Modern Education Society's College of Engineering, Pune - 411 001 Department of Computer Engineering

Question Bank

Subject: Data Structures and algorithms

Class: SE

	Onit 1						
Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	Explain about skip list with an example. Give applications of skip list.	CO1	4	V			V
Q.2	For the given set of values. 11,33,20,88,79,98,44,68,66,22 Create a hash table with size 10 and resolve collision using chaining with replacement and without replacement. Use the modulus Hash function. (key% size).	CO1	6		V		
Q.3	What is hash function? Enlist characteristic of a good hash function. Explain modulo Division and folding method.	CO1	5	V		V	
Q.4	What is collision? What are different collision resolution techniques?	CO1	4		V	V	
Q.5	Explain the terms bucket, collision, probe, perfect hash function. Illustrate what is the use of hash tables.	CO1	6	V			V
Q.6	Construct a hash table of size 10 using linear probing with replacement strategy for collision resolution. The hash function is $h(x)=x\%10$. Calculate total numbers of comparisons required for searching. Consider slot per bucket is 1 25,3,21,13,1,2,7,12,4,8.	CO1	6		V	V	

Q.7	Write a short note on skip list.	CO1	4	V		
Q.8	What do you mean by re-hashing? When is it used?	CO1	4		V	V
Q.9	What do you mean by hashing ? Explain in brief different hashing methods?	CO1	6	1		
Q.10	Write the properties of hashing function?	CO1	4	1		
Q.11	Assume the size of hash table as 10. The hash function to be used to calculate the hash value of the data X is X%10. Insert the following values in hash table:100,102,200,108,105.Use linear probing without replacement for handling collision.		5		1	

Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	Write the algorithm for non-recursive preorder traversal. Support your answer using a suitable example (must include pseudo code).	CO1	4	1			✓
Q.2	Construct a binary tree from given two traversals: inorder traversal-1,2,3,14,7,10,11,40,30 postorder traversal-1,3,2,7,10,40,30,11,14	CO1	6		•		
Q.3	Write a pseudo code for performing level-order traversal of a binary tree.	CO1	5		✓		
Q.4	What is the difference between single threaded and multi-threaded binary tree? Explain with the help of examples	CO1	6			√	
Q.5	State the 5 applications of Tree ?	CO1	5				V
Q.6	Write an algorithm for preorder arrangement with suitable example?	CO1	4		V		
Q.7	Write a short note on BST. And explain with suitable example?	CO1	4		V		V
Q.8	Write a C/C++ function to print given tree in DFS (without using recursion)	CO1	4		V		

Q.9	What is the difference between graph and tree?	CO1	6			V	
Q.10	Let characters a,b,c,d,e,f have probabilities 0.07,0.09,0.12,0.22,0.23,0.27 respectively. Find an optimal Huffman code and draw Huffman tree.	CO1	6	V	V		V
Q.11	Write a C/C++ function to print given tree in DFS (without using recursion)	CO1	5	V	V		

Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
	Dijkstra's Algorithm from A to G.	CO1	6		•		
Q.2	Draw any directed graph with minimum 6 nodes and represent graph using adjacency matrix, adjacency list, adjacency multi-list and inverse multi-list.	CO1	6			•	

	Define I DFS for					ow BFS a vertex a		CO1	5				
Q.4	Different for gener using tim	rating :	spannin	g of gra			_		4			✓	•
Q.5	Find MS algorithm				using K	Kruskal's	4	CO1	6		V		
			1		10		(a)						
Q.6 Q.7	Write she	r the g	raph re				ng	CO1 CO1	3 6	V	✓ ✓	V	V
Q.6 Q.7		r the g	raph re	oologica			ng 6			V	/	V	~
Q.6 Q.7	Conside adjacenc	r the g	raph rej	pologica	ed by the	followi				V	V	V	V
Q.6 Q.7	Conside adjacency	r the g y matr	raph reprix.	presente	ed by the	e followi 5	6			V	V	V	V
Q.6 Q.7	Conside adjacency Vertex	r the g y matr 1	raph reprix.	presente	4 6	5 0	6			V	V	V	•
Q.6 Q.7	Conside adjacency Vertex 1 2	r the g y matr 1 0	graph rejrix. 2 3	presente 3 1 5	4 6 0	5 0 3	6 0 0			V	✓ ✓	V	•
Q.6 Q.7	Conside adjacency Vertex 1 2 3 4 5	the grant material strength of	raph reprix. 2 3 0 5 0 3	oologica presente 3 1 5 0 5	4 6 0 5 0 0	5 0 3 6 0	6 0 0 4 2 6			V	✓	V	•
Q.6 Q.7	Conside adjacency Vertex 1 2 3 4	tr the grant material to the grant material	raph reprix. 2 3 0 5	oologica presente 3 1 5 0	4 6 0 5 0	5 0 3 6	6 0 0 4 2					V	•
Q.6 Q.7	Conside adjacency Vertex 1 2 3 4 5	the gy matrice of the gy matri	raph reprix. 2 3 0 5 0 3 0 mum spa	oologica presente 3 1 5 0 5 6 2	4 6 0 5 0 0 2 tree of the	5 0 3 6 0 0 6	6 0 0 4 2 6 0			V		V	

O.9	What are the application of graph theory in computer?	CO1	4	✓			
							/
Q.10	Write a short note on the adjency matrix and adjency	CO1	6			ſ	
~ · - ·	list with time complexity?		U				
Q.11	Explain Dijkstra's algorithm with an example.	CO1	5		1		

Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
Q.1	Explain with examples LL,LR,RR and RL rotations for AVL tree.	CO 2	5	•	•	•	
Q.2	Construct the AVL tree for the following data by inserting each of the following data item one at a time: 10,20,15,12,25,30,14,22,35,40.	CO 2	6		1		
Q.3	Explain with examples Height Balanced Tree.	CO 2	6		•	✓	
Q.4	Construct the AVL tree for the following data by inserting each of the following data item one at a time: A,Z,B,Y,C,X,D,U,E.	CO 2	7		•		
Q.5	Construct the AVL tree for the following data by inserting each of the following data item one at a time: JAN,APRIL,MARCH,JULY,AUG,OCT,NOV,MAY,JUN E	CO 2	6		•		
Q.6	Write a short note on Dynamic Programming with principle of Optimality.	CO 2	7		1		•
Q.7	Explain with examples Weight Balanced Tree.	CO 2	6	1	•	•	
Q.8	Write a short note on applications of different search trees.	CO 2	5	1			•
Q. 9	What is Optimal Binary Search Tree (OBST)	CO2	5	1			1
Q.10	Identifier set {a1, a2, a3} = {do, if, while} Where n = 3 and Probabilities of successful search as {p1, p2, p3} = {0.5, 0.1,0.05} and Probability of unsuccessful search as {q0, q1, q2,q3} = {0.15, 0.1, 0.05, 0.05}	CO2	6	•			1
Q11.	Short notes on: Red-Black Tree, AA tree, K-dimensional tree, Splay Tree	CO2	6	•			•

Unit 5

	Unit 3						
Q.NO	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
	Explain indexing techniques-primary, secondary, dense, sparse	CO2	8	1	•	•	
Q. <u>_</u>	What is B+ tree ?Give structure of its internal node.What are the order of B+ tree and characteristics of B+ tree.	CO2	8	•	•	•	
٧,5	Explain the steps to build a B-tree of order 5 for the following data: 78,21,14,11,97,85,74,63,45,42,57,20,16,19,32,30,31	CO2	7		1		
Z	Draw a B-tree of order 3 for the following sequence of keys: 2, 4, 9, 8, 7, 6, 3, 1, 5, 10	CO2	7		•		
Q.5	Insert the following keys to a 5-ways B-tree : 3, 7, 9, 23, 45, 1, 5, 14, 25, 24, 13, 11, 8, 19, 4, 31, 35, 56	CO2	6		•		
Q.6	Write algorithm to delete a node from B-Tree.	CO2	7		1		1
4. /	Draw a B+ of order 3 for the following sequence of keys: 1,42,28,21,31,10,17,7,31,25,20,18	CO2	8		1		
Q.8	Short note on Trie Tree	CO2	4		1		

Unit 6

()	Q.N O	Questions	CO Mapped	Marks	Memory Based	Conceptual	Analytical	Application
(Q.1	Compare index sequential and direct access file.	CO3	4	1	1	✓	
(~. -	What is file? List different file opening modes in file by opening file in append mode. Search for a specific record entered by user.	CO3	7	•	•		

	State different file organizations and discuss their advantages and disadvantages.	CO3	6	✓	✓	✓	
\sim .	Define sequential file organization. Write a pseudo code for insertion of records in sequential file.	CO3	6	√	•		
Q.5	Write a short note on external sort.	CO3	5		/		✓
Q.6	Explain any three operations on sequential file organization with example.	CO3	6	>			1
Q.7	Explain any two types of indices.	CO3	6	/	•		
Q.8	Explain advantages of indexing over sequential file.	CO3	7	\		✓	
Q.9	Explain linked file organization.	CO3	5	/	/		
Q.10	Explain Direct Access file.	CO3	5	1	1		

