mirror of
https://github.com/Shawn-Shan/fawkes.git
synced 2024-11-13 08:11:30 +05:30
e9f1a50653
Former-commit-id: 14c0173d9f573e7ccb275b3e366505057ac2c9b1 [formerly e359682d967212b4b3f27923fd659bbade7880e5] Former-commit-id: a44577686ff64da031231ea323c681185daa8b0d
71 lines
2.6 KiB
Python
71 lines
2.6 KiB
Python
import numpy as np
|
|
from fawkes import create_mtcnn, run_detect_face
|
|
|
|
np_load_old = np.load
|
|
np.load = lambda *a, **k: np_load_old(*a, allow_pickle=True, **k)
|
|
|
|
|
|
def to_rgb(img):
|
|
w, h = img.shape
|
|
ret = np.empty((w, h, 3), dtype=np.uint8)
|
|
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
|
|
return ret
|
|
|
|
|
|
def aligner(sess):
|
|
pnet, rnet, onet = create_mtcnn(sess, None)
|
|
return [pnet, rnet, onet]
|
|
|
|
|
|
def align(orig_img, aligner, margin=0.8, detect_multiple_faces=True):
|
|
pnet, rnet, onet = aligner
|
|
minsize = 20 # minimum size of face
|
|
threshold = [0.6, 0.7, 0.7] # three steps's threshold
|
|
factor = 0.709 # scale factor
|
|
|
|
if orig_img.ndim < 2:
|
|
return None
|
|
if orig_img.ndim == 2:
|
|
orig_img = to_rgb(orig_img)
|
|
orig_img = orig_img[:, :, 0:3]
|
|
|
|
bounding_boxes, _ = run_detect_face(orig_img, minsize, pnet, rnet, onet, threshold, factor)
|
|
nrof_faces = bounding_boxes.shape[0]
|
|
if nrof_faces > 0:
|
|
det = bounding_boxes[:, 0:4]
|
|
det_arr = []
|
|
img_size = np.asarray(orig_img.shape)[0:2]
|
|
if nrof_faces > 1:
|
|
margin = margin / 1.5
|
|
if detect_multiple_faces:
|
|
for i in range(nrof_faces):
|
|
det_arr.append(np.squeeze(det[i]))
|
|
else:
|
|
bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
|
|
img_center = img_size / 2
|
|
offsets = np.vstack([(det[:, 0] + det[:, 2]) / 2 - img_center[1],
|
|
(det[:, 1] + det[:, 3]) / 2 - img_center[0]])
|
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
|
index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
|
|
det_arr.append(det[index, :])
|
|
else:
|
|
det_arr.append(np.squeeze(det))
|
|
cropped_arr = []
|
|
bounding_boxes_arr = []
|
|
for i, det in enumerate(det_arr):
|
|
det = np.squeeze(det)
|
|
bb = np.zeros(4, dtype=np.int32)
|
|
side_1 = int((det[2] - det[0]) * margin)
|
|
side_2 = int((det[3] - det[1]) * margin)
|
|
|
|
bb[0] = np.maximum(det[0] - side_1 / 2, 0)
|
|
bb[1] = np.maximum(det[1] - side_1 / 2, 0)
|
|
bb[2] = np.minimum(det[2] + side_2 / 2, img_size[1])
|
|
bb[3] = np.minimum(det[3] + side_2 / 2, img_size[0])
|
|
cropped = orig_img[bb[1]:bb[3], bb[0]:bb[2], :]
|
|
cropped_arr.append(cropped)
|
|
bounding_boxes_arr.append([bb[0], bb[1], bb[2], bb[3]])
|
|
return cropped_arr, bounding_boxes_arr
|
|
else:
|
|
return None
|