
1. Core OpenGL (GL): consists of hundreds of functions, which begin with a prefix "gl"

(e.g., glColor, glVertex, glTranslate, glRotate). The Core OpenGL models an object via a set

of geometric primitives, such as point, line, and polygon.

2. OpenGL Utility Library (GLU): built on-top of the core OpenGL to provide important

utilities and more building models (such as qradric surfaces). GLU functions start with a

prefix "glu" (e.g., gluLookAt, gluPerspective)

Assignment No. 6

Title Implementation of OpenGL functions

Aim/Problem

Statement

a) Design and simulate any data structure like stack or queue visualization

using graphics. Simulation should include all operations performed on

designed data structure. Implement the same using OpenGL.

OR

b) Write C++ program to draw 3-D cube and perform following

transformations on it using OpenGL i) Scaling ii) Translation iii) Rotation

about an axis (X/Y/Z).

OR
c) Write OpenGL program to draw Sun Rise and Sunset.

CO Mapped

Pre-requisite 1. Basic programming skills of C++ and OpenGL

2. 64-bit Open source Linux

3. Open Source C++ Programming tool like G++/GCC, OpenGL

Learning Objective To implement OpenGL functions.

Theory:

OpenGL Basics:

Open Graphics Library (OpenGL) is a cross-language (language inependent), cross-platform

(platform independent) API for rendering 2D and 3D Vector Graphics(use of polygons to represent

image). OpenGL is a low-level, widely supported modeling and rendering software package,

available across all platforms. It can be used in a range of graphics applications, such as games,

CAD design, or modeling. OpenGL API is designed mostly in hardware.

• Design: This API is defined as a set of functions which may be called by the client program.

Although functions are similar to those of C language but it is language independent.

• Development: It is an evolving API and Khronos Group regularly releases its new version

having some extended feature compare to previous one. GPU vendors may also provide some

additional functionality in the form of extension.

• Associated Libraries: The earliest version is released with a companion library called

OpenGL utility library. But since OpenGL is quite a complex process. So in order to make it

easier other library such as OpenGL Utility Toolkit is added which is later superseded by

freeglut. Later included library were GLEE, GLEW and glbinding.

• Implementation: Mesa 3D is an open source implementation of OpenGL. It can do pure

software rendering and it may also use hardware acceleration on BSD, Linux, and other

platforms by taking advantage of Direct Rendering Infrastructure.

Installation of OpenGL on Ubuntu

We need the following sets of libraries in programming OpenGL:

• sudo apt-get install freeglut3-dev

3. OpenGL Utilities Toolkit (GLUT): provides support to interact with the Operating System

(such as creating a window, handling key and mouse inputs); and more building models (such

as sphere and torus). GLUT functions start with a prefix of "glut"

(e.g., glutCreatewindow, glutMouseFunc). GLUT is designed for constructing small to

medium sized OpenGL programs. While GLUT is well-suited to learning OpenGL and

developing simple OpenGL applications, GLUT is not a full-featured toolkit so large

applications requiring sophisticated user interfaces are better off using native window system

toolkits. GLUT is simple, easy, and small.

Alternative of GLUT includes SDL,

4. OpenGL Extension Wrangler Library (GLEW): "GLEW is a cross-platform open-source

C/C++ extension loading library. GLEW provides efficient run-time mechanisms for

determining which OpenGL extensions are supported on the target platform.

For installing OpenGL on ubuntu, just execute the following command (like installing any other

thing) in terminal:

For working on Ubuntu operating system:

• gcc filename.c -lGL -lGLU -lglut

where filename.c is the name of the file with which this program is saved.

Prerequisites for OpenGL

Since OpenGL is a graphics API and not a platform of its own, it requires a language to

operate in and the language of choice is C++.

Get started with OpenGL

Overview of an OpenGL program

• Main

o Open window and configure frame buffer (using GLUT for example)

o Initialize GL states and display (Double buffer, color mode, etc.)

• Loop

o Check for events

if window event (resize, unhide, maximize etc.)

modify the viewport

and Redraw

else if input event (keyboard and mouse etc.)

handle the event (such as move the camera or change the state)

and usually draw the scene

• Redraw

o Clear the screen (and buffers e.g., z-buffer)

o Change states (if desired)

o Render

o Swap buffers (if double buffer)

OpenGL order of operations

• Construct shapes (geometric descriptions of objects – vertices, edges, polygons etc.)

• Use OpenGL to

o Arrange shape in 3D (using transformations)

o Select your vantage point (and perhaps lights)

o Calculate color and texture properties of each object
o Convert shapes into pixels on screen

OpenGL Syntax

• All functions have the form: gl*

o glVertex3f() – 3 means that this function take three arguments, and f means that the
type of those arguments is float.

o glVertex2i() – 2 means that this function take two arguments, and i means that the
type of those arguments is integer

• All variable types have the form: GL*

o In OpenGL program it is better to use OpenGL variable types (portability)
▪ Glfloat instead of float

▪ Glint instead of int

OpenGL primitives

Drawing two lines

glBegin(GL_LINES);

glVertex3f(_,_,_); // start point of line 1

glVertex3f(_,_,_); // end point of line 1

glVertex3f(_,_,_); // start point of line 2

glVertex3f(_,_,_); // end point of line 2

glEnd();

We can replace GL_LINES with GL_POINTS, GL_LINELOOP, GL_POLYGON etc.

OpenGL states

• On/off (e.g., depth buffer test)

o glEnable(GLenum)

o glDisable(GLenum)

o Examples:

▪ glEnable(GL_DEPTH_TEST);

▪ glDisable(GL_LIGHTING);

• Mode States

o Once the mode is set the effect stays until reset

o Examples:

▪ glShadeModel(GL_FLAT) or glShadeModel(GL_SMOOTH)

▪ glLightModel(…) etc.

Drawing in 3D

• Depth buffer (or z-buffer) allows scene to remove hidden surfaces. Use

glEnable(GL_DEPTH_TEST) to enable it.

o glPolygonMode(Face, Mode)

• Face: GL_FRONT, GL_BACK, GL_FRONT_AND_BACKMode: GL_LINE,

GL_POINT, GL_FILL

o glCullFace(Mode)

• Mode: GL_FRONT, GL_BACK, GL_FRONT_AND_BACK
o glFrontFace(Vertex_Ordering)

o Vertex Ordering: GL_CW or GL_CCW

Viewing transformation

• glMatrixMode (Mode)

o Mode: GL_MODELVIEW, GL_PROJECTION, or GL_TEXTURE

• glLoadIdentity()

• glTranslate3f(x,y,z)

• glRotate3f(angle,x,y,z)

• glScale3f(x,y,z)

OpenGL provides a consistent interface to the underlying graphics hardware. This

abstraction allows a single program to run a different graphics hardware easily. A program

written with OpenGL can even be run in software (slowly) on machines with no graphics

acceleration. OpenGL function names always begin with gl, such as glClear(), and they may end

with characters that indicate the types of the parameters, for example glColor3f(GLfloat red,

GLfloat green, GLfloat blue) takes three floating-point color parameters and glColor4dv(const

GLdouble *v) takes a pointer to an array that contains 4 double-precision floating-point values.

OpenGL constants begin with GL, such as GL DEPTH. OpenGL also uses special names for

types that are passed to its functions, such as GLfloat or GLint, the corresponding C types are

compatible, that is float and int respectively.

GLU is the OpenGL utility library. It contains useful functions at a higher level than those

provided by OpenGL, for example, to draw complex shapes or set up cameras. All GLU

functions are written on top of OpenGL. Like OpenGL, GLU function names begin with glu, and

constants begin with GLU.

GLUT, the OpenGL Utility Toolkit, provides a system for setting up callbacks for interacting

with the user and functions for dealing with the windowing system. This abstraction allows a

program to run on different operating systems with only a recompile. Glut follows the

convention of prepending function names with glut and constants with GLUT.

Writing an OpenGL Program with GLUT

An OpenGL program using the three libraries listed above must include the appropriate

headers. This requires the following three lines:

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

Before OpenGL rendering calls can be made, some initialization has to be done. With

GLUT, this consists of initializing the GLUT library, initializing the display mode, creating the

window, and setting up callback functions. The following lines initialize a full color, double

buffered display:

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

Double buffering means that there are two buffers, a front buffer and a back buffer. The

front buffer is displayed to the user, while the back buffer is used for rendering operations. This

prevents flickering that would occur if we rendered directly to the front buffer.

Next, a window is created with GLUT that will contain the viewport which displays the

OpenGL front buffer with the following three lines:

glutInitWindowPosition(px, py);

glutInitWindowSize(sx, sy);

glutCreateWindow(name);

To register callback functions, we simply pass the name of the function that handles the

event to the appropriate GLUT function.

glutReshapeFunc(reshape);

glutDisplayFunc(display);

Here, the functions should have the following prototypes:

void reshape(int width, int height);

void display();

In this example, when the user resizes the window, reshape is called by GLUT, and when the

display needs to be refreshed, the display function is called. For animation, an idle event handler

that takes no arguments can be created to call the display function to constantly redraw the scene

with glutIdleFunc. Once all the callbacks have been set up, a call to glutMainLoop allows the

program to run.

In the display function, typically the image buffer is cleared, primitives are rendered to it,

and the results are presented to the user. The following line clears the image buffer, setting each

pixel color to the clear color, which can be configured to be any color:

glClear(GL_COLOR_BUFFER_BIT);

The next line sets the current rendering color to blue. OpenGL behaves like a state machine,

so certain state such as the rendering color is saved by OpenGL and used automatically later as it

is needed.

glColor3f(0.0f, 0.0f, 1.0f);

To render a primitive, such as a point, line, or polygon, OpenGL requires that a call to

glBegin is made to specify the type of primitive being rendered.

glBegin(GL_LINES);

Only a subset of OpenGL commands is available after a call to glBegin. The main command

that is used is glVertex, which specifies a vertex position. In GL LINES mode, each pair of

vertices define endpoints of a line segment. In this case, a line would be drawn from the point at

(x0, y0) to (x1, y1).

glVertex2f(x0, y0); glVertex2f(x1, y1);

A call to glEnd completes rendering of the current primitive. glEnd(); Finally, the back buffer

needs to be swapped to the front buffer that the user will see, which GLUT can handle for us:

glutSwapBuffers();

Developer-Driven Advantages

• Industry standard

An independent consortium, the OpenGL Architecture Review Board, guides the OpenGL

specification. With broad industry support, OpenGL is the only truly open, vendor-neutral,

multiplatform graphics standard.

• Stable

OpenGL implementations have been available for more than seven years on a wide variety

of platforms. Additions to the specification are well controlled, and proposed updates are

announced in time for developers to adopt changes. Backward compatibility requirements

ensure that existing applications do not become obsolete.

• Reliable and portable

All OpenGL applications produce consistent visual display results on any OpenGL API-

compliant hardware, regardless of operating system or windowing system.

• Evolving

Because of its thorough and forward-looking design, OpenGL allows new hardware

innovations to be accessible through the API via the OpenGL extension mechanism. In this

way, innovations appear in the API in a timely fashion, letting application developers and

hardware vendors incorporate new features into their normal product release cycles.

• Scalable

OpenGL API-based applications can run on systems ranging from consumer electronics to

PCs, workstations, and supercomputers. As a result, applications can scale to any class of

machine that the developer chooses to target.

• Easy to use

OpenGL is well structured with an intuitive design and logical commands. Efficient

OpenGL routines typically result in applications with fewer lines of code than those that

make up programs generated using other graphics libraries or packages. In addition,

OpenGL drivers encapsulate information about the underlying hardware, freeing the

application developer from having to design for specific hardware features.

• Well-documented:

Numerous books have been published about OpenGL, and a great deal of sample code is

readily available, making information about OpenGL inexpensive and easy to obtain.

Conclusion:

Questions:

1. What are the advantages of Open GL over other API's?

2. Explain rendering pipeline with reference to OpenGL.

3. Write OpenGl Advantages

