mirror of
https://github.com/Shawn-Shan/fawkes.git
synced 2024-12-22 07:09:33 +05:30
make it into a class
Former-commit-id: a16d0d213b568eb5cbc21229b940394fc58e1818 [formerly 4bb10aac31590439604bc9750fc51a6003be5b4c] Former-commit-id: 2316435e65d25480560f94dc6a9aff560fe0673e
This commit is contained in:
parent
9d176d62b2
commit
f5749d0ae4
@ -4,7 +4,7 @@
|
||||
# @Link : https://www.shawnshan.com/
|
||||
|
||||
|
||||
__version__ = '0.0.5'
|
||||
__version__ = '0.0.6'
|
||||
|
||||
from .detect_faces import create_mtcnn, run_detect_face
|
||||
from .differentiator import FawkesMaskGeneration
|
||||
|
@ -4,12 +4,14 @@
|
||||
|
||||
import argparse
|
||||
import glob
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import time
|
||||
|
||||
import tensorflow as tf
|
||||
import logging
|
||||
|
||||
logging.getLogger('tensorflow').disabled = True
|
||||
|
||||
import numpy as np
|
||||
@ -17,7 +19,6 @@ from fawkes.differentiator import FawkesMaskGeneration
|
||||
from fawkes.utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
|
||||
Faces
|
||||
|
||||
|
||||
random.seed(12243)
|
||||
np.random.seed(122412)
|
||||
|
||||
@ -51,8 +52,88 @@ def check_imgs(imgs):
|
||||
return imgs
|
||||
|
||||
|
||||
def main(*argv):
|
||||
class Fawkes(object):
|
||||
def __init__(self, feature_extractor, gpu, batch_size):
|
||||
self.feature_extractor = feature_extractor
|
||||
self.gpu = gpu
|
||||
self.batch_size = batch_size
|
||||
self.sess = init_gpu(gpu)
|
||||
self.fs_names = [feature_extractor]
|
||||
if isinstance(feature_extractor, list):
|
||||
self.fs_names = feature_extractor
|
||||
|
||||
self.feature_extractors_ls = [load_extractor(name) for name in self.fs_names]
|
||||
|
||||
def mode2param(self, mode):
|
||||
if mode == 'low':
|
||||
th = 0.003
|
||||
max_step = 20
|
||||
lr = 20
|
||||
elif mode == 'mid':
|
||||
th = 0.005
|
||||
max_step = 50
|
||||
lr = 15
|
||||
elif mode == 'high':
|
||||
th = 0.008
|
||||
max_step = 500
|
||||
lr = 15
|
||||
elif mode == 'ultra':
|
||||
if not tf.test.is_gpu_available():
|
||||
print("Please enable GPU for ultra setting...")
|
||||
sys.exit(1)
|
||||
th = 0.01
|
||||
max_step = 2000
|
||||
lr = 8
|
||||
else:
|
||||
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
|
||||
return th, max_step, lr
|
||||
|
||||
def run_protection(self, image_paths, mode='mid', th=0.04, sd=1e9, lr=10, max_step=500, batch_size=1, format='png',
|
||||
separate_target=True):
|
||||
if mode == 'custom':
|
||||
pass
|
||||
else:
|
||||
th, max_step, lr = self.mode2param(mode)
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
if not image_paths:
|
||||
raise Exception("No images in the directory")
|
||||
|
||||
faces = Faces(image_paths, self.sess, verbose=1)
|
||||
|
||||
orginal_images = faces.cropped_faces
|
||||
orginal_images = np.array(orginal_images)
|
||||
|
||||
if separate_target:
|
||||
target_embedding = []
|
||||
for org_img in orginal_images:
|
||||
org_img = org_img.reshape([1] + list(org_img.shape))
|
||||
tar_emb = select_target_label(org_img, self.feature_extractors_ls, self.fs_names)
|
||||
target_embedding.append(tar_emb)
|
||||
target_embedding = np.concatenate(target_embedding)
|
||||
else:
|
||||
target_embedding = select_target_label(orginal_images, self.feature_extractors_ls, self.fs_names)
|
||||
|
||||
protected_images = generate_cloak_images(self.sess, self.feature_extractors_ls, orginal_images,
|
||||
target_emb=target_embedding, th=th, faces=faces, sd=sd,
|
||||
lr=lr, max_step=max_step, batch_size=batch_size)
|
||||
|
||||
faces.cloaked_cropped_faces = protected_images
|
||||
|
||||
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
|
||||
final_images = faces.merge_faces(cloak_perturbation)
|
||||
|
||||
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
|
||||
file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), mode, format)
|
||||
dump_image(p_img, file_name, format=format)
|
||||
|
||||
elapsed_time = time.time() - start_time
|
||||
print('attack cost %f s' % (elapsed_time))
|
||||
print("Done!")
|
||||
|
||||
|
||||
def main(*argv):
|
||||
if not argv:
|
||||
argv = list(sys.argv)
|
||||
|
||||
@ -86,85 +167,20 @@ def main(*argv):
|
||||
parser.add_argument('--format', type=str,
|
||||
help="final image format",
|
||||
default="png")
|
||||
args = parser.parse_args(argv[1:])
|
||||
|
||||
if args.mode == 'low':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.003
|
||||
args.max_step = 20
|
||||
args.lr = 20
|
||||
elif args.mode == 'mid':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.005
|
||||
args.max_step = 50
|
||||
args.lr = 15
|
||||
elif args.mode == 'high':
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.008
|
||||
args.max_step = 500
|
||||
args.lr = 15
|
||||
elif args.mode == 'ultra':
|
||||
if not tf.test.is_gpu_available():
|
||||
print("Please enable GPU for ultra setting...")
|
||||
sys.exit(1)
|
||||
# args.feature_extractor = ["high_extract", 'high2_extract']
|
||||
args.feature_extractor = "high_extract"
|
||||
args.th = 0.01
|
||||
args.max_step = 2000
|
||||
args.lr = 8
|
||||
elif args.mode == 'custom':
|
||||
pass
|
||||
else:
|
||||
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
|
||||
args = parser.parse_args(argv[1:])
|
||||
|
||||
assert args.format in ['png', 'jpg', 'jpeg']
|
||||
if args.format == 'jpg':
|
||||
args.format = 'jpeg'
|
||||
|
||||
sess = init_gpu(args.gpu)
|
||||
|
||||
image_paths = glob.glob(os.path.join(args.directory, "*"))
|
||||
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
|
||||
if not image_paths:
|
||||
raise Exception("No images in the directory")
|
||||
|
||||
faces = Faces(image_paths, sess, verbose=1)
|
||||
|
||||
orginal_images = faces.cropped_faces
|
||||
orginal_images = np.array(orginal_images)
|
||||
|
||||
fs_names = [args.feature_extractor]
|
||||
if isinstance(args.feature_extractor, list):
|
||||
fs_names = args.feature_extractor
|
||||
|
||||
feature_extractors_ls = [load_extractor(name) for name in fs_names]
|
||||
|
||||
if args.separate_target:
|
||||
target_embedding = []
|
||||
for org_img in orginal_images:
|
||||
org_img = org_img.reshape([1] + list(org_img.shape))
|
||||
tar_emb = select_target_label(org_img, feature_extractors_ls, fs_names)
|
||||
target_embedding.append(tar_emb)
|
||||
target_embedding = np.concatenate(target_embedding)
|
||||
else:
|
||||
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
|
||||
|
||||
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
|
||||
target_emb=target_embedding, th=args.th, faces=faces, sd=args.sd,
|
||||
lr=args.lr, max_step=args.max_step, batch_size=args.batch_size)
|
||||
|
||||
faces.cloaked_cropped_faces = protected_images
|
||||
|
||||
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
|
||||
final_images = faces.merge_faces(cloak_perturbation)
|
||||
|
||||
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
|
||||
file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.format)
|
||||
dump_image(p_img, file_name, format=args.format)
|
||||
|
||||
elapsed_time = time.time() - start_time
|
||||
print('attack cost %f s' % (elapsed_time))
|
||||
print("Done!")
|
||||
protector = Fawkes(args.feature_extractor, args.gpu, args.batch_size)
|
||||
protector.run_protection(image_paths, mode=args.mode, th=args.th, sd=args.sd, lr=args.lr, max_step=args.max_step,
|
||||
batch_size=args.batch_size, format=args.format,
|
||||
separate_target=args.separate_target)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
Reference in New Issue
Block a user