2
0
mirror of https://github.com/Shawn-Shan/fawkes.git synced 2025-01-22 17:37:49 +05:30

make it into a class

Former-commit-id: a16d0d213b568eb5cbc21229b940394fc58e1818 [formerly 4bb10aac31590439604bc9750fc51a6003be5b4c]
Former-commit-id: 2316435e65d25480560f94dc6a9aff560fe0673e
This commit is contained in:
Shawn-Shan 2020-07-09 01:26:42 -05:00
parent 9d176d62b2
commit f5749d0ae4
2 changed files with 90 additions and 74 deletions

View File

@ -4,7 +4,7 @@
# @Link : https://www.shawnshan.com/
__version__ = '0.0.5'
__version__ = '0.0.6'
from .detect_faces import create_mtcnn, run_detect_face
from .differentiator import FawkesMaskGeneration

View File

@ -4,12 +4,14 @@
import argparse
import glob
import logging
import os
import random
import sys
import time
import tensorflow as tf
import logging
logging.getLogger('tensorflow').disabled = True
import numpy as np
@ -17,7 +19,6 @@ from fawkes.differentiator import FawkesMaskGeneration
from fawkes.utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
Faces
random.seed(12243)
np.random.seed(122412)
@ -51,8 +52,88 @@ def check_imgs(imgs):
return imgs
class Fawkes(object):
def __init__(self, feature_extractor, gpu, batch_size):
self.feature_extractor = feature_extractor
self.gpu = gpu
self.batch_size = batch_size
self.sess = init_gpu(gpu)
self.fs_names = [feature_extractor]
if isinstance(feature_extractor, list):
self.fs_names = feature_extractor
self.feature_extractors_ls = [load_extractor(name) for name in self.fs_names]
def mode2param(self, mode):
if mode == 'low':
th = 0.003
max_step = 20
lr = 20
elif mode == 'mid':
th = 0.005
max_step = 50
lr = 15
elif mode == 'high':
th = 0.008
max_step = 500
lr = 15
elif mode == 'ultra':
if not tf.test.is_gpu_available():
print("Please enable GPU for ultra setting...")
sys.exit(1)
th = 0.01
max_step = 2000
lr = 8
else:
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
return th, max_step, lr
def run_protection(self, image_paths, mode='mid', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png',
separate_target=True):
if mode == 'custom':
pass
else:
th, max_step, lr = self.mode2param(mode)
start_time = time.time()
if not image_paths:
raise Exception("No images in the directory")
faces = Faces(image_paths, self.sess, verbose=1)
orginal_images = faces.cropped_faces
orginal_images = np.array(orginal_images)
if separate_target:
target_embedding = []
for org_img in orginal_images:
org_img = org_img.reshape([1] + list(org_img.shape))
tar_emb = select_target_label(org_img, self.feature_extractors_ls, self.fs_names)
target_embedding.append(tar_emb)
target_embedding = np.concatenate(target_embedding)
else:
target_embedding = select_target_label(orginal_images, self.feature_extractors_ls, self.fs_names)
protected_images = generate_cloak_images(self.sess, self.feature_extractors_ls, orginal_images,
target_emb=target_embedding, th=th, faces=faces, sd=sd,
lr=lr, max_step=max_step, batch_size=batch_size)
faces.cloaked_cropped_faces = protected_images
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
final_images = faces.merge_faces(cloak_perturbation)
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), mode, format)
dump_image(p_img, file_name, format=format)
elapsed_time = time.time() - start_time
print('attack cost %f s' % (elapsed_time))
print("Done!")
def main(*argv):
start_time = time.time()
if not argv:
argv = list(sys.argv)
@ -86,85 +167,20 @@ def main(*argv):
parser.add_argument('--format', type=str,
help="final image format",
default="png")
args = parser.parse_args(argv[1:])
if args.mode == 'low':
args.feature_extractor = "high_extract"
args.th = 0.003
args.max_step = 20
args.lr = 20
elif args.mode == 'mid':
args.feature_extractor = "high_extract"
args.th = 0.005
args.max_step = 50
args.lr = 15
elif args.mode == 'high':
args.feature_extractor = "high_extract"
args.th = 0.008
args.max_step = 500
args.lr = 15
elif args.mode == 'ultra':
if not tf.test.is_gpu_available():
print("Please enable GPU for ultra setting...")
sys.exit(1)
# args.feature_extractor = ["high_extract", 'high2_extract']
args.feature_extractor = "high_extract"
args.th = 0.01
args.max_step = 2000
args.lr = 8
elif args.mode == 'custom':
pass
else:
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
args = parser.parse_args(argv[1:])
assert args.format in ['png', 'jpg', 'jpeg']
if args.format == 'jpg':
args.format = 'jpeg'
sess = init_gpu(args.gpu)
image_paths = glob.glob(os.path.join(args.directory, "*"))
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
if not image_paths:
raise Exception("No images in the directory")
faces = Faces(image_paths, sess, verbose=1)
orginal_images = faces.cropped_faces
orginal_images = np.array(orginal_images)
fs_names = [args.feature_extractor]
if isinstance(args.feature_extractor, list):
fs_names = args.feature_extractor
feature_extractors_ls = [load_extractor(name) for name in fs_names]
if args.separate_target:
target_embedding = []
for org_img in orginal_images:
org_img = org_img.reshape([1] + list(org_img.shape))
tar_emb = select_target_label(org_img, feature_extractors_ls, fs_names)
target_embedding.append(tar_emb)
target_embedding = np.concatenate(target_embedding)
else:
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
target_emb=target_embedding, th=args.th, faces=faces, sd=args.sd,
lr=args.lr, max_step=args.max_step, batch_size=args.batch_size)
faces.cloaked_cropped_faces = protected_images
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
final_images = faces.merge_faces(cloak_perturbation)
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.format)
dump_image(p_img, file_name, format=args.format)
elapsed_time = time.time() - start_time
print('attack cost %f s' % (elapsed_time))
print("Done!")
protector = Fawkes(args.feature_extractor, args.gpu, args.batch_size)
protector.run_protection(image_paths, mode=args.mode, th=args.th, sd=args.sd, lr=args.lr, max_step=args.max_step,
batch_size=args.batch_size, format=args.format,
separate_target=args.separate_target)
if __name__ == '__main__':