
UNIT2 TREES



Syllabus

 Basic terminology, General tree and its representation, 
representation using sequential and linked organization, Binary 
tree- properties, converting tree to binary tree, binary tree 
traversals(recursive and non-recursive)- inorder, preorder, post 
order, depth first and breadth first, Operations on binary tree. 
Huffman Tree (Concept and Use), Binary Search Tree (BST), BST 
operations, Threaded binary search tree- concepts, threading, 
insertion and deletion of nodes in in-order threaded binary 
search tree, in order traversal of in-order threaded binary 
search tree.

 

• #Exemplar/Case Use of binary tree in expression tree-
evaluation and Huffman's coding



Objectives

• To learn the basic concept of non linear data structures.

• To learn what a tree is and how it is used.

• To implement the tree abstract data type using 

multiple internal representations.

• To learn different types of tree data structure.

• To see how trees can be used to solve a wide variety of 

problems



Outcome

At the end of this unit students will be able to 

• Understand meaning of non linear data structures.

• Understand tree data structure.

• Implement tree ADT.

• Implement various applications of tree.



Difference Between Linear and Nonlinear Data Structures
BASIS FOR 

COMPARISON
LINEAR DATA STRUCTURE NON-LINEAR DATA 

STRUCTURE

Basic In the linear data structure, the data is 
organized in a linear order in which 
elements are linked one after the other.

In the non-linear data 
structure the data elements 
are not stored in a sequential 
manner rather the elements 
are hierarchically related.

Traversing of the data The traversing of data in the linear data 
structure is easy as it can make all the 
data elements to be traversed in one go, 
but at a time only one element is 
directly reachable.

On the contrary, in the non-
linear data structure, the 
nodes are not visited 
sequentially and cannot be 
traversed in one go.

Ease of 
implementation

Simpler Complex

Levels involved Single level Multiple level

Examples Array, queue, stack, linked list, etc. Tree and graph.



I

  Introduction to trees:

Topic Time Required Weightage

Definition

        1 hour

2M

Basic 
terminologies 2M

Applications of 
Tree

2M



Tree

l A tree is an abstract model of a hierarchical structure that 

consists of  nodes with a parent-child relationship.
l Tree is a sequence of nodes
l There is a starting node known as a root node
l Every node other than the root has a parent node.
l Nodes may have any number of children



Basic Terminologies:

l Root − Node at the top of the tree is called root.
l Parent − Any node except root node has one edge upward to a 

node called parent.
l Child − Node below a given node connected by its edge 

downward is called its child node.
l Sibling – Child of same node are called siblings
l Leaf − Node which does not have any child node is called leaf 

node.
l Sub tree − Sub tree represents descendants of a node.

l Levels − Level of a node represents the generation of a node. If 

root node is at level 0, then its next child node  is at level 1, its 

grandchild is at level 2 and so on.

• keys − Key represents a value of a node based on which a search 
operation is to be carried out for a node.



Basic Terminologies:

l Degree of a node:

l The degree of a node is the number of children of that node

l Degree of a Tree:

l The degree of a tree is the maximum degree of nodes in a given tree

l Path:

l It is the sequence of consecutive edges from source node to destination 

node.

l Height of a node:

l The height of a node is the max path length from that node to a leaf 

node.

l Height of a tree:

l The height of a tree is the height of the root

l Depth of a tree:

l Depth of a tree is the max level of any leaf in the tree





Characteristics of trees

l Non-linear data structure

l Combines advantages of an ordered 

array

l Searching as fast as in ordered array

l Insertion and deletion as fast as in 

linked list



Applications:

l Directory structure of a file store

l Structure of an arithmetic expressions

l Used in almost every 3D video game to determine 

what objects need to be  rendered.

l Used in almost every high-bandwidth router for 

storing router-tables.

l Used in compression algorithms, such as those 

used by the .jpeg and .mp3 file-  formats.



Binary Tree

Topic Time Required Weightage

Introduction to Binary tree     

1 hour

Definition    2M

Binary tree properties

Types of Binary Tree   4M

Conversion of General tree 
to Binary tree

  4M

Representation techniques 

1 hour

4M

Traversal techniques 4M



Binary Tree Definition:
l A binary tree, T, is either empty or such 

that

I. T  has a special node called the root node

II.T  has two sets of nodes LT   and R T, called the left subtree and right subtree of T, respectively.    LT  and RT  are binary trees.



The following figure shows a binary tree with 9 nodes where A is the 
root



Binary Tree Properties
l A tree with n nodes has exactly (n-1) edges or branches .

l If a binary tree contains m nodes at level L, it contains at most 2m  

nodes at level L+1

•  Maximum number of nodes in a binary tree h is 2 h -1.

• The minimum height of a binary tree with n nodes is log 2 (n+1) -1

• Since a binary tree can contain at most 1 node at level 0 (the root), 

it  contains at most 2L nodes at level L.

• A binary tree with n internal nodes has n+1 external nodes.



Types of Binary Tree

l Complete binary tree

l Strictly binary tree

l Full Binary Tree

l Skewed Binary tree



Full Binary Tree

• A binary tree is said to be full if each of its node has two 
children or no children at all  and all leaf nodes should be 
on the same level. 

Fig.

  



Strictly Binary 
Tree

l If every non-leaf node in a binary tree has nonempty 

left and right sub-trees, then  such a tree is called a 

strictly binary tree.

l Or, to put it another way, all of the nodes in a strictly 

binary tree are of degree zero  or two, never degree 

one.

l A strictly binary tree with

N leaves always contains 2N – 1 nodes.



Complete binary tree
l A complete binary tree is a binary tree in which every level, 

except possibly the last, is completely filled, and all nodes are as 

far left as possible.

l A complete binary tree of depth d is called strictly binary tree if 

all of whose leaves are at level d.

l A complete binary tree has 2d nodes at every depth d and 2d -1 

non leaf nodes



Skewed Binary Tree

A skewed binary tree is a type of binary tree in which all the 
nodes have only either one child or no child.

• Types of skewed tree:



Conversion of general tree to binary tree

• Algorithm

- The root of the Binary Tree is the Root of the General 

Tree.

- The left child of a node in the General Tree is the Left 

child  

  of that node in the Binary Tree.

- The right sibling of any node in the General Tree is the 

    Right child of that node in the Binary Tree.





Representation of Binary tree 

• Binary tree can be represented using two ways: 

   1) Using sequential organization 

   2) Using linked organization



Sequential Representation/Array Representation: 

• A binary tree has a simple array representation. Suppose we 

start numbering the nodes of binary tree from zero onwards, 

left to right, beginning at the root, then there childs level 

wise. 

• Then we can store the various data items in the 

corresponding elements of an array. 

• Index of left child of a node i= 2 i

• Index of the right child of a node i=2 i + 1

• Index of the parent of a node i=i/2

• Sibling of a node i will be found at the location i+1,if i is a left 

child of it’s parent.

• If i is right child of it’s parent then it’s sibling will be found at 

i-1.



Tree and it’s Array 
Representation



Linked organization of Binary 

Tree:
• To represent node of binary tree in computer memory, 

the structure is:



struct Node { 
Node *left_child; 
int Data; 
Node *right_child; 
}; 



Tree traversal
l

There are three ways which we use to traverse a tree

l

In-order Traversal

l

Pre-order Traversal

l

Post-order Traversal



Pre-order, In-order, Post-order
l Pre-order

<root><left><righ
t>

l In-order

<left><root><righ
t>

l Post-order

<left><right><roo
t>



Pre-order Traversal
l The preorder traversal of a nonempty binary tree is 

defined as follows:

l Visit the root node

l Traverse the left sub-tree in preorder

l Traverse the right sub-tree in preorder



In-order traversal
l The in-order traversal of a nonempty binary tree is 

defined as follows:

l Traverse the left sub-tree in in-order

l Visit the root node

l Traverse the right sub-tree in inorder

l

The in-order traversal output  of the given tree isH D I B E A F C G



Post-order traversal
l The in-order traversal of a nonempty binary tree is 

defined as follows:
l Traverse the left sub-tree in post-order
l Traverse the right sub-tree in post-order
l Visit the root node

l

The in-order traversal output  of the given tree isH I D E B F G C A



Operations on Binary tree

Topic Time Required Weightage

Create/Recursive 
Traversals

1 hour 6M/4M

Non recursive 
Traversals 1 hour 6M/4M



void preorder(node *root)
{
   if (root != NULL)
   {
      cout<<root->data<<" ";
      preorder(root->left);
      preorder(root->right);
   }
}



void preorder_nonrec(node *T)
{
   stack s;
  while(T != NULL)
   {
      cout<<T->data<<" ";

s.push(T);
T=T->left;

}
   While(!s.empty())

{
T=s.pop();
T=T->right;
while(T != NULL)

   {
      cout<<T->data<<" ";

s.push(T);
T=T->left;

}
}

}



void Inorder_nonrec(node *T)
{
   stack s;
  while(T != NULL)
   {
      s.push(T);

T=T->left;
}

   While(!s.empty())
{

T=s.pop();
cout<<T->data<<" ";       
T=T->right;
while(T != NULL)

   {
      s.push(T);

T=T->left;
}

}
}







Binary Search Tree  (BST)  

Topic Time Required Weightage

Definition

2 hour

2M

Need 2M

Operations on 
BST

4M



Binary Search Tree 
(BST)
l A binary search tree (BST) is a binary tree that is either 

empty or in  which every node contains a key (value) and 

satisfies the following  conditions:

l All keys in the left sub-tree of the root are smaller than 

the key in the root node

l All keys in the right sub-tree of the root are greater than 

the key in the root  node

l The left and right sub-trees of the root are again binary 

search trees



Binary Search Tree  (BST)



Why Binary Search Tree 
?
l Let us consider a problem of searching a list.

l If a list is ordered searching becomes faster if we use 

contiguous  list(array).

l But if we need to make changes in the list, such as 

inserting new  entries or deleting old entries, 

(SLOWER!!!!) because insertion and  deletion in a 

contiguous list requires moving many of the entries every  

time.



Why Binary Search Tree 
?
l So me may think of using a linked list because it permits 

insertion and  deletion to be carried out by adjusting only 

few pointers.

l But in an n-linked list, there is no way to move through the 

list other  than one node at a time, permitting only 

sequential access.

l Binary trees provide an excellent solution to this problem. 

By making  the entries of an ordered list into the nodes of 

a binary search tree, we  find that we can search for a key 

in O(logn)



Binary Search Tree 
(BST)

Time 
Complexit

y
Array Linked List BST

Search O(n) O(n) O(logn)

Insert O(1) O(1) O(logn)

Delete O(n) O(n) O(logn)



Operations on Binary Search Tree 
(BST)
l Following operations can be done in BST:

l Search(k, T): Search for key k in the tree T. If k is found in 

some node of tree  then return true otherwise return false.

l Insert(k, T): Insert a new node with value k in the info field in 

the tree T such that the property of BST is maintained.

l Delete(k, T):Delete a node with value k in the info field from 

the tree T such  that the property of BST is maintained.

l FindMin(T), FindMax(T): Find minimum and maximum element 

from the  given nonempty BST.



Searching Through The BST

l Compare the target value with the element in the 

root node

If the target value is equal, the search is 

successful.

If target value is less, search the left subtree.

If target value is greater, search the right subtree.

If the subtree is empty, the search is 

unsuccessful.



Insertion of a node in BST 
l To  insert a new item in a tree, we must first verify that 

its key is different  from those of existing elements.

l If a new value is less, than the current node's value, go 

to the left subtree,  else go to the right subtree.

l Following this simple rule, the algorithm reaches a node, 

which has no left  or right subtree.

l By the moment a place for insertion is found, we can say 

for sure, that a  new value has no duplicate in the tree.



Algorithm for insertion in 
BST

l Check, whether value in current node and a new value are equal. 

If so,  duplicate is found. Otherwise,

l if a new value is less, than the node's value:

l if a current node has no left child, place for insertion has been 

found;

l otherwise, handle the left child with the same algorithm.

l if a new value is greater, than the node's value:

l if a current node has no right child, place for insertion has been 

found;

l otherwise, handle the right child with the same algorithm.





Deleting a node from the 
BST

51

l While deleting a node from BST, there may be three 

cases:

1.The node to be deleted may be a leaf node:

l In this case simply delete a node and set null pointer to 

its parents those side  at which this deleted node exist.



Deleting a node from the 
BST

52

1.The node to be deleted has one child

l In this case the child of the node to be deleted is appended to 

its parent node.

Suppose node to be deleted is 18



Deleting a node from the 
BST

53



Threaded Binary Search Tree

Topic Time Required Weightage

Need

1 hour

2M

Advantages of TBT

2M

Disadvantages of 
TBT

Converting Binary 
Tree to TBT

4M

Implementation of 
TBT

        

            1 hour

4M

Traversal 
Techniques of TBT

4M



Why TBT?

• In a linked list representation of binary tree, there are more 

null links than actual pointers. These null links can be replaced 

by pointers called threads to other nodes.

• A left null link of a node is replaced with the address of it’s 

inorder predecessor and right null link is replaced with address 

of it’s inorder successor



Node structure of TBT

• In the memory representation of a tree node 

we must be able to distinguish between 

threads and normal pointers so two extra 

fields lbit and rbit are added.

• lbit=1 means actual left child is present

• rbit=1 means actual right child is present

• lbit=0 means left link is replaced with thread

• rbit=0 means right link is replaced with thread

  Node Structure of TBT

lbit left 
child 
address

Data right 
child 
address

rbit





Huffman Algorithm  1h
l Huffman algorithm is a method for building an extended 

binary tree  with a  minimum weighted path length from 

a set of given weights.

• This is a method for the construction of minimum 

redundancy codes.

• Applicable to many forms of data transmission

• multimedia codecs such as JPEG and MP3



Huffman 
Algorithm

l 1951, David Huffman found the “most efficient method of 

representing  numbers, letters, and other symbols using binary 

code”. Now standard  method used for data compression.

l In Huffman Algorithm, a set of nodes assigned with values if 

fed to the  algorithm. Initially 2 nodes are considered and their 

sum forms their parent  node.

l When a new element is considered, it can be added to the tree.

l Its value and the previously calculated sum of the tree are used 

to form the  new node which in turn becomes their parent.



Huffman Algorithm

l Lets say you have a set of numbers and their frequency 

of use and  want to create a huffman encoding for them

Value Frequencie
s

1 5

2 7

3 10

4 15

5 20

6 45



Huffman 
Algorithm
l Creating a Huffman tree is simple. Sort this list by frequency and make 

the two-lowest elements  into leaves, creating a parent node with a 
frequency that is the sum of the two lower element's  frequencies:

12:*

/ \
5:1 7:2

l The two elements are removed from the list and the new parent node, 
with frequency 12, is  inserted into the list by frequency. So now the 
list, sorted by frequency, is:

10:3

12:*
15:4
20:5
45:6



Huffman Algorithm
•

You then repeat the loop, combining the two lowest elements. This results in: 22:*

/ \
10:3 12:*

/ \
5:1 7:2

• The two elements are removed from the list and the new parent node, 
with frequency 12, is  inserted into the list by frequency. So now the 
list, sorted by frequency, is:

15:4

20:5
22: *
45:6



Huffman Algorithm



Expression Tree  1h

• Definition: An expression tree is a representation of 

expressions arranged in a tree-like data structure. In 

other words, it is a tree with leaves as operands of the 

expression and nodes contain the operators.

• Constructing an Expression tree 

     Algorithm(scan postfix expression from left to right)

1.Get one symbol at a time

2.If symbol is operand then create a node and push pointer onto 

stack

3.If symbol is operator then pop pointer to two trees T1 and T2 

from stack and form a new tree whose root is operator and 

whose left and right children point to T1 and T2 respectively.

4.Repeat Steps 1,2 and 3 till end of expression

5.Pop the pointer from stack which is pointer to the root of 

expression tree.

       



Example of Expression Tree

• Expression tree for 3 + ((5+9)*2) would be:
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Thank You
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