
# max_sum = np.min(pair_dist, axis=0)
|
|
||||||
# sorted_idx = np.argsort(max_sum)[::-1]
|
|
||||||
#
|
|
||||||
# highest_num = 0
|
|
||||||
# paired_target_X = None
|
|
||||||
# final_target_class_path = None
|
|
||||||
# for idx in sorted_idx[:5]:
|
|
||||||
# target_class_path = paths[idx]
|
|
||||||
# cur_target_X = self.load_dir(target_class_path)
|
|
||||||
# cur_target_X = np.concatenate([cur_target_X, cur_target_X, cur_target_X])
|
|
||||||
# cur_tot_sum, cur_paired_target_X = self.calculate_dist_score(self.protect_train_X, cur_target_X,
|
|
||||||
# feature_extractors_ls,
|
|
||||||
# metric=metric)
|
|
||||||
# if cur_tot_sum > highest_num:
|
|
||||||
# highest_num = cur_tot_sum
|
|
||||||
# paired_target_X = cur_paired_target_X
|
|
||||||
# final_target_class_path = target_class_path
|
|
||||||
#
|
|
||||||
# np.random.shuffle(paired_target_X)
|
|
||||||
# return final_target_class_path, paired_target_X
|
|
||||||
#
|
|
||||||
# def calculate_dist_score(self, a, b, feature_extractors_ls, metric='l2'):
|
|
||||||
# features1 = self.extractor_ls_predict(feature_extractors_ls, a)
|
|
||||||
# features2 = self.extractor_ls_predict(feature_extractors_ls, b)
|
|
||||||
#
|
|
||||||
# pair_cos = pairwise_distances(features1, features2, metric)
|
|
||||||
# max_sum = np.min(pair_cos, axis=0)
|
|
||||||
# max_sum_arg = np.argsort(max_sum)[::-1]
|
|
||||||
# max_sum_arg = max_sum_arg[:len(a)]
|
|
||||||
# max_sum = [max_sum[i] for i in max_sum_arg]
|
|
||||||
# paired_target_X = [b[j] for j in max_sum_arg]
|
|
||||||
# paired_target_X = np.array(paired_target_X)
|
|
||||||
# return np.min(max_sum), paired_target_X
|
|
||||||
#
|
|
||||||
# def get_all_data_path(self, label2path):
|
|
||||||
# all_paths = []
|
|
||||||
# for k, v in label2path.items():
|
|
||||||
# cur_all_paths = [os.path.join(k, cur_p) for cur_p in v]
|
|
||||||
# all_paths.extend(cur_all_paths)
|
|
||||||
# return all_paths
|
|
||||||
#
|
|
||||||
# def load_label_data(self, label):
|
|
||||||
# train_label_path = os.path.join(self.train_data_dir, label)
|
|
||||||
# test_label_path = os.path.join(self.test_data_dir, label)
|
|
||||||
# train_X = self.load_dir(train_label_path)
|
|
||||||
# test_X = self.load_dir(test_label_path)
|
|
||||||
# return train_X, test_X
|
|
||||||
#
|
|
||||||
# def load_dir(self, path):
|
|
||||||
# assert os.path.exists(path)
|
|
||||||
# x_ls = []
|
|
||||||
# for file in os.listdir(path):
|
|
||||||
# cur_path = os.path.join(path, file)
|
|
||||||
# im = image.load_img(cur_path, target_size=self.img_shape)
|
|
||||||
# im = image.img_to_array(im)
|
|
||||||
# x_ls.append(im)
|
|
||||||
# raw_x = np.array(x_ls)
|
|
||||||
# return preprocess_input(raw_x)
|
|
||||||
#
|
|
||||||
# def build_data_mapping(self):
|
|
||||||
# label2path_train = {}
|
|
||||||
# label2path_test = {}
|
|
||||||
# idx = 0
|
|
||||||
# path2idx = {}
|
|
||||||
# for label_name in self.all_labels:
|
|
||||||
# full_path_train = os.path.join(self.train_data_dir, label_name)
|
|
||||||
# full_path_test = os.path.join(self.test_data_dir, label_name)
|
|
||||||
# label2path_train[full_path_train] = list(os.listdir(full_path_train))
|
|
||||||
# label2path_test[full_path_test] = list(os.listdir(full_path_test))
|
|
||||||
# for img_file in os.listdir(full_path_train):
|
|
||||||
# path2idx[os.path.join(full_path_train, img_file)] = idx
|
|
||||||
# for img_file in os.listdir(full_path_test):
|
|
||||||
# path2idx[os.path.join(full_path_test, img_file)] = idx
|
|
||||||
# idx += 1
|
|
||||||
# return label2path_train, label2path_test, path2idx
|
|
||||||
#
|
|
||||||
# def generate_data_post_cloak(self, sybil=False):
|
|
||||||
# assert self.cloaked_protect_train_X is not None
|
|
||||||
# while True:
|
|
||||||
# batch_X = []
|
|
||||||
# batch_Y = []
|
|
||||||
# cur_batch_path = random.sample(self.all_training_path, 32)
|
|
||||||
# for p in cur_batch_path:
|
|
||||||
# cur_y = self.path2idx[p]
|
|
||||||
# if p in self.protect_class_path:
|
|
||||||
# cur_x = random.choice(self.cloaked_protect_train_X)
|
|
||||||
# elif sybil and (p in self.sybil_class):
|
|
||||||
# cur_x = random.choice(self.cloaked_sybil_train_X)
|
|
||||||
# else:
|
|
||||||
# im = image.load_img(p, target_size=self.img_shape)
|
|
||||||
# im = image.img_to_array(im)
|
|
||||||
# cur_x = preprocess_input(im)
|
|
||||||
# batch_X.append(cur_x)
|
|
||||||
# batch_Y.append(cur_y)
|
|
||||||
# batch_X = np.array(batch_X)
|
|
||||||
# batch_Y = to_categorical(np.array(batch_Y), num_classes=self.number_classes)
|
|
||||||
# yield batch_X, batch_Y
|
|
Loading…
Reference in New Issue
Block a user