2
0
mirror of https://github.com/Shawn-Shan/fawkes.git synced 2025-04-04 00:06:57 +05:30
fawkes/fawkes/protection.py
Shawn-Shan e9f1a50653 0.0.6
Former-commit-id: 14c0173d9f573e7ccb275b3e366505057ac2c9b1 [formerly e359682d967212b4b3f27923fd659bbade7880e5]
Former-commit-id: a44577686ff64da031231ea323c681185daa8b0d
2020-07-07 11:14:38 -05:00

172 lines
6.0 KiB
Python

# from __future__ import absolute_import
# from __future__ import division
# from __future__ import print_function
import argparse
import glob
import os
import random
import sys
import time
import tensorflow as tf
import logging
logging.getLogger('tensorflow').disabled = True
import numpy as np
from fawkes.differentiator import FawkesMaskGeneration
from fawkes.utils import load_extractor, init_gpu, select_target_label, dump_image, reverse_process_cloaked, \
Faces
random.seed(12243)
np.random.seed(122412)
def generate_cloak_images(sess, feature_extractors, image_X, target_emb=None, th=0.01, faces=None, sd=1e9, lr=2,
max_step=500, batch_size=1):
batch_size = batch_size if len(image_X) > batch_size else len(image_X)
differentiator = FawkesMaskGeneration(sess, feature_extractors,
batch_size=batch_size,
mimic_img=True,
intensity_range='imagenet',
initial_const=sd,
learning_rate=lr,
max_iterations=max_step,
l_threshold=th,
verbose=1, maximize=False, keep_final=False, image_shape=image_X.shape[1:],
faces=faces)
cloaked_image_X = differentiator.attack(image_X, target_emb)
return cloaked_image_X
def check_imgs(imgs):
if np.max(imgs) <= 1 and np.min(imgs) >= 0:
imgs = imgs * 255.0
elif np.max(imgs) <= 255 and np.min(imgs) >= 0:
pass
else:
raise Exception("Image values ")
return imgs
def main(*argv):
start_time = time.time()
if not argv:
argv = list(sys.argv)
try:
import signal
signal.signal(signal.SIGPIPE, signal.SIG_DFL)
except Exception as e:
pass
parser = argparse.ArgumentParser()
parser.add_argument('--directory', '-d', type=str,
help='directory that contain images for cloaking', default='imgs/')
parser.add_argument('--gpu', '-g', type=str,
help='GPU id', default='0')
parser.add_argument('--mode', '-m', type=str,
help='cloak generation mode', default='mid')
parser.add_argument('--feature-extractor', type=str,
help="name of the feature extractor used for optimization",
default="high_extract")
parser.add_argument('--th', type=float, default=0.01)
parser.add_argument('--max-step', type=int, default=500)
parser.add_argument('--sd', type=int, default=1e9)
parser.add_argument('--lr', type=float, default=2)
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--separate_target', action='store_true')
parser.add_argument('--format', type=str,
help="final image format",
default="png")
args = parser.parse_args(argv[1:])
if args.mode == 'low':
args.feature_extractor = "high_extract"
args.th = 0.003
args.max_step = 20
args.lr = 20
elif args.mode == 'mid':
args.feature_extractor = "high_extract"
args.th = 0.004
args.max_step = 50
args.lr = 15
elif args.mode == 'high':
args.feature_extractor = "high_extract"
args.th = 0.007
args.max_step = 100
args.lr = 10
elif args.mode == 'ultra':
if not tf.test.is_gpu_available():
print("Please enable GPU for ultra setting...")
sys.exit(1)
# args.feature_extractor = ["high_extract", 'high2_extract']
args.feature_extractor = "high_extract"
args.th = 0.015
args.max_step = 2000
args.lr = 8
elif args.mode == 'custom':
pass
else:
raise Exception("mode must be one of 'low', 'mid', 'high', 'ultra', 'custom'")
assert args.format in ['png', 'jpg', 'jpeg']
if args.format == 'jpg':
args.format = 'jpeg'
sess = init_gpu(args.gpu)
image_paths = glob.glob(os.path.join(args.directory, "*"))
image_paths = [path for path in image_paths if "_cloaked" not in path.split("/")[-1]]
if not image_paths:
raise Exception("No images in the directory")
faces = Faces(image_paths, sess, verbose=1)
orginal_images = faces.cropped_faces
orginal_images = np.array(orginal_images)
fs_names = [args.feature_extractor]
if isinstance(args.feature_extractor, list):
fs_names = args.feature_extractor
feature_extractors_ls = [load_extractor(name) for name in fs_names]
if args.separate_target:
target_embedding = []
for org_img in orginal_images:
org_img = org_img.reshape([1] + list(org_img.shape))
tar_emb = select_target_label(org_img, feature_extractors_ls, fs_names)
target_embedding.append(tar_emb)
target_embedding = np.concatenate(target_embedding)
else:
target_embedding = select_target_label(orginal_images, feature_extractors_ls, fs_names)
protected_images = generate_cloak_images(sess, feature_extractors_ls, orginal_images,
target_emb=target_embedding, th=args.th, faces=faces, sd=args.sd,
lr=args.lr, max_step=args.max_step, batch_size=args.batch_size)
faces.cloaked_cropped_faces = protected_images
cloak_perturbation = reverse_process_cloaked(protected_images) - reverse_process_cloaked(orginal_images)
final_images = faces.merge_faces(cloak_perturbation)
for p_img, cloaked_img, path in zip(final_images, protected_images, image_paths):
file_name = "{}_{}_cloaked.{}".format(".".join(path.split(".")[:-1]), args.mode, args.format)
dump_image(p_img, file_name, format=args.format)
elapsed_time = time.time() - start_time
print('attack cost %f s' % (elapsed_time))
print("Done!")
if __name__ == '__main__':
main(*sys.argv)