
dx = X2 – X1;

dy = Y2 – Y1;

Assignment No. 3

Title Pattern drawing using line and circle.

Aim/Problem
Statement

Write C++ program to draw a given pattern. Use DDA line and Bresenham’s
circle drawing algorithm. Apply the concept of encapsulation.

CO Mapped

Pre-requisite 1. Basic programming skills of C++

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC

Learning Objective To learn and apply DDA line and Bresenham’s circle drawing algorithm.

Theory:

DDA Line Drawing Algorithm:

Line is a basic element in graphics. To draw a line, you need two end points between which

you can draw a line. Digital Differential Analyzer (DDA) line drawing algorithm is the simplest

line drawing algorithm in computer graphics. It works on incremental method. It plots the points

from starting point of line to end point of line by incrementing in X and Y direction in each

iteration.

DDA line drawing algorithm works as follows:

Step 1: Get coordinates of both the end points (X1, Y1) and (X2, Y2) from user.

Step 2: Calculate the difference between two end points in X and Y direction.

Step 3: Based on the calculated difference in step-2, you need to identify the number of steps to put

pixel. If dx > dy, then you need more steps in x coordinate; otherwise in y coordinate.

if (absolute(dx) > absolute(dy))

Steps = absolute(dx);

else

Steps = absolute(dy);

Step 4: Calculate the increment in x coordinate and y coordinate.

Xincrement = dx / (float) steps;

Yincrement = dy / (float) steps;

Step 5: Plot the pixels by successfully incrementing x and y coordinates accordingly and complete

the drawing of the line.

for(int i=0; i < Steps; i++)

{

X1 = X1 + Xincrement;

Y1 = Y1 + Yincrement;

putpixel(Round(X1), Round(Y1), ColorName);

}

Bresenham’s Circle Drawing Algorithm:

Circle is an eight-way symmetric figure. The shape of circle is the same in all quadrants. In

each quadrant, there are two octants. If the calculation of the point of one octant is done, then the

other seven points can be calculated easily by using the concept of eight-way symmetry.

Bresenham’s Circle Drawing Algorithm is a circle drawing algorithm that selects the nearest

pixel position to complete the arc. The unique part of this algorithm is that is uses only integer

arithmetic which makes it significantly faster than other algorithms using floating point arithmetic.

Step 1: Read the x and y coordinates of center: (centx, centy)

Step 2: Read the radius of circle: (r)

Step 3: Initialize, x = 0; y = r;

Step 4: Initialize decision parameter: p = 3 – (2 * r)

Step 5:

do {

putpixel(centx+x, centy-y, ColorName);

if (p<0)

p = p+(4*x)+6;

else

x=x+1;

{

p=p+[4*(x-y)]+10;

y=y-1;

}

} while(x<y)

Here in step 5, putpixel() function is used which will print Octant-1 of the circle with radius r after

the completion of all the iterations of do-while loop. Because of the eight-way symmetry property

of circle, we can draw other octants of the circle using following putpixel() functions:

Octant 1: putpixel(centx+x, centy-y, ColorName);

Octant 2: putpixel(centx+y, centy-x, ColorName);

Octant 3: putpixel(centx+y, centy+x, ColorName);

Octant 4: putpixel(centx+x, centy+y, ColorName);

Octant 5: putpixel(centx-x, centy+y, ColorName);

Octant 6: putpixel(centx-y, centy+x, ColorName);

Octant 7: putpixel(centx-y, centy-x, ColorName);

Octant 8: putpixel(centx-x, centy-y, ColorName);

Drawing Pattern using lines and circles:

This pattern is made up of one equilateral triangle and two concentric circles. To draw the triangle,

we require coordinates of 3 vertices forming an equilateral triangle. To draw two concentric circles,

we require coordinates of common center and radius of both the circles.

We will take coordinates of circle and radius of one of the circle from user. Then using the

properties of an equilateral triangle, we can find all 3 vertices of equilateral triangle and radius of

other circle. Once we get all these parameters, we can call DDA line drawing and Bresenham’s

circle drawing algorithms by passing appropriate parameters to get required pattern.

OR

To draw this pattern, we require two rectangles and one circle. We can use suitable geometry to get

coordinates to draw rectangles and circle. Then we can call DDA line drawing and Bresenham’s

circle drawing algorithms by passing appropriate parameters to get required pattern.

Conclusion:

Questions:

1. Explain the derivation of decision parameters in Bresenham’s circle drawing algorithm.

2. Explain the concept of encapsulation with example.

