DataStructuresAndAlgorithms/Codes/Practical-D18 (OBST).cpp

86 lines
2.2 KiB
C++
Raw Normal View History

2024-08-12 17:40:12 +05:30
/*
THIS CODE HAS BEEN TESTED AND IS FULLY OPERATIONAL.
Problem Statement: Given sequence k = k1 <k2 < <kn of n sorted keys, with a search probability pi for each key ki . Build the Binary search tree that has the least search cost given the access probability for each key?
Code from DataStructuresAndAlgorithms (SPPU - Second Year - Computer Engineering - Content) repository on KSKA Git: https://git.kska.io/sppu-se-comp-content/DataStructuresAndAlgorithms/
*/
// BEGINNING OF CODE
#include<iostream>
using namespace std;
int find(int, int);
void print(int, int);
int c[20][20], w[20][20], r[20][20], p[20], q[20], k, m, i, j, n;
char idtr[10][7];
int main()
{
cout<<"\nEnter number of identifiers: ";
cin>>n;
for(i = 1; i <= n; i++)
{
cout<<"Enter Identifier "<<i<<": ";
cin>>idtr[i];
}
for(i = 1; i <= n; i++)
{
cout<<"Enter successful probability of "<<i<<": ";
cin>>p[i];
}
for(i = 0; i <= n; i++)
{
cout<<"Enter unsuccessful probability of "<<i<<": ";
cin>>q[i];
}
for(i = 0; i <= n; i++)
{
w[i][i] = q[i];
c[i][i] = r[i][i] = 0;
cout<<"\nW: "<<w[i][i]<<" | c: "<<c[i][i]<<" | r: "<<r[i][i];
}
for(i = 0; i < n; i++)
{
j = i + 1;
w[i][j] = p[j] + q[j] + q[i];
c[i][j] = w[i][j];
r[i][j] = j;
cout<<"\nW: "<<w[i][j]<<" | c: "<<c[i][j]<<" | r: "<<r[i][j];
}
for(m = 2; m <= n; m++)
{
for(i = 0; i <= n-m; i++)
{
j = i + m;
w[i][j] = p[j] + q[j] + w[i][j-1];
c[i][j] = 1000;
for(k = i + 1; k <= j; k++)
{
int cost = c[i][k-1] + c[k][j];
if(cost < c[i][j])
{
c[i][j] = cost;
r[i][j] = k;
}
}
c[i][j] += w[i][j];
cout<<"\nW: "<<w[i][j]<<" | c: "<<c[i][j]<<" | r: "<<r[i][j];
}
}
cout<<"\nFinal OBST is: ";
print(0, n);
return 0;
}
void print(int i, int j)
{
if(i < j)
cout<<"\n"<<idtr[r[i][j]];
else
return;
print(i, r[i][j] - 1);
print(r[i][j], j);
}
// END OF CODE