from picamera2 import Picamera2 import cv2 import numpy as np import time # Initialize the camera picam2 = Picamera2() picam2.configure(picam2.create_preview_configuration(main={"format": "XRGB8888", "size": (640, 480)})) picam2.start() time.sleep(2) # Give the camera some time to initialize # Read the initial frames frame1 = picam2.capture_array() frame2 = picam2.capture_array() while True: # Calculate the absolute difference between the two frames diff = cv2.absdiff(frame1, frame2) # Convert the difference to grayscale gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) # Apply a Gaussian blur to the grayscale image blur = cv2.GaussianBlur(gray, (5, 5), 0) # Threshold the blurred image to highlight the motion _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) # Dilate the thresholded image to fill in holes dilated = cv2.dilate(thresh, None, iterations=3) # Find contours (motion areas) in the dilated image contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # Draw bounding boxes around the contours for contour in contours: if cv2.contourArea(contour) < 500: continue x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(frame1, (x, y), (x + w, y + h), (0, 255, 0), 2) # Display the result cv2.imshow("Motion Detection", frame1) # Update frames: frame1 becomes frame2, and a new frame is read as frame2 frame1 = frame2 frame2 = picam2.capture_array() # Press 'q' to exit the loop if cv2.waitKey(10) & 0xFF == ord('q'): break # Release resources and close all OpenCV windows picam2.stop() cv2.destroyAllWindows()