
Assignment – 31 (Double ended queue) – Write-up

> This is pre-production content, posted in rush due to high demand from R-batch. Does
not have flowcharts.

Algorithm

Class Dequeue
 Data members:
 - a: an integer array of size 10
 - front: an integer to track the front index, initialized to -1
 - rear: an integer to track the rear index, initialized to -1
 - count: an integer to track the number of elements in the Dequeue, initialized to 0

 Constructor:
 - Initialize front, rear, and count to -1.

 Method addBegin(item):
 - If front is -1:
 - Set front and rear to 0.
 - Assign item to a[rear].
 - Increment count by 1.
 - Else if rear is greater than or equal to SIZE - 1:
 - Print "Insertion is not possible, overflow!!!"
 - Else:
 - Shift elements in the array a to make space for the new item.
 - Insert item at the front of the Dequeue.
 - Increment count by 1.
 - Increment rear by 1.

 Method addEnd(item):
 - If front is -1:
 - Set front and rear to 0.
 - Assign item to a[rear].
 - Increment count by 1.
 - Else if rear is greater than or equal to SIZE - 1:
 - Print "Insertion is not possible, overflow!!!"
 - Else:
 - Increment rear by 1.
 - Assign item to a[rear].
 - Increment count by 1.

 Method deleteFront():
 - If front is -1:
 - Print "Deletion is not possible: Dequeue is empty."
 - Else:
 - If front is equal to rear:
 - Set front and rear to -1.

 - Print "The deleted element is " followed by a[front].
 - Increment front by 1.

 Method deleteEnd():
 - If front is -1:
 - Print "Deletion is not possible: Dequeue is empty."
 - Else:
 - If front is equal to rear:
 - Set front and rear to -1.
 - Print "The deleted element is " followed by a[rear].
 - Decrement rear by 1.

 Method display():
 - Loop from i = front to i <= rear:
 - Print a[i] followed by a space.

Function main():
 Declare variables: c, item as integers
 Create an instance of the Dequeue class and name it d1

 Repeat the following loop until c is equal to 6:
 Display a menu for Dequeue operations:
 - "****DEQUEUE OPERATION****"
 - "1-Insert at beginning"
 - "2-Insert at end"
 - "3-Display"
 - "4-Deletion from front"
 - "5-Deletion from rear"
 - "6-Exit"
 - "Enter your choice (1-6):"

 Read the user's choice into variable c

 Switch on the value of c:
 Case 1:
 Prompt the user to enter an element
 Read the element into variable item
 Call the addBegin(item) method on d1 (Dequeue object)
 Break
 Case 2:
 Prompt the user to enter an element
 Read the element into variable item
 Call the addEnd(item) method on d1
 Break
 Case 3:
 Call the display() method on d1 to show the elements in the Dequeue
 Break
 Case 4:
 Call the deleteFront() method on d1 to remove an element from the front
 Break

 Case 5:
 Call the deleteEnd() method on d1 to remove an element from the rear
 Break
 Case 6:
 Exit the program
 Break
 Default:
 Display "Invalid choice"
 Break

 End of loop

 Return 0 to indicate successful program completion
End of Function main()

Pseudocodes

class Dequeue
{
 int a[10], front, rear, count

 Dequeue()
 {
 front = -1
 rear = -1
 count = 0
 }

 addBegin(item)
 {
 if front == -1
 front++
 rear++
 a[rear] = item
 count++
 else if rear >= SIZE - 1
 print "Insertion is not possible, overflow!!!!"
 else
 for i from count down to 0
 a[i + 1] = a[i]
 a[front] = item
 count++
 rear++
 }

 addEnd(item)
 {
 if front == -1
 front++

 rear++
 a[rear] = item
 count++
 else if rear >= SIZE - 1
 print "Insertion is not possible, overflow!!!"
 else
 rear++
 a[rear] = item
 count++
 }

 deleteFront()
 {
 if front == -1
 print "Deletion is not possible: Dequeue is empty"
 else
 print "The deleted element is " + a[front]
 if front == rear
 front = -1
 rear = -1
 else
 front++
 }

 deleteEnd()
 {
 if front == -1
 print "Deletion is not possible: Dequeue is empty"
 else
 print "The deleted element is " + a[rear]
 if front == rear
 front = -1
 rear = -1
 else
 rear--
 }

 display()
 {
 for i from front to rear
 print a[i] + " "
 }
}

function main()
{
 integer c, item
 Dequeue d1

 repeat
 {
 print("\n\n****DEQUEUE OPERATION****")
 print("1-Insert at beginning")
 print("2-Insert at end")
 print("3-Display")
 print("4-Deletion from front")
 print("5-Deletion from rear")
 print("6-Exit")
 print("Enter your choice <1-6>:")
 input(c)

 switch (c)
 {
 case 1:
 print("Enter the element to be inserted:")
 input(item)
 d1.addBegin(item)
 break

 case 2:
 print("Enter the element to be inserted:")
 input(item)
 d1.addEnd(item)
 break

 case 3:
 d1.display()
 break

 case 4:
 d1.deleteFront()
 break

 case 5:
 d1.deleteEnd()
 break

 case 6:
 exit(1)
 break

 default:
 print("Invalid choice")
 break
 }
 } until (c == 6)
}

Answers

	Assignment – 31 (Double ended queue) – Write-up
	# Algorithm
	Class Dequeue
	Function main():

	# Pseudocodes
	class Dequeue
	function main()

	# Answers

