iot-mini/main.py

58 lines
1.7 KiB
Python

from picamera2 import Picamera2
import cv2
import numpy as np
import time
# Initialize the camera
picam2 = Picamera2()
picam2.configure(picam2.create_preview_configuration(main={"format": "XRGB8888", "size": (640, 480)}))
picam2.start()
time.sleep(2) # Give the camera some time to initialize
# Read the initial frames
frame1 = picam2.capture_array()
frame2 = picam2.capture_array()
while True:
# Calculate the absolute difference between the two frames
diff = cv2.absdiff(frame1, frame2)
# Convert the difference to grayscale
gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
# Apply a Gaussian blur to the grayscale image
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# Threshold the blurred image to highlight the motion
_, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY)
# Dilate the thresholded image to fill in holes
dilated = cv2.dilate(thresh, None, iterations=3)
# Find contours (motion areas) in the dilated image
contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# Draw bounding boxes around the contours
for contour in contours:
if cv2.contourArea(contour) < 500:
continue
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(frame1, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Display the result
cv2.imshow("Motion Detection", frame1)
# Update frames: frame1 becomes frame2, and a new frame is read as frame2
frame1 = frame2
frame2 = picam2.capture_array()
# Press 'q' to exit the loop
if cv2.waitKey(10) & 0xFF == ord('q'):
break
# Release resources and close all OpenCV windows
picam2.stop()
cv2.destroyAllWindows()