
  

Computer Graphics

Unit 1



  

Contents
● Introduction, graphics primitives - pixel, resolution, aspect ratio, 

frame buffer. Display devices, applications of computer graphics.

● Introduction to OpenGL - OpenGL architecture, primitives and 
attributes, simple modelling and rendering of two and three 
dimensional geometric objects, GLUT, interaction, events and call-
backs picking.(Simple Interaction with the Mouse and Keyboard)

● Scan conversion: Line drawing algorithms: Digital Differential 
Analyzer (DDA), Bresenham. Circle drawing algorithms: DDA, 
Bresenham, and Midpoint.



  

Graphics Primitives

● Computer graphics primitives are basic geometric shapes or elements 
that serve as the building blocks for creating more complex images in 
computer graphics.

● Some common computer graphics primitives include:

➢ Points: These are single pixels that represent a location in space. 

➢ Lines: Lines are sequences of connected pixels that extend in a 
particular direction. They can be defined by two endpoints or by a 
point and a direction vector.

➢ Line Segments: These are finite sections of lines that have a definite 
starting and ending point.



  

➢ Polygons: Polygons are closed geometric shapes with straight sides. 
They can be regular (all sides and angles are equal) or irregular (sides 
and angles can vary). Common examples include triangles, rectangles, 
and pentagons.

➢ Circles: Circles are round shapes defined by a center point and a radius. 
They can be used to represent curves and arcs.

➢ Ellipses: Similar to circles, ellipses are elongated round shapes defined 
by a center point, major axis, and minor axis.

➢ Curves: Curves represent smooth or nonlinear paths. Bezier curves and 
splines are examples of commonly used curves in computer graphics.

➢ Surfaces: Surfaces are two-dimensional representations of shapes. 
These can be used to create 3D models by combining multiple surfaces.



  

Basic Concepts

● Screen Size : The physical dimensions of a screen. It is the length, in inches, 
of the screen from one corner to the diagonal corner.

● Pixel: Screens display images through pixels. A pixel, pel or dots, or picture 
element is a physical point in a raster image, or the smallest addressable 
element in raster display device; so it is the smallest controllable element of 
a picture represented on the screen. 

➢ Pixels are arranged in a grid to form images on screens, such as computer 
monitors, TVs, and mobile devices. 

➢ Pixels are not always the same size from device to device.



  



  

● Resolution: This is the number of pixels displayed on the screen. 

➢ It is often formatted as width x height or pixels per inch. 

➢ Because pixels aren’t always the same size, it is possible to have two devices 
with the same screen size and different resolutions. 

➢ Resolution affects the clarity and level of detail in images. 

➢ A higher resolution image has more pixels and therefore can display finer 
details, but it may also require more processing power and storage space.



  

● Aspect Ratio: Aspect ratio measures width to height ratio of screen. 

➢ For example, if a computer graphic has an aspect ratio of 3:1, this means the 
width of the graphic is three times of the height of the image. 

➢ Common aspect ratios include 4:3 (standard for older TVs and monitors), 
16:9 (widescreen HD), and 21:9 (ultrawide). 

➢ The aspect ratio is significant because it affects how images are displayed on 
different screens. For instance, a 16:9 aspect ratio corresponds to a 
widescreen display, while a 4:3 aspect ratio is more square.



  

Screen sizes, resolutions, pixels, and aspect ratios



  

Frame Buffer

● A frame buffer (Refresh Buffer) is a portion of computer memory 
used to store and manage the data necessary for displaying images or 
video. 

● The frame buffer stores pixel values for each position on the screen. 
Each pixel's value represents its color and intensity. 

● The frame buffer essentially acts as a 2D array or grid, where each 
cell corresponds to a pixel on the display.



  

● The contents of the frame buffer are periodically read by the display 
hardware to illuminate the corresponding pixels on the physical 
display. This process happens rapidly, creating the illusion of 
continuous motion.

● The frame buffer's capacity (the number of pixels it can store) and bit 
depth (the number of bits used to represent the color of each pixel) 
directly impact the quality and complexity of the images that can be 
displayed. Higher resolutions and more colors require larger frame 
buffer capacities.



  

Display Devices



  

CRT



  

● The electron gun emits a beam of electrons (cathode rays).

● The electron beam passes through focusing and deflection systems 
that direct it towards specified positions on the phosphor-coated 
screen.

● When the beam hits the screen, the phosphor emits a small spot of 
light at each position contacted by the electron beam.



  

Electron Gun

● Heat is supplied to the 
cathode by the filament.

● The free electrons are then 
accelerated toward the phosphor 
coating by a high positive 
voltage.



  

High positive voltage

A positively charged metal coating on the inside of the CRT envelope 
near the phosphor screen.



  

High positive voltage

Accelerating anode



  

Control grid

Intensity of the electron beam is controlled by setting voltage level 
on the control grid.



  

Focusing system

The focusing system is needed to force the electron beam to 
converge into a small spot as it strikes the phosphor.



  

1) Electrostatic focusing is commonly used in computer graphics 
monitor.

With electrostatic focusing, the electron beam passes through a 
positively charged metal cylinder that forms an electrostatic lens.

2) Similar lens focusing effects can be accomplished with a magnetic 
field set up by a coil mounted around the outside of the CRT envelope.



  

Deflection Systems

Deflection of the electron beam can be controlled either with electric 
fields or with magnetic fields.

1) The magnetic deflection coils mounted on the outside of the CRT 
envelope.



  

2) Electrostatic deflection: Two pairs of parallel plates are mounted inside the CRT 
envelope. 
● One pair of plates is mounted horizontally to control the vertical deflection, and 

the other pair is mounted vertically to control horizontal deflection.
● The beam is deflected horizontally by applying an electric field between a pair of 

plates to its left and right, and vertically by applying an electric field to plates 
above and below.



  

Phoshor Coating 

● Various phosphors are available depending upon the needs of the 
display application. 

● The brightness, color, and persistence of the illumination 
depends upon the type of phosphor used on the CRT screen. 

● Phosphors are available with persistences ranging from less than 
one microsecond to several seconds



  

3 types of displays:

1. Direct View Storage Tube

2. Random Scan Displays

3. Raster Scan Displays



  

1. Direct View Storage Tube

● DVST is a CRT with highly persistent phosphor.

● A direct-view storage tube (DVST) stores the picture information as a charge distribution just 
behind the phosphor-coated screen. 

● Two electron guns are used in a DVST. One, the primary gun, is used to store the picture 
pattern; the second, the flood gun, maintains the picture display as shown in the figure below.

● The term "storage grid" refers to the ability of the screen to retain the image which has been 
projected against it, thus avoiding the need to rewrite the image constantly.



  

Advantages

●  No refreshing is needed.

● Very complex pictures can be displayed at very high resolution without flicker.

Disadvantages

● They ordinarily do not display color.

● Selected part of the picture can not be erased. Modifying any part of image requires 
redrawing of entire image.   

● No animation in DVST. The erasing and redrawing process can take several seconds 
for complex pictures.

 



  

2. Random Scan Displays

● In a random scan display, a CRT has the electron beam directed 
only to the parts of the screen where a picture is to be drawn.

● Random scan monitors draw a picture one line at a time.

● Random scan display is also called as Vector display, Stroke –
writing or calligraphic displays.



  



  

● Picture definition is stored as a set of line-drawing commands in 
an area of memory referred to as the Display file (refresh 
display file / display buffer memory) 

● To display a specified picture, the system cycles through the set 
of commands in the display buffer memory, drawing each 
component line in turn. 

● After all the line-drawing commands are processed, the system 
cycles back to the first line command in the list. 

● Random-scan displays are designed to draw all the component 
lines of a picture 30 to 60 times each second.



  



  

● Random scan displays have higher resolution than raster 
systems.

● Random displays produce smooth line drawing while a raster 
system produces jagged lines.

● Random scan displays are designed for line-drawing applications 
and can not display realistic shaded scenes.



  

3. Raster Scan displays

● Raster: A rectangular array of points or dots
● Pixel: One dot or picture element of the raster
● Scan Line: A row of pixels
● Raster Scan is the representation of images as a collection of 

pixels.



  

● In a raster scan system, the electron beam is swept across the 
screen, one row at a time from top to bottom. 

● As the electron beam moves across each row, the beam intensity 
is turned on and off to create a pattern of illuminated spots.

● Picture definition is stored in memory area called the Refresh 
Buffer or Frame Buffer. This memory area holds the set of 
intensity values for all the screen points. 

● Stored intensity values are then retrieved from the refresh buffer 
and “painted” on the screen one row (scan line) at a time.



  



  

● Each screen point is referred to as a pixel (picture element) or pel. 

● At the end of each scan line, the electron beam returns to the left 
side of the screen to begin displaying the next scan line.



  



● A black-and-white system: each screen point is either on or off, 
so only one bit per pixel is needed to control the intensity of 
screen positions. 

On a black-and-white system with one bit per pixel, the frame 
buffer is called bitmap. 

● For system with multiple bits per pixel, the frame buffer is called 
pixmap. 



  

● A raster system produces jagged lines.

● A raster system requires larger file size as compared to random 
display system.



  

Application of Computer Graphics

● Entertainment and Media:

➢ Video Games

➢ Movies and Animation

➢ Virtual Reality (VR) and Augmented Reality (AR)

● Design and Visualization:

➢ Graphic Design: Computer graphics are used in designing logos, 
posters, brochures, and other marketing materials.

➢ Architectural Visualization: Architects use computer graphics to create 
detailed 3D models and visualizations of buildings and interiors.

➢ Product Design: Graphics aid in creating and visualizing product 
prototypes and designs.



  

● Engineering and Manufacturing:
➢ CAD (Computer-Aided Design): Engineers use computer graphics 

for designing and modeling complex machinery and structures.
➢ Simulation: Graphics play a role in simulating real-world scenarios 

and testing designs before physical implementation.

● Medical Imaging and Healthcare:
➢ Medical Visualization: Graphics are used to visualize medical data 

from imaging technologies like MRI, CT scans, and X-rays, 
assisting in diagnosis and treatment planning.

➢ Surgical Simulation: Graphics-based simulations help train surgeons 
and practice complex procedures in a virtual environment.



  

● Education and Training:

➢ Educational Software: Computer graphics aid learning by providing 
interactive simulations, virtual labs, and visual explanations.

➢ Training Simulations: Graphics-based simulations are used in fields 
like aviation, military, and healthcare for training purposes.

● Scientific Visualization:

➢ Data Visualization: Graphics help researchers and scientists visualize 
complex data sets and patterns, aiding in analysis and discovery.

➢ Astrophysics and Molecular Modeling: Graphics are used to visualize 
large-scale astrophysical phenomena and molecular structures.



  

● Advertising and Marketing:

Digital Advertising: Graphics enhance online advertising with visually 
engaging content.

● Digital Art: 

Artists create digital paintings, illustrations, and multimedia art using 
computer graphics tools.

● Geographical Information Systems (GIS):

Mapping and GIS: Computer graphics are used to create digital maps, 
visualize geographic data, and analyze spatial relationships.



  

Scan Conversion

● The process of representing continuous graphics object as a collection 
of discrete pixels is called Scan Conversion.

● In simple words, scan conversion is to figure out which pixels to fill in 
order to generate picture on a screen. While shading determines a 
color for each filled pixel.

●  It is the responsibility of graphics system or the application program 
to convert each primitive from its geometric definition into a set of 
pixels. This conversion task is generally referred to as a scan 
conversion or rasterization. 



  



  

DDA Line Drawing algorithm
1. Take end points of the line (x1,y1) & (x2,y2)

2. Compute:      dx = x2-x1;     
           dy = y2-y1;

         if (abs(dx) >= abs(dy))
                    len=abs(dx);
         else
                    len=abs(dy);

3.  xin = dx / len;     
     yin = dy / len;
         
4.   x = x1;   
      y = y1;
     int i=0;
     while (i<=len)
        {
                 putpixel (Round(x),Round(y),RED);
           x=x+xin;
            y=y+yin;

           i++;

                }



  



  

Bresenham Line Drawing algorithm
● Take end points from user: (x1,y1) and (x2,y2)

● Initialize variables:   x=x1;  y=y1;

● dx=abs(x2-x1);  dy=abs(y2-y1);

● s1=Sign(x2-x1);  s2=Sign(y2-y1);

● Interchange dx and dy depending on slope of the line

If dy>dx then

          temp=dx

         dx=dy

         dy=temp

         Interchange=1

else 

        Interchange=0

● e = 2 *dy – dx    //initialise error term



  

main loop

for i=0 to dx

             setpixel(x,y);

            while (e>0)

if Interchange=1 then
        x=x+s1;
else
       y=y+s2;
end if
e = e-2*dx

             end while

if Interchange=1 then

          y=y+s2;

else

          x=x+s1;

end if

e = e+2*dy

     next i;

end for



  

Bresenham Circle Drawing algorithm
1) Read the x and y coordinates of center: (centx, centy)

2) Read the radius of circle: (r)

3) Initialize,

x = 0;
y = r;

4) Initialize decision parameter:    p = 3 – (2*r)

5) do {

setpixel(x,y);
If (p<0)
{

 p = p+(4*x)+6;
}
else {

p=p+[4*(x-y)]+10;
y=y-1;

}
                 x=x+1;

       } while(x<y)            

      



  

putpixel(centx+x, centy-y, 4);
putpixel(centx-x, centy-y, 4);
putpixel(centx+x, centy+y, 4);
putpixel(centx-x, centy+y, 4);
putpixel(centx+y, centy+x, 4);
putpixel(centx+y, centy-x, 4);
putpixel(centx-y, centy+x, 4);
putpixel(centx-y, centy-x, 4);



  

Midpoint Circle Drawing algorithm
1) Read the x and y coordinates of center: (centx, centy)

2) Read the radius of circle: (r)

3) Initialize,

x = 0;
y = r;

4) Initialize decision parameter:    p = 1 – r;

5) do {

setpixel(x,y);
If (p<0)
{

 p = p + 2*x + 3;
}
else {

p=p + 2*x – 2*y + 5;
y=y-1;

}
                 x=x+1;

       } while(x<y)            

      



  

putpixel(centx+x, centy-y, 4);
putpixel(centx-x, centy-y, 4);
putpixel(centx+x, centy+y, 4);
putpixel(centx-x, centy+y, 4);
putpixel(centx+y, centy+x, 4);
putpixel(centx+y, centy-x, 4);
putpixel(centx-y, centy+x, 4);
putpixel(centx-y, centy-x, 4);



  



  



  



  



  



  



  



  



  

DDA Circle Drawing algorithm
1) Read the x and y coordinates of center: (centx, centy)

2) Read the radius of circle: (r)

3) Initialize,

x = 0;
y = r;

                         We have, 2(n-1)  <= r <= 2n

ε = 2-n ;
4) do {

setpixel(x,y);
x = x + ε*y;
y = y – ε*x;

       } while(x<y)            

      



  

putpixel(centx+x, centy-y, 4);
putpixel(centx-x, centy-y, 4);
putpixel(centx+x, centy+y, 4);
putpixel(centx-x, centy+y, 4);
putpixel(centx+y, centy+x, 4);
putpixel(centx+y, centy-x, 4);
putpixel(centx-y, centy+x, 4);
putpixel(centx-y, centy-x, 4);



  

Line styles: Solid, dotted, dashed and thick lines

DDA Line drawing (Solid line)
 
dx=x2-x1;     dy=y2-y1;
     if(abs(dx)>=abs(dy))
                  len=abs(dx);
    else
                  len=abs(dy);
     xin=dx/len;     yin=dy/len;
    x=x1;    y=y1;
    int gd=DETECT,gm;
    initgraph(&gd,&gm,NULL);
    x=x+0.5;        y=y+0.5:
    putpixel(x,y,9);
    int i=1;
      while(i<=len)
      {
         putpixel(x,y,9);
         x=x+xin;
         y=y+yin;
         i++;
       }



  

Dotted line

while(i<=len)

               {

                   if(i%5==0)

{
                              putpixel(x,y,9);

}
                  x=x+xin;

                  y=y+yin;

  i++;    
                }



  

Dashed line

while(i<=len)

               {

                  if(i%8<4)

{
                              putpixel(x,y,9);

}
                  x=x+xin;

                  y=y+yin;

  i++;    
                }



  

Thick line

while(i<=len)

                { 

                   for(j=0;j<t;j++)      // where t is the thickness of line

                  {

                       putpixel(x,y+j,9);

                   }

                  x=x+xin;

                  y=y+yin; 

i++   
                }



  

Dashed-Dotted line

while(i<=len)

               {

                  if(i%9<4 || i%9==6)

{
                              putpixel(x,y,9);

}
                  x=x+xin;

                  y=y+yin;

  i++;    
                }



  

OpenGL



• Open Graphics Library (OpenGL) is a cross-language (language 
independent), cross-platform (platform-independent) API for 
rendering 2D and 3D Vector Graphics(use of polygons to represent 
image).

• It provides a set of functions and procedures for interacting with a 
computer's GPU (Graphics Processing Unit) to generate real-time 
graphics for applications such as video games, simulations, CAD 
software, and more.



OpenGL Architecture (Rendering 
Pipeline)



• Geometric data (vertices, lines, and polygons) follow the path that 
includes evaluators and per-vertex operations, while pixel data 
(pixels, images, and bitmaps) are treated differently for part of the 
process. Both types of data undergo the same final steps (rasterization 
and per-fragment operations) before the final pixel data is written 
into the framebuffer. 

• Display Lists:  All data, whether it describes geometry or pixels, can 
be saved in a display list for current or later use.



• Evaluators: It convert curves and surfaces that are described by 
parametric equations into vertex data. Parametric curves and surfaces 
may be initially described by control points. Evaluators provide a 
method to derive the vertices used to represent the surface from the 
control points.

• Per-Vertex Operation: Spatial coordinates are projected from a 
position in the 3D world to a position on your screen by Vertex 
Shader. Just like a photographic camera transforms a 3D scenery into 
a 2D photograph.



● Primitive Assembly: After three vertices have been processed by the 
vertex shader, they are taken to the Primitive Assembly stage. This is 
where a primitive is constructed by connecting the vertices in a 
specified order. 

● Clipping and Back-face culling are major parts of primitive assembly. 
Clipping is the elimination of portions of geometry which fall outside 
view volume (i.e. screen). Back-face culling avoids rendering the 
primitives facing away from the viewer.



● Rasterization: What you ultimately see on a screen are pixels 
approximating the shape of a primitive. This approximation occurs in 
the Rasterization stage. In this stage, pixels are tested to see if they are 
inside the primitive’s perimeter. If they are not, they are discarded. If 
they are within the primitive, they are taken to the next stage. The set 
of pixels that passed the test is called a fragment. 



● Pixel Operations: While geometric data takes one path through the 
OpenGL rendering pipeline, pixel data takes a different route. Pixels 
from an array in system memory are first unpacked from one of a 
variety of formats into the proper number of components. Next the 
data is scaled, biased, mapped, and processed. The results are then 
either written into texture memory or sent to the rasterization step

● If pixel data is read from the frame buffer, pixel-transfer operations 
(scale, bias, mapping) are performed. Then these results are packed 
into an appropriate format and returned to an array in system memory. 



● Texture Assembly: An OpenGL application may wish to apply texture 
images onto geometric objects to make them look more realistic.

● Fragment Operations: A Fragment is a set of pixels approximating the 
shape of a primitive. When a fragment leaves the rasterization stage, it 
is taken to Fragment Shader. The job of the fragment shader is to 
determine the final color for each fragment.

Before the pixels in the fragment are sent to the framebuffer, fragments 
are submitted to several tests like:

➢ Pixel Ownership test: It determine which pixels on the screen are 
"owned" by the object. This test is based on the object's shape and 
position on the screen.

➢ Scissor test: It tests whether the fragment's pixel lies outside of a 
specified rectangle of the screen.)



➢ Alpha test: Alpha testing is a technique used to determine whether a 
fragment (pixel) should be drawn based on its alpha value. The alpha 
value typically represents the pixel's transparency or opacity. Each 
pixel in an image or texture can have an associated alpha value, which 
determines its transparency. An alpha value of 1.0 usually means fully 
opaque, while 0.0 means fully transparent, and values in between 
represent varying levels of transparency.

● Depth test: It used to determine which fragments (pixels) should be 
drawn and which ones should be discarded based on their depth 
values.  A depth buffer (also known as a Z-buffer) is used to store 
depth value corresponds to the pixels on the screen.  A depth value, 
typically representing the distance from the camera to the object at 
that pixel.



At the end of the pipeline, the pixels are saved in 
a Framebuffer.



OpenGL primitives and attributes

1) Points (GL_POINTS):

➢ Points are the simplest primitive in OpenGL. They represent single 
pixels or vertices in space. 

➢ You can use them to render individual points or to represent vertices 
of more complex objects.

Attributes: Points are typically represented by a single vertex with 
attributes like position, color, and texture coordinates.



2) Lines (GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP):

➢ Lines are used to render straight-line segments. 

➢ GL_LINES draws individual line segments between pairs of vertices.

➢ GL_LINE_STRIP is used for rendering a series of connected line 
segments. It connects vertices in the order they are specified, creating 
a continuous line. 

➢ GL_LINE_LOOP is similar to GL_LINE_STRIP but also connects the 
last vertex to the first, forming a closed loop.

Attributes: Lines have at least two vertices with attributes such as 
position, color, and texture coordinates. 





3) Triangles (GL_TRIANGLES, GL_TRIANGLE_STRIP, 
GL_TRIANGLE_FAN):

➢ Triangles are the most commonly used primitive for rendering 3D 
objects. 

➢ GL_TRIANGLES renders individual triangles between sets of three 
vertices. 

➢ GL_TRIANGLE_STRIP connects vertices in a strip, forming a series of 
triangles. 

➢ GL_TRIANGLE_FAN connects vertices in a fan-like manner, also 
creating triangles.

Attributes: Triangles have three vertices with attributes like position, 
color, and texture coordinates.





4) Quads (GL_QUADS, GL_QUAD_STRIP)

➢ Quads are used to render four-sided polygons. 

➢ GL_QUADS renders individual quads

➢ GL_QUAD_STRIP connects vertices in a strip fashion, creating a 
series of connected quads.



5) Polygons (GL_POLYGON):

➢ Polygons allow you to render arbitrary convex or concave shapes with 
more than three sides. 

6) Patches (GL_PATCHES):

➢ Patches are used to define complex surfaces by subdividing them into 
smaller patches. They are essential for achieving curved surfaces and 
detailed geometry.



OpenGL Primitive Attributes

Here are some common attributes associated with OpenGL primitives:

● Position (Vertex Position): Defines the 3D coordinates of a vertex in 
space.

● Color: Specifies the color of a vertex or a fragment.

● Texture Coordinates: Used for mapping textures onto primitives. They 
define how a texture is applied to the surface.

● Normal Vectors: Used for shading calculations and lighting.



Modeling and rendering 2-D objects

Modeling and rendering two- dimensional geometric objects in OpenGL 
involves several key steps. 

1) Define Vertex Data:

➢ Choose a representation for your 2D geometric object, such as a triangle, 
rectangle, or custom shape.

➢ Define the vertices of the object by specifying their 2D coordinates (x, y).

➢ Optionally, define additional attributes per vertex, like color or texture 
coordinates.

2) Vertex Array or Buffer:

➢   Store the vertex data in a data structure, such as an array or list.



3) Transformation:

➢ Apply transformations to position and orient the 2D object in space.

➢ Use transformation matrices to control translation, rotation, and 
scaling.

4) Shader program:

➢ A shader program typically consists of at least two shaders: a vertex 
shader and a fragment shader.

➢ The vertex shader processes each vertex's attributes (e.g., position, 
color, texture coordinates) 

➢ The fragment shader is responsible for determining the final color of 
each pixel and can apply various effects, such as texture mapping or 
lighting calculations.



5) Rendering:

➢ Render the object by binding the vertex array or buffer, setting shader 
uniforms, and calling OpenGL's rendering functions

➢ Use appropriate OpenGL primitives (e.g., GL_TRIANGLES, 
GL_LINES, GL_POINTS, or GL_POLYGON) to draw the object.

6) Handle User Input:

➢ Implement input controls to interact with and manipulate the 2D 
object, if necessary.



Modeling and rendering 3-D objects

Modeling and rendering three- dimensional geometric objects in OpenGL 
involves several key steps. 

1) Define Vertex Data:

➢ Choose a representation for your 3D geometric object, such as a cube, 
sphere, or custom shape.

➢ Define the vertices of the object by specifying their 3D coordinates (x, y, z).

➢ Specify additional attributes per vertex, such as color, normal vectors, and 
texture coordinates.

2) Vertex Array or Buffer:

➢   Store the vertex data in a data structure, such as an array or list.



3) Transformation:

➢ Apply transformations to position and orient the 3D object in space.

➢ Use transformation matrices to control translation, rotation, and 
scaling.

4) Shading and Materials:

➢ Set up shaders to control the object's appearance, including lighting, 
materials, and textures.

➢ Implement lighting models, such as Phong or Lambertian, to simulate 
how light interacts with the object's surface.



5) Camera Setup:

➢  Create a camera system with view and projection matrices to define the 
viewpoint and perspective for the 3D scene.

6) Rendering:

➢ Render the 3D object by binding the vertex array or buffer, setting 
shader uniforms, and calling OpenGL's rendering functions.

➢ Implement depth testing and culling for correct rendering order and 
performance optimization.



7) Handle User Input:

➢ Implement input controls to interact with and manipulate the 2D 
object, if necessary.



GLUT

● GLUT, which stands for the "OpenGL Utility Toolkit," is a library for 
creating and managing windows, as well as handling user input events 
in OpenGL applications. 

● It provides a simple and platform-independent way to set up graphical 
user interfaces (GUIs) for OpenGL programs. 

● GLUT is not part of the OpenGL specification but is often used in 
conjunction with OpenGL for developing interactive graphics 
applications. 



Features of GLUT

● Window Management: GLUT provides functions for creating and 
managing windows, including window creation, resizing, and window title 
management.

● Input Handling: It allows you to handle keyboard and mouse input events 
easily, making it suitable for developing interactive graphics applications.

● Timer Functions: GLUT provides timers for scheduling function calls at 
specific intervals, which can be used for animation or other time-dependent 
tasks.

● Menu Creation: You can create pop-up menus and associate them with 
specific mouse buttons or keypresses.

● Simple Main Loop: It provides a simple main loop, abstracting platform-
specific code, and making it easier to get started with OpenGL 
programming.





● glutInit:  initializes GLUT and parses command-line arguments.

● glutInitDisplayMode: sets the display mode (single buffer, RGB 
color).

● glutInitWindowSize: specifies the window size.

● glutCreateWindow: creates the window with the given title.

● glutDisplayFunc: registers the display function that is called to 
render the graphics.

● glutMainLoop: It is the main loop of your OpenGL application and 
serves several important purposes like event handing, animation, 
window management etc.



Interaction with the Mouse and 
Keyboard

● Interacting with the mouse and keyboard in an OpenGL application 
using GLUT involves registering callback functions for various input 
events and responding to those events accordingly.

1)  Mouse Callback Functions:
➢ You can register callback functions for mouse events like mouse click 

and mouse movement using GLUT functions.

➢ Common mouse callback functions include glutMouseFunc for 
mouse click events and glutMotionFunc for mouse movement events.





In the example above:

➢ mouseClick is a callback function called when a mouse button is 
clicked.

➢ mouseMove is a callback function called when the mouse is moved.

➢ You register these callback functions using glutMouseFunc and 
glutMotionFunc



2) Keyboard Callback Functions:

A. Keyboard Key Press Event:

➢ Register a callback function using glutKeyboardFunc to handle key 
press events.

➢ In following example, keyPressed is callback function when keyboard 
key is pressed.





B.  Keyboard Special Key Press Event (e.g., Arrow Keys):

➢ For special keys like arrow keys, use glutSpecialFunc to register a 
callback function.

➢ In following example, specialKeyPressed is callback function when 
special keys like arrow key is pressed.





C. Keyboard Key Release Event:

➢ To detect when a key is released, use glutKeyboardUpFunc.

➢ In following example, keyReleased is callback function when key is 
released.





● You can customize the callback functions to respond to specific events 
and key presses based on your application's requirements. 


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	OpenGL Architecture
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106

