
Computer Graphics

Unit 6

Segment and Animation

Contents

 Segment: Introduction, Segment table, Segment creation, closing,

deleting and renaming, Visibility.

 Animation: Introduction, Design of animation sequences, Animation

languages, Key-frame, Morphing, Motion specification.

 Colour models and applications: Properties of Light, CIE

chromaticity Diagram, RGB, HSV, CMY, YIQ, colour Selection and

applications.

Segments
 In general, the image on display screen is often composed of pictures of

several objects.

 Each object has a set of attributes such as size, colour, position etc.

 We might wish to see all these objects simulteneously or a single object at a

time. For this we need to organize the image information in a particular

manner.

 The image information is stored in Display file.

 A display list (or display file) is a series of graphics commands that define an

output image. The image is created (rendered) by executing the commands.

 Existing structure of display file does not satisfy the requirements of viewing

image. Hence the display structure is modified to reflect the sub picture

structure. To achieve this display file is divided into segments.

 Each segment corresponds to a component or a object of the overall display

and is associated with a set of attributes.

 Along with the attributes, the segment is also associated with the image

transformation parameters such as scaling and translation along X and Y

direction, rotation and shearing.

 Thus, segment allows:

 Subdivision of the picture

 Visualization of a particular part of the picture

 Scaling, rotation, translation and shearing of a particular object in the picture

 The structure used to organize all this information related to segments is

called segment table.

Segment Table

 Each row in the segment table represents information of one segment

including its name, position, size, visibility, attributes and image

transformation parameters.

 If we wish to make segment 4 visible then this is achieved by setting the

visibility entry for segment 4 to 'ON'.

 The display file interpreter initially checks the start, size and visible attribute

of the segments and it interprets only those segments which are to be made

visible.

• The segment table is formed by using arrays. An alternative approach

is linked list.

• In case of arrays, maximum no. of segments that can be included in

the segment table are equal to the length of the arrays. But with linked

list there is no such limit on the maximum no. of segments; as list is

dynamic.

• In linked List, ordering is achieved by simply adjusting the links. In

case of arrays we have to move actual segment information in the

process of sorting the segments.

• The Disadvantage of linked list is that it requires more storage to hold

the links.

Segment Creation

• We Must give the segment name so that we can identify it. For example say that there is segment

no. 3, then all following commands would belong to segment 3. We could then close segment 3

and open another.

• First thing to create a segment is to check whether some other segment is open. We can not open

two segments at the same time because we would not know to which segment we should assign

the drawing instructions. If there is segment open, we have an error

• Next we should select valid segment name and check whether there already exists a segment under

this name. If so, we again have an error.

• The first instruction belonging to this segment will be located at the next free storage area in the

display file.

• The current size of the segment is zero since we have not actually entered any instructions into it

yet.

• The attributes of the segment are initialized as a default attribute values.

Algorithm: Create Segment

 A segment is created by the function:

 CREATE SEGMENT(ID)

 where ID is the name by which the segment is to be known.

 This segment is then the open segment.

 BEGIN

 SEGMENT-START[SEGMENT-NAME] <- FREE;

 SEGMENT-SIZE[SEGMENT-NAME] <- 0;

 VISIBILITY[SEGMENT-NAME] <- VISIBILITY[0];

 ANGLE[SEGMENT-NAME] <- ANGLE[0];

 SCALE-X[SEGMENT-NAME] <- SCALE-X[0];

 SCALE-Y[SEGMENT-NAME] <- SCALE-Y[0];

 TRANSLATE-X[SEGMENT-NAME] <- TRANSLATE-X[0];

 TRANSLATE-Y[SEGMENT-NAME] <- TRANSLATE-Y[0];

 END;

 It is important to note that at any time, only one segment can be open, thus a

series of function calls such as:

 CREATE SEGMENT(1)

 output primitives

 CREATE SEGMENT(2) ILLEGAL!!

 output primitives

 CLOSE SEGMENT

 CLOSE SEGMENT

Closing a Segment

• Once segment is open, we can enter display file instructions in it.

After completion of entering all display file instruction, the segment

must be closed.

•
 CREATE SEGMENT(1)

 output primitives

 CLOSE SEGMENT

Deleting a Segment

Algorithm: Deleting a Segment

1. Read the name of the segment which is to be deleted.

2. Check whether the segment name is valid; if not display error

“Segment not valid” go to step 8

3. Check whether the segment is open, if yes, display error message “

Can’t delete open segment” go to step 8.

4. Check whether the size of segment is greater than 0, if no, no

processing is required as segment contains no instructions.

5. Shift the display file elements (other segments in display file) which

follow the segment which is to be deleted by it’s size.

6. Adjust the starting positions of the shifted segments by subtracting

the size of the deleted segment from it.

7. Stop.

Renaming a Segment

• The display processor is continuously reading the display file and

showing its contents.

• Suppose we wish to use this device to show an animated character

moving on the display.

• To display a new image in the sequence we have to delete the current

segment and re-create it with the altered character. The problem in

this process is that during the time after the first image is deleted and

time before the second image is completely entered, only a partially

completed character is displayed on the screen.

• We avoid this problem by keeping the next image ready in the display

file before deleting the current segment.

• Segment which is to be deleted and segment which is to be replaced

with must exist in display file at the same time.

• We do this by building the new invisible image (making visibility of

that image as OFF) under some temporary segment name. When it is

completed, we can delete the original image, make the replacement

image visible, and rename the new segment to become the old

segment to achieve apparent motion.

• The idea of maintaining two images, one to show and one to build or

alter, is called double buffering.

Algorithm: Renaming a Segment

Visibility

Image Transformation

Animation

• To animate means "to give life to“. Animating is moving something

which can't move itself.

• Computer animation is the use of computer graphics to create

animations. It is a subfield of computer graphics and animation.

• Animators are artists who specialize in the creation of animation.

• An animator's job is to take a static image or object and literally bring

it to life by giving it movement.

• In computer animation, animators use software to draw, model and

animate the objects and characters.

• The basic idea behind animation is to playback the recorded images at

the rates fast enough to fool the human eye into interpreting them as

continuous motion.

• Animation can make a series of dead images come alive.

• Animation can be used in many areas like entertainment, computer

aided-design, scientific visualization, training, education, e-

commerce, and computer art.

Design of Animation Sequences

• Common Steps of designing the animation sequence are as given:

1. Storyboard layout

2. Object definitions

3. Key-frame specifications

4. Generation of in-between frames

1. Storyboard layout:

• The Storyboard layout is an outline of the action. It defines the

motion sequence as a set of basic events that are to take place. Such

ordered set of events gives the motion sequence.

 The storyboard could consist of a set of rough sketches or it could be

a list of the basic ideas for the motion.

• The storyboarding process was developed at Walt Disney Productions

during the early 1930s, after several years of similar processes being

in use at Walt Disney and other animation studios.

2. Object definitions:

• Each active section of the scene is treated as an object.

• The object definition is specified for all participant objects in action.

• Along with objects, the description of the movements that are to be

performed by each character or object is also specified.

3. Key-frame specifications:

• A keyframe is a detailed drawing of the scene at a certain time in the

animation sequence.

• Within each key frame, each object is positioned according to the

time for that frame.

• Some key frames are chosen at extreme positions in the action; others

are spaced so that the time interval between key frames is not to great.

4. Generation of in-between frames:

• In-between frames are the intermediate frames between the key

frames.

• The number of in-between frames is based on the media to be used to

display the animation. In common, film needs twenty-four frames per

second, and graphic terminals are refreshed on the rate of 30 to 60

frames per second.

• Classically, there are three to five in-between frames for each pair of

keyframes.

• E.g. We want to design an animation sequence for 10 seconds. For

this we need to have 24x10 frames because film requires 24 frames

per second. Out of these 240 frames, we can have 48 keyframes and

remaining 192 in-between frames. In this case there are 4 in-between

frames between two keyframes.

Animation languages

 There are many different languages for describing computer animation

and new ones are constantly being developed.

 Animation languages can be categorized as:

1) Linear-list notations

2) General purpose languages

3) Graphical languages

 1) Linear-list notations:

 In Linear-list notations, each event in the animation is described by a starting

and ending frame number and an action that is to take place.

 The action is specified by a statement with relative parameters.

 E.g. 30,45, C ROTATE “ARM”, 1,60

 The above statement say that - between frames 30 and 45, rotate the object

called ARM about axis 1 by 60o , determining the amount of rotation at each

frame from table C.

 2) General purpose languages:

 General purpose languages such as C, C++, Pascal or Lisp can be used to

design and control the animation sequences.

 These languages have great potential. They can certainly do everything that

Linear-list notations do. But most of these languages require considerable

programming expertise.

 ASAS is an example of general purpose language.

 It is built on top of LISP.

 Its primitives include vectors, colours, polygons, solids and lights.

 It also includes a wide range of geometric transformations that operate on

objects. These transformations take an object as an argument and return a

value that is transformed copy of the object. These transformations include

up, down, left, right, zoom-in, zoom-out, forward and backward.

 3) Graphical languages:

 There are several specialized animation languages developed called

graphical languages.

 These languages provide various animation functions which make it easy to

design and control the animation.

 These animation functions include a graphics editor, a keyframe generator,

an in-between generator and standard graphics routines.

 Thus, specialized animation language allows us to design and modify

object's shape and position. They also define photometric parameters such as

light intensities, surface illumination properties. They can set camera

parameters such as position, orientation and lens characteristics.

 Following are some graphical languages:

 1) Keyframe systems 2) Parameterized systems 3) Scripting systems.

 1) Keyframe systems:

 This is a specialized animation language used to generate in-between frame

from the user-specified keyframes.

 By controlling the movement of object bodies, keyframe systems generate

in-between frames.

 2) Parameterized systems:

 These languages specifies the object motion characteristics to be as a part of

the object definitions.

 So the designer can have control over object's characteristics such as degree

of freedom, motion limitation and allowable shape changes.

 3) Scripting systems:

 This language allows object specifications and animation sequences to be

defined in a user-input script.

 It is possible to write a script for defining object and its motion.

 Such a scripts can be stored in the library.

Morphing

 Morphing is transformation of object shape from one form to another

 Morphing is common in entertainment industry. Morphing is widely used

in movies, animation, games etc.

 Morphing is the process in which the source image is gradually distorted

and vanished while producing the target image.

• The earlier images in the sequence are similar to source image and

last images are similar to target image.

• Middle image of the sequence is the average of the source image

and the target image.

 When an object is described using polygon, we compare the two keyframes

for which in-between frames are to be generated.

 The keyframes are compared in terms of number of vertices and number of

edges . If they are unequal, they are added or deleted to match the count as a

preprocessing steps.

 This is shown in following example:

 There are 2 keyframes, K and K+1.

 The frame K has one line segment while frame K+1 has two line segments.

 As keyframe K+1 has an extra vertex, we add a vertex between vertices 1

and 2 in keyframe K to balance the number of vertices in two frames as a

preprocessing step.

 Then using linear interpolation, we translate the added vertex in keyframe K

into vertex 3' along the straight line path.

 So the intermediate position of this 3' gives us the in-between frames.

Following figure shows transformation of triangle into quadrilateral using

linear interpolation:

Equalize two keyframes

Tweening

 The animator draws objects and characters either by hand or with a

computer.

 Then he positions his creations in key frames, which form an outline of the

most important movements.

 Next, the computer uses mathematical algorithms to fill in the "in-between"

frames. This process is called tweening.

 Key framing and tweening are traditional animation techniques that can be

done by hand, but are accomplished much faster with a computer.

Motion specification

 There are following common ways in which the motions of objects

can be specified:

 Direct motion specification

 Goal-directed systems

 Kinematics and Dynamics

 Direct motion specification:

 It is most straight forward method for defining a motion sequence.

 In this method, the rotation angles and the translation vectors are specified so

that geometrical transformations can be applied to the objects in the scene to

generate animation sequences.

 Goal-directed systems:

 In these systems, instead of specifying motion parameters, goal specific

instructions are specified.

 For example: We would specify that we want an object to walk or to run to a

particular destination.

 Kinematics and Dynamics:

 1) Kinematic descriptions:

 Motion parameters such as position, velocity and acceleration are specified

without reference to the forces that causes the motion to generate animation

sequences.

 Inverse Kinematics: In this approach, initial and final positions of objects

are specified and from that motion parameters are computed by system to

generate animation sequences.

 2) Dynamic descriptions:

 The forces that produce the velocities and accelerations are specified. Such

descriptions of objects are referred as a physically based modeling.

 Here, object motions are obtained from the force equations describing

physical laws, such as Newton's laws of motion for gravitational and friction

forces, Euler or Navier-stokes equations describing fluid flow and Maxwell's

equations for electromagnetic forces.

