mirror of
https://github.com/Shawn-Shan/fawkes.git
synced 2025-04-02 17:56:57 +05:30
67 lines
2.3 KiB
Python
67 lines
2.3 KiB
Python
import numpy as np
|
|
from mtcnn import MTCNN
|
|
|
|
|
|
def to_rgb(img):
|
|
w, h = img.shape
|
|
ret = np.empty((w, h, 3), dtype=np.uint8)
|
|
ret[:, :, 0] = ret[:, :, 1] = ret[:, :, 2] = img
|
|
return ret
|
|
|
|
def aligner():
|
|
return MTCNN()
|
|
|
|
def align(orig_img, aligner, margin=0.8, detect_multiple_faces=True):
|
|
""" run MTCNN face detector """
|
|
minsize = 20 # minimum size of face
|
|
threshold = [0.6, 0.7, 0.7] # three steps's threshold
|
|
factor = 0.709 # scale factor
|
|
|
|
if orig_img.ndim < 2:
|
|
return None
|
|
if orig_img.ndim == 2:
|
|
orig_img = to_rgb(orig_img)
|
|
orig_img = orig_img[:, :, 0:3]
|
|
|
|
bounding_boxes = aligner.detect_faces(orig_img)
|
|
nrof_faces= len(bounding_boxes)
|
|
|
|
if nrof_faces > 0:
|
|
det = bounding_boxes[0]['box']
|
|
det_arr = []
|
|
img_size = np.asarray(orig_img.shape)[0:2]
|
|
if nrof_faces > 1:
|
|
margin = margin / 1.5
|
|
if detect_multiple_faces:
|
|
for i in range(nrof_faces):
|
|
det_arr.append(np.squeeze(bounding_boxes[i]['box']))
|
|
else:
|
|
bounding_box_size = (det[1] + det[3])
|
|
img_center = img_size / 2
|
|
offsets = np.vstack([(det[0] + det[2]) / 2 - img_center[1],
|
|
(det[1] + det[3]) / 2 - img_center[0]])
|
|
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
|
index = np.argmax(bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
|
|
det_arr.append(det[index, :])
|
|
else:
|
|
det_arr.append(np.squeeze(det))
|
|
|
|
cropped_arr = []
|
|
bounding_boxes_arr = []
|
|
for i, det in enumerate(det_arr):
|
|
det = np.squeeze(det)
|
|
bb = np.zeros(4, dtype=np.int32)
|
|
# add in margin
|
|
marg1 = int((det[2] - det[0]) * margin)
|
|
marg2 = int((det[3] - det[1]) * margin)
|
|
|
|
bb[0] = max(det[0] - marg1/2, 0)
|
|
bb[1] = max(det[1] - marg2/2, 0)
|
|
bb[2] = min(det[0] + det[2] + marg1/2, img_size[0])
|
|
bb[3] = min(det[1] + det[3] + marg2/2, img_size[1])
|
|
cropped = orig_img[bb[0]:bb[2], bb[1]: bb[3],:]
|
|
cropped_arr.append(cropped)
|
|
bounding_boxes_arr.append([bb[0], bb[1], bb[2], bb[3]])
|
|
return cropped_arr, bounding_boxes_arr
|
|
else:
|
|
return None |