
Department of Computer Engineering, MESCoE, Pune.

Lab Manual – CGL

 Modern education Society’S

College of Engineering, Pune -411001

Department of

Computer Engineering

LABORATORY MANUAL

Program Computer Engineering

Course 210247 (2019) -

Course Name COMPUTER GRAPHICS Lab

Class SE Comp

Module Coordinator Mrs. S.R. Khonde

Course Coordinator

M.E.S COLLEGE OF ENGINEERING, PUNE-411001

Department of Computer Engineering

 A.Y (2020-21) SEM-I

Class: SE Subject: Computer Graphics(210247) (2019 PAT)

List of Laboratory Assignments

Group A

1 Write C++ program to draw a concave polygon and fill it with desired color using scan

fill algorithm. Apply the concept of inheritance.

2 Write C++ program to implement Cohen Southerland line clipping algorithm.

3 a) Write C++ program to draw the following pattern. Use DDA line and Bresenham‘s

circle drawing algorithm. Apply the concept of encapsulation.

OR

b) Write C++ program to draw the following pattern. Use DDA line and Bresenham‘s

circle drawing algorithm. Apply the concept of encapsulation.

Group B

4 a) Write C++ program to draw 2-D object and perform following basic transformations:

Scaling, Translation, Rotation. Apply the concept of operator overloading.

OR

b) Write C++ program to implement translation, rotation and scaling transformations on

equilateral triangle and rhombus. Apply the concept of operator overloading.

5 a) Write C++ program to generate snowflake using concept of fractals.

OR

b) Write C++ program to generate Hilbert curve using concept of fractals.

OR

c) Write C++ program to generate fractal patterns by using Koch curves.

Group C

6 a) Design and simulate any data structure like stack or queue visualization using graphics.

Simulation should include all operations performed on designed data structure. Implement

the same using OpenGL.

OR

b) Write C++ program to draw 3-D cube and perform following transformations on it using

OpenGL i) Scaling ii) Translation iii) Rotation about an axis (X/Y/Z).

OR

c) Write OpenGL program to draw Sun Rise and Sunset.

7 a) Write a C++ program to control a ball using arrow keys. Apply the concept of

polymorphism.

OR

b) Write a C++ program to implement bouncing ball using sine wave form. Apply the

concept of polymorphism.

OR

c) Write C++ program to draw man walking in the rain with an umbrella. Apply the

concept of polymorphism.

OR

Write a C++ program to implement the game of 8 puzzle. Apply the concept of

polymorphism.

OR

d) Write a C++ program to implement the game Tic Tac Toe. Apply the concept of

polymorphism.

Mini-Projects/ Case Study

8 Design and implement game / animation clip / Graphics Editor using open source

graphics library. Make use of maximum features of Object Oriented Programming.

Assginment No. 1
Title A concave polygon filling using scan fill algorithm

Aim/Problem

Statement

Write C++ program to draw a concave polygon and fill it with desired color

using scan fill algorithm. Apply the concept of inheritance.

CO Mapped

Pre-requisite 1. Basic programming skills of C++

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC

Learning Objective To learn scanline polygon fill algorithm.

Theory:

Polygon:

 A polygon is a closed planar path composed of a finite number of sequential line segments.

A polygon is a two-dimensional shape formed with more than three straight lines. When starting

point and terminal point is same then it is called polygon.

Types of Polygons

1. Concave

2. Convex

3. Complex

A convex polygon is a simple polygon whose interior is a convex set. In a convex polygon, all

interior angles are less than 180 degrees.

The following properties of a simple polygon are all equivalent to convexity:

 Every internal angle is less than or equal to 180 degrees.

 Every line segment between two vertices remains inside or on the boundary of the polygon.

Convex Polygons: In a convex polygon, any line segment joining any two inside points lies

inside the polygon. A straight line drawn through a convex polygon crosses at most two sides.

A concave polygon will always have an interior angle greater than 180 degrees. It is possible to

cut a concave polygon into a set of convex polygons. You can draw at least one straight line

through a concave polygon that crosses more than two sides.

Complex polygon is a polygon whose sides cross over each other one or more times.

https://www.toppr.com/guides/maths/straight-lines/basics-of-straight-lines/

Complex Polygon

Inside outside test (Even- Odd Test):

We assume that the vertex list for the polygon is already stored and proceed as follows.

1. Draw any point outside the range Xmin and Xmax and Ymin and Ymax. Draw a scan line

through P up to a point A under study

2. If this scan line

i) Does not pass through any of the vertices then its contribution is equal to the number of

times it intersects the edges of the polygon. Say C if

a) C is odd then A lies inside the polygon.

b) C is even then it lies outside the polygon.

ii) If it passes through any of the vertices then the contribution of this intersection say V is,

a) Taken as 2 or even. If the other points of the two edges lie on one side of the scan line.

b) Taken as 1 if the other end points of the 2 edges lie on the opposite sides of the scan- line. c)

Here will be total contribution is C + V.

Polygon Filling:

For filling polygons with particular colors, you need to determine the pixels falling on the

border of the polygon and those which fall inside the polygon.

Scan fill algorithm:

A scan-line fill of a region is performed by first determining the intersection positions of the

boundaries of the fill region with the screen scan lines Then the fill colors are applied to each

section of a scan line that lies within the interior of the fill region The scan-line fill algorithm

identifies the same interior regions as the odd-even rule.

It is an image space algorithm. It processes one line at a time rather than one pixel at a time. It

uses the concept area of coherence. This algorithm records edge list, active edge list. So accurate

bookkeeping is necessary. The edge list or edge table contains the coordinate of two endpoints.

Active Edge List (AEL) contain edges a given scan line intersects during its sweep. The active edge

list (AEL) should be sorted in increasing order of x. The AEL is dynamic, growing and shrinking.

Algorithm

Step1: Start algorithm

Step2: Initialize the desired data structure

1. Create a polygon table having color, edge pointers, coefficients

2. Establish edge table contains information regarding, the endpoint of edges, pointer to

polygon, inverse slope.

3. Create Active edge list. This will be sorted in increasing order of x.

4. Create a flag F. It will have two values either on or off.

Step3: Perform the following steps for all scan lines

1. Enter values in Active edge list (AEL) in sorted order using y as value

2. Scan until the flag, i.e. F is on using a background color

3. When one polygon flag is on, and this is for surface S1enter color intensity as I1into refresh

buffer

4. When two or image surface flag are on, sort the surfaces according to depth and use

intensity value Sn for the nth surface. This surface will have least z depth value

5. Use the concept of coherence for remaining planes.

Step4: Stop Algorithm

Conclusion:

Questions:

1. Which are the different approaches to fill a polygon?

2. What are advantages and drawbacks of scan line polygon fill algorithm?

Assignment No. 2

Title Polygon clipping using Cohen Southerland line clipping algorithm

Aim/Problem

Statement

Write C++ program to implement Cohen Southerland line clipping

algorithm.

CO Mapped

Pre-requisite 1. Basic programming skills of C++

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC

Learning Objective To learn Cohen Southerland line clipping algorithm.

Theory:

Cohen Sutherland Algorithm is a line clipping algorithm that cuts lines to portions which are

within a rectangular area. It eliminates the lines from a given set of lines and rectangle area of

interest (view port) which belongs outside the area of interest and clip those lines which are

partially inside the area of interest.

Example:

Algorithm

The algorithm divides a two-dimensional space into 9 regions (eight outside regions and one

inside region) and then efficiently determines the lines and portions of lines that are visible in the

central region of interest (the viewport).

Following image illustrates the 9 regions:

As you seen each region is denoted by a 4 bit code like 0101 for the bottom right region

Four Bit code is calculated by comparing extreme end point of given line (x,y) by four co-ordinates

x_min, x_max, y_max, y_min which are the coordinates of the area of interest (0000)

Calculate the four bit code as follows:

 Set First Bit if 1 Points lies to left of window (x < x_min)

 Set Second Bit if 1 Points lies to right of window (x > x_max)

 Set Third Bit if 1 Points lies to left of window (y < y_min)

 Set Forth Bit if 1 Points lies to right of window (y > y_max)

The more efficient Cohen-Sutherland Algorithm performs initial tests on a line to determine

whether intersection calculations can be avoided.

Pseudocode

 Step 1 : Assign a region code for two endpoints of given line

 Step 2 : If both endpoints have a region code 0000 then given line is completely inside and we will

keep this line.

 Step 3: If step 2 fails, perform the logical AND operation for both region codes.

 Step 3.1: If the result is not 0000, then given line is completely outside.

 Step 3.2 : Else line is partially inside.

 Step 3.2.a : Choose an endpoint of the line that is outside the given rectangle.

 Step 3.2.b : Find the intersection point of the rectangular boundary(based on

region code)

 Step 3.2.c : Replace endpoint with the intersection point and upgrade the

region code.

 Step 3.2.d : Repeat step 2 until we find a clipped line either trivially accepted

or rejected.

 Step 4: Repeat step 1 for all lines.

Conclusion:

Questions:

1. What is the limitation of Cohen Sutherland Line Clipping algorithm?

2. What are the Advantage of Cohen Sutherland Line Clipping?

Assignment No. 3

Title Pattern drawing using line and circle.

Aim/Problem

Statement

Write C++ program to draw a given pattern. Use DDA line and Bresenham’s

circle drawing algorithm. Apply the concept of encapsulation.

CO Mapped

Pre-requisite 1. Basic programming skills of C++

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC

Learning Objective To learn and apply DDA line and Bresenham’s circle drawing algorithm.

Theory:

DDA Line Drawing Algorithm:

Line is a basic element in graphics. To draw a line, you need two end points between which

you can draw a line. Digital Differential Analyzer (DDA) line drawing algorithm is the simplest

line drawing algorithm in computer graphics. It works on incremental method. It plots the points

from starting point of line to end point of line by incrementing in X and Y direction in each

iteration.

DDA line drawing algorithm works as follows:

Step 1: Get coordinates of both the end points (X1, Y1) and (X2, Y2) from user.

Step 2: Calculate the difference between two end points in X and Y direction.

 dx = X2 – X1;

 dy = Y2 – Y1;

Step 3: Based on the calculated difference in step-2, you need to identify the number of steps to put

pixel. If dx > dy, then you need more steps in x coordinate; otherwise in y coordinate.

if (absolute(dx) > absolute(dy))

Steps = absolute(dx);

else

Steps = absolute(dy);

Step 4: Calculate the increment in x coordinate and y coordinate.

 Xincrement = dx / (float) steps;

 Yincrement = dy / (float) steps;

Step 5: Plot the pixels by successfully incrementing x and y coordinates accordingly and complete

the drawing of the line.

for(int i=0; i < Steps; i++)

{

 X1 = X1 + Xincrement;

 Y1 = Y1 + Yincrement;

 putpixel(Round(X1), Round(Y1), ColorName);

}

Bresenham’s Circle Drawing Algorithm:

Circle is an eight-way symmetric figure. The shape of circle is the same in all quadrants. In

each quadrant, there are two octants. If the calculation of the point of one octant is done, then the

other seven points can be calculated easily by using the concept of eight-way symmetry.

Bresenham’s Circle Drawing Algorithm is a circle drawing algorithm that selects the nearest

pixel position to complete the arc. The unique part of this algorithm is that is uses only integer

arithmetic which makes it significantly faster than other algorithms using floating point arithmetic.

Step 1: Read the x and y coordinates of center: (centx, centy)

Step 2: Read the radius of circle: (r)

Step 3: Initialize, x = 0; y = r;

Step 4: Initialize decision parameter: p = 3 – (2 * r)

Step 5:

 do {

putpixel(centx+x, centy-y, ColorName);

if (p<0)

p = p+(4*x)+6;

else

{

p=p+[4*(x-y)]+10;

y=y-1;

}

x=x+1;

} while(x<y)

Here in step 5, putpixel() function is used which will print Octant-1 of the circle with radius r after

the completion of all the iterations of do-while loop. Because of the eight-way symmetry property

of circle, we can draw other octants of the circle using following putpixel() functions:

Octant 1: putpixel(centx+x, centy-y, ColorName);

Octant 2: putpixel(centx+y, centy-x, ColorName);

Octant 3: putpixel(centx+y, centy+x, ColorName);

Octant 4: putpixel(centx+x, centy+y, ColorName);

Octant 5: putpixel(centx-x, centy+y, ColorName);

Octant 6: putpixel(centx-y, centy+x, ColorName);

Octant 7: putpixel(centx-y, centy-x, ColorName);

Octant 8: putpixel(centx-x, centy-y, ColorName);

Drawing Pattern using lines and circles:

This pattern is made up of one equilateral triangle and two concentric circles. To draw the triangle,

we require coordinates of 3 vertices forming an equilateral triangle. To draw two concentric circles,

we require coordinates of common center and radius of both the circles.

 We will take coordinates of circle and radius of one of the circle from user. Then using the

properties of an equilateral triangle, we can find all 3 vertices of equilateral triangle and radius of

other circle. Once we get all these parameters, we can call DDA line drawing and Bresenham’s

circle drawing algorithms by passing appropriate parameters to get required pattern.

OR

To draw this pattern, we require two rectangles and one circle. We can use suitable geometry to get

coordinates to draw rectangles and circle. Then we can call DDA line drawing and Bresenham’s

circle drawing algorithms by passing appropriate parameters to get required pattern.

Conclusion:

Questions:

1. Explain the derivation of decision parameters in Bresenham’s circle drawing algorithm.

2. Explain the concept of encapsulation with example.

Assignment No. 4

Title Basic 2-D Transformations.

Aim/Problem

Statement
a) Write C++ program to draw 2-D object and perform following basic

transformations: Scaling, Translation, Rotation. Apply the concept of

operator overloading.

OR

b) Write C++ program to implement translation, rotation and scaling

transformations on equilateral triangle and rhombus. Apply the concept of

operator overloading.

CO Mapped

Pre-requisite 1. Basic programming skills of C++

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC

Learning Objective To learn and apply basic transformations on 2-D objects.

Theory:

Transformation means changing some graphics into something else by applying rules. We can

have various types of transformations such as translation, scaling up or down, rotation, shearing,

reflection etc. When a transformation takes place on a 2D plane, it is called 2D transformation.

Transformations play an important role in computer graphics to reposition the graphics on the

screen and change their size or orientation. Translation, Scaling and Rotation are basic

transformations.

1) Translation:

A translation moves an object to a different position on the screen. You can translate a point in 2D

by adding translation coordinate or translation vector (Tx, Ty) to the original coordinates. Consider

- Initial coordinates of the object O = (Xold, Yold)

- New coordinates of the object O after translation = (Xnew, Ynew)

- Translation vector or Shift vector = (Tx, Ty)

This translation is achieved by adding the translation coordinates to the old coordinates of the object

as-

Xnew = Xold + Tx (This denotes translation towards X axis)

Ynew = Yold + Ty (This denotes translation towards Y axis)

In Matrix form, the above translation equations may be represented as-

2) Rotation:

In rotation, we rotate the object at particular angle θ (theta) from its original position. Consider

- Initial coordinates of the object O = (Xold, Yold)

- Initial angle of the object O with respect to origin = Φ

- Rotation angle = θ

- New coordinates of the object O after rotation = (Xnew, Ynew)

This anti-clockwise rotation is achieved by using the following rotation equations-

Xnew = Xold x cosθ – Yold x sinθ

Ynew = Xold x sinθ + Yold x cosθ

In Matrix form, the above rotation equations may be represented as-

3) Scaling:
Scaling transformation is used to change the size of an object. In the scaling process, you

either expand or compress the dimensions of the object. Scaling can be achieved by multiplying

the original coordinates of the object with the scaling factor (Sx, Sy). If scaling factor > 1, then

the object size is increased. If scaling factor < 1, then the object size is reduced. Consider

- Initial coordinates of the object O = (Xold, Yold)

- Scaling factor for X-axis = Sx

- Scaling factor for Y-axis = Sy

- New coordinates of the object O after scaling = (Xnew, Ynew)

This scaling is achieved by using the following scaling equations-

Xnew = Xold x Sx

Ynew = Yold x Sy

In Matrix form, the above scaling equations may be represented as-

Homogeneous Coordinates:

Matrix multiplication is easier to implement in hardware and software as compared to matrix

addition. Hence we want to replace matrix addition by multiplication while performing

transformation operations. So the solution is homogeneous coordinates, which allows us to

express all transformations (including translation) as matrix multiplications.

To obtain homogeneous coordinates we have to represent transformation matrices in 3x3 matrices

instead of 2x2. For this we add dummy coordinate. Each 2 dimensional position (x,y) can be

represented by homogeneous coordinate as (x,y,1).

Translation Matrix (Homogeneous Coordinates representation)

Rotation Matrix (Homogeneous Coordinates representation)

Scaling Matrix (Homogeneous Coordinates representation)

Applying transformations on equilateral triangle:

Consider that coordinates of vertices of equilateral triangle are (X1,Y1), (X2,Y2) and

(X3,Y3). After applying basic transformations, we will get corresponding coordinates as (X1’,Y1’),

(X2’,Y2’) and (X3’,Y3’) respectively. Following multiplication will give the translation on this

equilateral triangle:

Similarly we can apply rotation and scaling on equilateral triangle.

Applying transformations on rhombus:

Consider that coordinates of vertices of rhombus are (X1,Y1), (X2,Y2), (X3,Y3) and

(X4,Y4) applying basic transformations, we will get corresponding coordinates as (X1’,Y1’),

(X2’,Y2’), (X3’,Y3’) and (X4’,Y4’) respectively. Following multiplication will give the translation

on this rhombus:

Similarly we can apply rotation and scaling on rhombus.

Conclusion:

Questions:
3. How to rotate any 2-D object about an arbitrary point? Explain in brief.

4. Explain the concept of operator overloading with example.

Assignment No. 5

Title Curves and fractals

Aim/Problem

Statement
a) Write C++ program to generate snowflake using concept of fractals.

OR

b) Write C++ program to generate Hilbert curve using concept of fractals.

OR

c) Write C++ program to generate fractal patterns by using Koch curves.

CO Mapped

Pre-requisite 1. Basic programming skills of C++

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC

Learning Objective To study curves and fractals

Theory:

Koch Curve:
The Koch curve fractal was first introduced in 1904 by Helge von Koch. It was one of the first

fractal objects to be described. To create a Koch curve

1. Create a line and divide it into three parts.

2. The second part is now rotated by 60°.

3. Add another part which goes from the end of part 2 to to the beginning of part 3

4. Repeat step 1 to step 3 with each part of the line.

We will get following Koch curve as number of iteration goes on increasing

Step 1: In Iteration 0, we have a horizontal line.

Step 2: In Iteration 1, line is divided into 3 equal parts. Middle part of a line is rotated in 60
0
,

because it forms a perfect an equilateral triangle as shown below:

http://en.wikipedia.org/wiki/Helge_von_Koch

Here, (x1,y1) and (x2, y2) is accepted from user.

Now, we can see line is divided into 3 equal segments: segment((x1,y1),(x3,y3)),

segment((x3,y3),(x4,y4)),segment((x4,y4),(x2,y2)) in above figure.

Coordinates of middle two points will be calculated as follows:
x3 = (2*x1+x2)/3;

 y3 = (2*y1+y2)/3;

x4 = (x1+2*x2)/3;

 y4 = (y1+2*y2)/3;

In our curve, middle segment((x3,y3),(x4,y4)) will not be drawn. Now, in order to find out

coordinates of the top vertex (x,y) of equilateral triangle, we have rotate point (x4,y4) with respect

to arbitrary point (x3,y3) by angle of 60 degree in anticlockwise direction. After performing this

rotation, we will get rotated coordinates (x, y) as:

𝑥 = 𝑥3 + (𝑥4 − 𝑥3) ∗ cos 𝜃 + (𝑦4 − 𝑦3) ∗ sin 𝜃

𝑦 = 𝑦3 − (𝑥4 − 𝑥3) ∗ sin 𝜃 + (𝑦4 − 𝑦3) ∗ cos 𝜃

Step 3: In iteration 2, you will repeat step 2 for every segment obtained in iteration1.

In this way, you can generate Koch curve for any number of iterations.

The Hilbert curve

The Hilbert curve is a space filling curve that visits every point in a square grid with a size

of 2×2, 4×4, 8×8, 16×16, or any other power of 2. It was first described by David Hilbert in 1892.

Applications of the Hilbert curve are in image processing: especially image compression

and dithering. It has advantages in those operations where the coherence between neighbouring

pixels is important. The Hilbert curve is also a special version of a quadtree; any image processing

function that benefits from the use of quadtrees may also use a Hilbert curve.

Cups and joins

The basic elements of the Hilbert curves are what I call "cups" (a square with one open

side) and "joins" (a vector that joins two cups). The "open" side of a cup can be top, bottom, left or

right. In addition, every cup has two end-points, and each of these can be the "entry" point or the

"exit" point. So, there are eight possible varieties of cups. In practice, a Hilbert curve uses only

four types of cups. In a similar vein, a join has a direction: up, down, left or right.

A first order Hilbert curve is just a single cup (see the figure on

the left). It fills a 2×2 space. The second order Hilbert curve

replaces that cup by four (smaller) cups, which are linked together

by three joins (see the figure on the right; the link between a cup

and a join has been marked with a fat dot in the figure). Every

next order repeats the process or replacing each cup by four

smaller cups and three joins.

Cup subdivision rules

The function presented below (in the "C" language) computes the Hilbert curve. Note that

the curve is symmetrical around the vertical axis. It would therefore be sufficient to draw half of the

Hilbert curve.

Snowflake curve:
Snowflake curve is drawn using koch curve iterations. In koch curve, we just have a single

line in the starting iteration and in snowflake curve, we have an equilateral triangle. Draw an

equilateral triangle and repeat the steps of Koch curve generation for all three segments of an

equilateral triangle.

Conclusion:

Questions:
1. What is the importance of curves and fractals in computer graphics?

2. What are applications of curves and fractals?

Assignment No. 6

Title Implementation of OpenGL functions

Aim/Problem

Statement
a) Design and simulate any data structure like stack or queue visualization

using graphics. Simulation should include all operations performed on

designed data structure. Implement the same using OpenGL.

OR

b) Write C++ program to draw 3-D cube and perform following

transformations on it using OpenGL i) Scaling ii) Translation iii) Rotation

about an axis (X/Y/Z).

OR

c) Write OpenGL program to draw Sun Rise and Sunset.

CO Mapped

Pre-requisite 1. Basic programming skills of C++ and OpenGL

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC, OpenGL

Learning Objective To implement OpenGL functions.

Theory:

OpenGL Basics:

Open Graphics Library (OpenGL) is a cross-language (language inependent), cross-platform

(platform independent) API for rendering 2D and 3D Vector Graphics(use of polygons to represent

image). OpenGL is a low-level, widely supported modeling and rendering software package,

available across all platforms. It can be used in a range of graphics applications, such as games,

CAD design, or modeling. OpenGL API is designed mostly in hardware.

 Design: This API is defined as a set of functions which may be called by the client program.

Although functions are similar to those of C language but it is language independent.

 Development: It is an evolving API and Khronos Group regularly releases its new version

having some extended feature compare to previous one. GPU vendors may also provide some

additional functionality in the form of extension.

 Associated Libraries: The earliest version is released with a companion library called

OpenGL utility library. But since OpenGL is quite a complex process. So in order to make it

easier other library such as OpenGL Utility Toolkit is added which is later superseded by

freeglut. Later included library were GLEE, GLEW and glbinding.

 Implementation: Mesa 3D is an open source implementation of OpenGL. It can do pure

software rendering and it may also use hardware acceleration on BSD, Linux, and other

platforms by taking advantage of Direct Rendering Infrastructure.

Installation of OpenGL on Ubuntu

We need the following sets of libraries in programming OpenGL:

1. Core OpenGL (GL): consists of hundreds of functions, which begin with a prefix "gl"

(e.g., glColor, glVertex, glTranslate, glRotate). The Core OpenGL models an object via a set

of geometric primitives, such as point, line, and polygon.

2. OpenGL Utility Library (GLU): built on-top of the core OpenGL to provide important

utilities and more building models (such as qradric surfaces). GLU functions start with a

prefix "glu" (e.g., gluLookAt, gluPerspective)

3. OpenGL Utilities Toolkit (GLUT): provides support to interact with the Operating System

(such as creating a window, handling key and mouse inputs); and more building models (such

as sphere and torus). GLUT functions start with a prefix of "glut"

(e.g., glutCreatewindow, glutMouseFunc). GLUT is designed for constructing small to

medium sized OpenGL programs. While GLUT is well-suited to learning OpenGL and

developing simple OpenGL applications, GLUT is not a full-featured toolkit so large

applications requiring sophisticated user interfaces are better off using native window system

toolkits. GLUT is simple, easy, and small.

Alternative of GLUT includes SDL,

4. OpenGL Extension Wrangler Library (GLEW): "GLEW is a cross-platform open-source

C/C++ extension loading library. GLEW provides efficient run-time mechanisms for

determining which OpenGL extensions are supported on the target platform.

For installing OpenGL on ubuntu, just execute the following command (like installing any other

thing) in terminal:

 sudo apt-get install freeglut3-dev

For working on Ubuntu operating system:

 gcc filename.c -lGL -lGLU -lglut

where filename.c is the name of the file with which this program is saved.

Prerequisites for OpenGL

Since OpenGL is a graphics API and not a platform of its own, it requires a language to

operate in and the language of choice is C++.

Get started with OpenGL

Overview of an OpenGL program

 Main

o Open window and configure frame buffer (using GLUT for example)

o Initialize GL states and display (Double buffer, color mode, etc.)

 Loop

o Check for events

if window event (resize, unhide, maximize etc.)

modify the viewport

and Redraw

else if input event (keyboard and mouse etc.)

handle the event (such as move the camera or change the state)

and usually draw the scene

 Redraw

o Clear the screen (and buffers e.g., z-buffer)

o Change states (if desired)

o Render

o Swap buffers (if double buffer)

OpenGL order of operations

 Construct shapes (geometric descriptions of objects – vertices, edges, polygons etc.)

 Use OpenGL to

o Arrange shape in 3D (using transformations)

o Select your vantage point (and perhaps lights)

o Calculate color and texture properties of each object
o Convert shapes into pixels on screen

OpenGL Syntax

 All functions have the form: gl*

o glVertex3f() – 3 means that this function take three arguments, and f means that the

type of those arguments is float.

o glVertex2i() – 2 means that this function take two arguments, and i means that the

type of those arguments is integer

 All variable types have the form: GL*

o In OpenGL program it is better to use OpenGL variable types (portability)

 Glfloat instead of float

 Glint instead of int

OpenGL primitives

Drawing two lines
glBegin(GL_LINES);

glVertex3f(_,_,_); // start point of line 1

glVertex3f(_,_,_); // end point of line 1

glVertex3f(_,_,_); // start point of line 2

glVertex3f(_,_,_); // end point of line 2

glEnd();

We can replace GL_LINES with GL_POINTS, GL_LINELOOP, GL_POLYGON etc.

OpenGL states

 On/off (e.g., depth buffer test)
o glEnable(GLenum)

o glDisable(GLenum)

o Examples:

 glEnable(GL_DEPTH_TEST);

 glDisable(GL_LIGHTING);

 Mode States

o Once the mode is set the effect stays until reset

o Examples:

 glShadeModel(GL_FLAT) or glShadeModel(GL_SMOOTH)

 glLightModel(…) etc.

Drawing in 3D

 Depth buffer (or z-buffer) allows scene to remove hidden surfaces. Use

glEnable(GL_DEPTH_TEST) to enable it.
o glPolygonMode(Face, Mode)

 Face: GL_FRONT, GL_BACK, GL_FRONT_AND_BACKMode: GL_LINE,
GL_POINT, GL_FILL

o glCullFace(Mode)

 Mode: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
o glFrontFace(Vertex_Ordering)

o Vertex Ordering: GL_CW or GL_CCW

Viewing transformation

 glMatrixMode (Mode)

o Mode: GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE

 glLoadIdentity()

 glTranslate3f(x,y,z)

 glRotate3f(angle,x,y,z)

 glScale3f(x,y,z)

OpenGL provides a consistent interface to the underlying graphics hardware. This

abstraction allows a single program to run a different graphics hardware easily. A program

written with OpenGL can even be run in software (slowly) on machines with no graphics

acceleration. OpenGL function names always begin with gl, such as glClear(), and they may end

with characters that indicate the types of the parameters, for example glColor3f(GLfloat red,

GLfloat green, GLfloat blue) takes three floating-point color parameters and glColor4dv(const

GLdouble *v) takes a pointer to an array that contains 4 double-precision floating-point values.

OpenGL constants begin with GL, such as GL DEPTH. OpenGL also uses special names for

types that are passed to its functions, such as GLfloat or GLint, the corresponding C types are

compatible, that is float and int respectively.

GLU is the OpenGL utility library. It contains useful functions at a higher level than those

provided by OpenGL, for example, to draw complex shapes or set up cameras. All GLU

functions are written on top of OpenGL. Like OpenGL, GLU function names begin with glu, and

constants begin with GLU.

GLUT, the OpenGL Utility Toolkit, provides a system for setting up callbacks for interacting

with the user and functions for dealing with the windowing system. This abstraction allows a

program to run on different operating systems with only a recompile. Glut follows the

convention of prepending function names with glut and constants with GLUT.

Writing an OpenGL Program with GLUT

An OpenGL program using the three libraries listed above must include the appropriate

headers. This requires the following three lines:

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

Before OpenGL rendering calls can be made, some initialization has to be done. With

GLUT, this consists of initializing the GLUT library, initializing the display mode, creating the

window, and setting up callback functions. The following lines initialize a full color, double

buffered display:

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

Double buffering means that there are two buffers, a front buffer and a back buffer. The

front buffer is displayed to the user, while the back buffer is used for rendering operations. This

prevents flickering that would occur if we rendered directly to the front buffer.

Next, a window is created with GLUT that will contain the viewport which displays the

OpenGL front buffer with the following three lines:

glutInitWindowPosition(px, py);

glutInitWindowSize(sx, sy);

glutCreateWindow(name);

To register callback functions, we simply pass the name of the function that handles the

event to the appropriate GLUT function.

glutReshapeFunc(reshape);

glutDisplayFunc(display);

Here, the functions should have the following prototypes:

void reshape(int width, int height);

void display();

In this example, when the user resizes the window, reshape is called by GLUT, and when the

display needs to be refreshed, the display function is called. For animation, an idle event handler

that takes no arguments can be created to call the display function to constantly redraw the scene

with glutIdleFunc. Once all the callbacks have been set up, a call to glutMainLoop allows the

program to run.

In the display function, typically the image buffer is cleared, primitives are rendered to it,

and the results are presented to the user. The following line clears the image buffer, setting each

pixel color to the clear color, which can be configured to be any color:

glClear(GL_COLOR_BUFFER_BIT);

The next line sets the current rendering color to blue. OpenGL behaves like a state machine,

so certain state such as the rendering color is saved by OpenGL and used automatically later as it

is needed.

glColor3f(0.0f, 0.0f, 1.0f);

To render a primitive, such as a point, line, or polygon, OpenGL requires that a call to

glBegin is made to specify the type of primitive being rendered.

glBegin(GL_LINES);

Only a subset of OpenGL commands is available after a call to glBegin. The main command

that is used is glVertex, which specifies a vertex position. In GL LINES mode, each pair of

vertices define endpoints of a line segment. In this case, a line would be drawn from the point at

(x0, y0) to (x1, y1).

glVertex2f(x0, y0); glVertex2f(x1, y1);

A call to glEnd completes rendering of the current primitive. glEnd(); Finally, the back buffer

needs to be swapped to the front buffer that the user will see, which GLUT can handle for us:

glutSwapBuffers();

Developer-Driven Advantages

 Industry standard

An independent consortium, the OpenGL Architecture Review Board, guides the OpenGL

specification. With broad industry support, OpenGL is the only truly open, vendor-neutral,

multiplatform graphics standard.

 Stable

OpenGL implementations have been available for more than seven years on a wide variety

of platforms. Additions to the specification are well controlled, and proposed updates are

announced in time for developers to adopt changes. Backward compatibility requirements

ensure that existing applications do not become obsolete.

 Reliable and portable

All OpenGL applications produce consistent visual display results on any OpenGL API-

compliant hardware, regardless of operating system or windowing system.

 Evolving

Because of its thorough and forward-looking design, OpenGL allows new hardware

innovations to be accessible through the API via the OpenGL extension mechanism. In this

way, innovations appear in the API in a timely fashion, letting application developers and

hardware vendors incorporate new features into their normal product release cycles.

 Scalable

OpenGL API-based applications can run on systems ranging from consumer electronics to

PCs, workstations, and supercomputers. As a result, applications can scale to any class of

machine that the developer chooses to target.

 Easy to use

OpenGL is well structured with an intuitive design and logical commands. Efficient

OpenGL routines typically result in applications with fewer lines of code than those that

make up programs generated using other graphics libraries or packages. In addition,

OpenGL drivers encapsulate information about the underlying hardware, freeing the

application developer from having to design for specific hardware features.

 Well-documented:

Numerous books have been published about OpenGL, and a great deal of sample code is

readily available, making information about OpenGL inexpensive and easy to obtain.

Conclusion:

Questions:

1. What are the advantages of Open GL over other API's?

2. Explain rendering pipeline with reference to OpenGL.

3. Write OpenGl Advantages

Assignment No. 7

Title Animation using C++

Aim/Problem

Statement

a) Write a C++ program to control a ball using arrow keys. Apply the

concept of polymorphism.

OR
Write a C++ program to implement bouncing ball using sine wave

form. Apply the concept of polymorphism.

OR

Write C++ program to draw man walking in the rain with an umbrella.

Apply the concept of polymorphism.

OR

Write a C++ program to implement the game of 8 puzzle. Apply the

concept of polymorphism.

OR

Write a C++ program to implement the game Tic Tac Toe. Apply the

concept of polymorphism.

CO Mapped

Pre-requisite 1. Basic programming skills of C++

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC

Learning Objective To learn scanline polygon fill algorithm.

Theory:

What is animation?

Animation is the process of designing, drawing, making layouts and preparation of

photographic sequences which are integrated in the multimedia and gaming products.

Animation involves the exploitation and management of still images to generate the illusion of

movement.

How to move an element to left, right, up and down using arrow keys?

 To detect which arrow key is pressed, you can use ncurses.h header file. Arrow key's code is

defined as: KEY_UP, KEY_DOWN, KEY_LEFT, KEY_RIGHT.

#include<ncurses.h>

int main()

{

int ch;

/* Curses Initialisations */

initscr();

raw();

keypad(stdscr, TRUE);

noecho();

printw("Welcome - Press # to Exit\n");

while((ch = getch()) != '#')

{

switch(ch)

{

case KEY_UP: printw("\nUp Arrow");

break;

case KEY_DOWN: printw("\nDown Arrow");

break;

case KEY_LEFT: printw("\nLeft Arrow");

break;

case KEY_RIGHT: printw("\nRight Arrow");

break;

default:

{

printw("\nThe pressed key is ");

attron(A_BOLD);

printw("%c", ch);

attroff(A_BOLD);

}

}

}

printw("\n\nBye Now!\n");

refresh();

getch();

endwin();

return 0;

}

How to draw a sine wave using c++?
#include <math.h>
#include <graphics.h>
#include <iostream>

int main() {
 int gd = DETECT, gm;
 int angle = 0;
 double x, y;

 initgraph(&gd, &gm, NULL);

 line(0, getmaxy() / 2, getmaxx(), getmaxy() / 2);
 /* generate a sine wave */
 for(x = 0; x < getmaxx(); x+=3) {

 /* calculate y value given x */
 y = 50*sin(angle*3.141/180);
 y = getmaxy()/2 - y;

 /* color a pixel at the given position */
 putpixel(x, y, 15);
 delay(100);

 /* increment angle */
 angle+=5;
 }

 /* deallocate memory allocated for graphics screen */
 closegraph();

 return 0;
}

A game of 8 puzzle:

 An 8 puzzle is a simple game consisting of a 3 x 3 grid (containing 9 squares). One of the

squares is empty. The object is to move to squares around into different positions and having the

numbers displayed in the "goal state". The image to the left can be thought of as an unsolved initial

state of the "3 x 3" 8 puzzle. Eight digits will in random order. To solve a puzzle, you have to move

blocks by performing translation of blocks.

Implementation of Tic-Tac-Toe game

Rules of the Game
 The game is to be played between two people (in this program between HUMAN and

COMPUTER).
 One of the player chooses ‘O’ and the other ‘X’ to mark their respective cells.
 The game starts with one of the players and the game ends when one of the players

has one whole row/ column/ diagonal filled with his/her respective character (‘O’ or
‘X’).

 If no one wins, then the game is said to be draw.

Note: In all above programs, you have to perform translation of an image to show animation

effect.

Conclusion:

Questions:

1. What is polymorphism?

