Modern Education Society's College of Engineering, Pune - 411 001 Department of Computer Engineering Academic Year 2023-24 Question Bank

Subject: Fundamentals of Data Structures Class: SE

1							1	
	Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
	Q.1	Define algorithm and its characteristics.	CO1	4		\checkmark		
		Explain asymptotic notations Big O, Theta and Omega with one example of each.	CO1	6		V		V
	\mathbf{Q} .	Differentiate between linear and non-linear data structure with example	CO1	3		V		
		Explain divide and Conquer strategy with example. Also comment on its time analysis	CO1	6			\checkmark	\checkmark
		Define and explain the following terms,	CO1	3	V	V		
		1. Data structure						
		2. ADT						
		3. Algorithm						
		Explain the Greedy strategy with sutaible example. Comment on its time complexity.	CO1	6			V	V
	Q.7	Define and explain the following terms: 1. Linear Data structure	CO1	4			\checkmark	V
		2. Non-linear Data structure						
		3. Time complexity 4. Space complexity						
			CO1	1	\checkmark	\checkmark		

CO1

CO1

CO1

CO1

4

2

6

2

Explain static and dynamic data structure with example.

What is recurrence relation? Explain with example.

Q.11 Explain merge sort with example.

Why do we need data structure?

Q.9

Q.10

Q.12

	Unit 2						
Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	Derive address calculation formula for one dimentional array with one example.	CO1	2		\checkmark		
Q.2	Write pseudo c/c++ code to perform polynomial addition using arrays.	CO1	6			\checkmark	\checkmark
Q.3	Write pseudo c/c++ code to perform simple transpose of sparse matrix. Discuss its time complexity.	CO1	6		\checkmark	\checkmark	
Q.4	Explain polynomial representation using arrays with suitable example.	CO1	3		\checkmark	\checkmark	
Q.5	Explain fast transpose of sparse matrix with suitable example. Discuss time complexity of fast transpose.	CO1	6				\checkmark
Q.6	What is sparse matrix? Explain with suitable example.	CO1	6		\checkmark	\checkmark	
Q.7	Give pseudo code to concatenate two strings.	CO1	3			\checkmark	
Q.8	Define and explain: Sequential Organization	CO1	2		\checkmark		
Q.9	Define and explain: Ordered List	CO1	2		\checkmark	\checkmark	
Q.10	Define and explain: Sparse Matrix	CO1	2		\checkmark		
Q.11	Give pseudo code for reversing a string.	CO1	4		\checkmark	\checkmark	
Q.12	Explain the need for fast transpose of sparse matrix comment on its time complexity.	CO1	6	V			

	Unit 5						
Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	Write an algorithm for Fibonacci search and find out time complexity.	CO1	7		\checkmark	\checkmark	
Q.2	Explain Quick sort and sort the given list using quick sort: 15,08,20,-4,16,02,01,12,21,-2	CO1	6				
Q.3	Write short note on stability of sorting	CO1	7		\checkmark		
Q.4	Explain shell sort and sort the given list using shell sort	CO1	6				
Q.5	Write an algorithm for binary search. Derive recurrence relation and find out time complexity of the search		7		V	V	
Q.6	Explain sequential search and binary search with appropriate example and compare their time complexity and space complexity	CO1	7		V	\checkmark	
Q.7	Explain heap sort and sort the given list using heap sort : 18,13,12,22,15,24,10,16,19,14,30	CO1	7		V		
Q.8	-	CO1	6		V		
Q.9	Explain merge sort using the following example: 18,13,12,22,15,24,10,16,19,14,30 Discuss its time and space complexity	CO1	6		V	V	
Q.10	Write a pseudo C/C++ code to sort the data using bucket sort in ascending order	CO1	7		V		

	01111 4						
Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	With suitable example discuss representation and implementation of polynomial using singly linked list.	CO1	6		V		
Q.2	What is GLL? Represent $-4x^4y^2z^3+10x^2yz^2+7xyz+45$ using GLL.	CO1	7		\checkmark		\checkmark
Q.3	Write a pseudo code to delete any node in case of DLL.	CO1	6		V		
Q.4	Establish the usage of linked lists for polynomial manipulation.	CO1	6			\checkmark	\checkmark
Q.5	Let X = (X1, X2, X3,Xn) and Y= (Y1, Y2, Y3,Xm) be two linked lists.Write an algorithm to merge the lists together to obtain the linked list Z such that Z = (X1, Y1, X2, Y2,Xm, Ym,Xm+1Xn) if $m \le n$ or Z = (X1, Y1,X2,Y2Xn,Yn,Yn+1Ym) if $m \ge n$.	D n f	8				
Q.6	What are the advantages of circular linked list over singly linked list?	CO1	6	V		V	
Q.7	Explain doubly linked list with advantage and disadvantage of it.	CO1	6	V		V	
Q.8	Write short note on Dynamic memory management.	CO1	5	V			
Q.9	Write a pseudo C/C++ code to insert node into a singly linked list.	CO1	7	\checkmark	\checkmark		
Q.10	Explain Generalized linked list with suitable example.	CO1	6	V			\checkmark
	Convert the following prefix expression into postfix. * + a – bc / – de + – fgh	CO1	7				
Q.12	Write an algorithm to delete intermediate node from Doubly linked list.	CO1	7				

Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	Write an algorithm to evaluate a postfix expression. Execute your algorithm using the following postfix expression as your input : $a b + c d +*f \uparrow .$	CO2	7		V		
Q.2	Write down any four application of a stack.	CO2	6			\checkmark	\checkmark
Q.3	Write an algorithm to convert postfix to infix.	CO2	6	\checkmark	\checkmark		
Q.4	Write a C function using stack to determine whether the given string is palindrome or not.Find out time complexity of program.	CO2	9	•	V	\checkmark	\checkmark
Q.5	What is backtracking algorithmic strategy. Explain the use of stack in it with example.	CO2	7				V
Q.6	Explain evaluation of postfix expression using stack with suitable example.	CO2	6		\checkmark		\checkmark
Q.7	Give pseudo C/C++ code to implement the following operations on linked stack : (i) Create (ii) Push data.	CO2	6			V	
Q.8	Explain the stepwise conversion using stack for the given infix expression to the postfix expression $A * B + C * D$.	CO2	6	\checkmark	V		
Q.9	Write pseudo C/C++ code for polynomial addition using singly linked list.	CO2	7		\checkmark	\checkmark	\checkmark
Q.10	Explain stack overflow and underflow conditions	CO2	4	\checkmark	\checkmark		
Q.11	Define stack and write abstract data type for stack.	CO2	5	\checkmark	\checkmark		
Q.12	Write short notes on : (a) Stack application (b) Multi-stack.	CO2	6	V			

Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	 Write pseudo C/C++ code to represent deque and perform the following operations: a. Create Deque b. Insert c. Delete d. Display 	CO1	7	V			
Q.2	What is circular Queue? Explain the advantages of circular Queue over linear Queue	CO1	6		\checkmark		
Q.3	Write a pseudo C/C++ code to implement Circular Queue using Arrays	CO1	7	\checkmark	\checkmark		
Q.4	Explain applications of priority queue in detail.	CO1	6				\checkmark
Q.5	Write pseudo C/C++ code to represent Queue as an ADT	CO1	7	V	\checkmark		
Q.6	Define the following terms with example: 1. Dequeue 2. Priority queue 3. Linear queue	CO1	6		V		
Q.7	•	CO1	6		\checkmark		
Q.8	Define the following terms with example1. Linear Queue2. Circular Queue3. Priority Queue	CO1	6				
Q.9	Write pseudo C/C++ code to implement linked Queue	CO1	7	\checkmark	V		
Q.10		CO1	6		V	V	