
UNIT2 TREES

Syllabus

 Basic terminology, General tree and its representation,
representation using sequential and linked organization, Binary
tree- properties, converting tree to binary tree, binary tree
traversals(recursive and non-recursive)- inorder, preorder, post
order, depth first and breadth first, Operations on binary tree.
Huffman Tree (Concept and Use), Binary Search Tree (BST), BST
operations, Threaded binary search tree- concepts, threading,
insertion and deletion of nodes in in-order threaded binary
search tree, in order traversal of in-order threaded binary
search tree.

• #Exemplar/Case Use of binary tree in expression tree-
evaluation and Huffman's coding

Objectives

• To learn the basic concept of non linear data structures.

• To learn what a tree is and how it is used.

• To implement the tree abstract data type using

multiple internal representations.

• To learn different types of tree data structure.

• To see how trees can be used to solve a wide variety of

problems

Outcome

At the end of this unit students will be able to

• Understand meaning of non linear data structures.

• Understand tree data structure.

• Implement tree ADT.

• Implement various applications of tree.

Difference Between Linear and Nonlinear Data Structures
BASIS FOR

COMPARISON
LINEAR DATA STRUCTURE NON-LINEAR DATA

STRUCTURE

Basic In the linear data structure, the data is
organized in a linear order in which
elements are linked one after the other.

In the non-linear data
structure the data elements
are not stored in a sequential
manner rather the elements
are hierarchically related.

Traversing of the data The traversing of data in the linear data
structure is easy as it can make all the
data elements to be traversed in one go,
but at a time only one element is
directly reachable.

On the contrary, in the non-
linear data structure, the
nodes are not visited
sequentially and cannot be
traversed in one go.

Ease of
implementation

Simpler Complex

Levels involved Single level Multiple level

Examples Array, queue, stack, linked list, etc. Tree and graph.

I

 Introduction to trees:

Topic Time Required Weightage

Definition

 1 hour

2M

Basic
terminologies 2M

Applications of
Tree

2M

Tree

l A tree is an abstract model of a hierarchical structure that

consists of nodes with a parent-child relationship.
l Tree is a sequence of nodes
l There is a starting node known as a root node
l Every node other than the root has a parent node.
l Nodes may have any number of children

Basic Terminologies:

l Root − Node at the top of the tree is called root.
l Parent − Any node except root node has one edge upward to a

node called parent.
l Child − Node below a given node connected by its edge

downward is called its child node.
l Sibling – Child of same node are called siblings
l Leaf − Node which does not have any child node is called leaf

node.
l Sub tree − Sub tree represents descendants of a node.

l Levels − Level of a node represents the generation of a node. If

root node is at level 0, then its next child node is at level 1, its

grandchild is at level 2 and so on.

• keys − Key represents a value of a node based on which a search
operation is to be carried out for a node.

Basic Terminologies:

l Degree of a node:

l The degree of a node is the number of children of that node

l Degree of a Tree:

l The degree of a tree is the maximum degree of nodes in a given tree

l Path:

l It is the sequence of consecutive edges from source node to destination

node.

l Height of a node:

l The height of a node is the max path length from that node to a leaf

node.

l Height of a tree:

l The height of a tree is the height of the root

l Depth of a tree:

l Depth of a tree is the max level of any leaf in the tree

Characteristics of trees

l Non-linear data structure

l Combines advantages of an ordered

array

l Searching as fast as in ordered array

l Insertion and deletion as fast as in

linked list

Applications:

l Directory structure of a file store

l Structure of an arithmetic expressions

l Used in almost every 3D video game to determine

what objects need to be rendered.

l Used in almost every high-bandwidth router for

storing router-tables.

l Used in compression algorithms, such as those

used by the .jpeg and .mp3 file- formats.

Binary Tree

Topic Time Required Weightage

Introduction to Binary tree

1 hour

Definition 2M

Binary tree properties

Types of Binary Tree 4M

Conversion of General tree
to Binary tree

 4M

Representation techniques

1 hour

4M

Traversal techniques 4M

Binary Tree Definition:
l A binary tree, T, is either empty or such

that

I. T has a special node called the root node

II.T has two sets of nodes LT and R T, called the left subtree and right subtree of T, respectively. LT and RT are binary trees.

The following figure shows a binary tree with 9 nodes where A is the
root

Binary Tree Properties
l A tree with n nodes has exactly (n-1) edges or branches .

l If a binary tree contains m nodes at level L, it contains at most 2m

nodes at level L+1

• Maximum number of nodes in a binary tree h is 2 h -1.

• The minimum height of a binary tree with n nodes is log 2 (n+1) -1

• Since a binary tree can contain at most 1 node at level 0 (the root),

it contains at most 2L nodes at level L.

• A binary tree with n internal nodes has n+1 external nodes.

Types of Binary Tree

l Complete binary tree

l Strictly binary tree

l Full Binary Tree

l Skewed Binary tree

Full Binary Tree

• A binary tree is said to be full if each of its node has two
children or no children at all and all leaf nodes should be
on the same level.

Fig.

Strictly Binary
Tree

l If every non-leaf node in a binary tree has nonempty

left and right sub-trees, then such a tree is called a

strictly binary tree.

l Or, to put it another way, all of the nodes in a strictly

binary tree are of degree zero or two, never degree

one.

l A strictly binary tree with

N leaves always contains 2N – 1 nodes.

Complete binary tree
l A complete binary tree is a binary tree in which every level,

except possibly the last, is completely filled, and all nodes are as

far left as possible.

l A complete binary tree of depth d is called strictly binary tree if

all of whose leaves are at level d.

l A complete binary tree has 2d nodes at every depth d and 2d -1

non leaf nodes

Skewed Binary Tree

A skewed binary tree is a type of binary tree in which all the
nodes have only either one child or no child.

• Types of skewed tree:

Conversion of general tree to binary tree

• Algorithm

- The root of the Binary Tree is the Root of the General

Tree.

- The left child of a node in the General Tree is the Left

child

 of that node in the Binary Tree.

- The right sibling of any node in the General Tree is the

 Right child of that node in the Binary Tree.

Representation of Binary tree

• Binary tree can be represented using two ways:

 1) Using sequential organization

 2) Using linked organization

Sequential Representation/Array Representation:

• A binary tree has a simple array representation. Suppose we

start numbering the nodes of binary tree from zero onwards,

left to right, beginning at the root, then there childs level

wise.

• Then we can store the various data items in the

corresponding elements of an array.

• Index of left child of a node i= 2 i

• Index of the right child of a node i=2 i + 1

• Index of the parent of a node i=i/2

• Sibling of a node i will be found at the location i+1,if i is a left

child of it’s parent.

• If i is right child of it’s parent then it’s sibling will be found at

i-1.

Tree and it’s Array
Representation

Linked organization of Binary

Tree:
• To represent node of binary tree in computer memory,

the structure is:

struct Node {
Node *left_child;
int Data;
Node *right_child;
};

Tree traversal
l

There are three ways which we use to traverse a tree

l

In-order Traversal

l

Pre-order Traversal

l

Post-order Traversal

Pre-order, In-order, Post-order
l Pre-order

<root><left><righ
t>

l In-order

<left><root><righ
t>

l Post-order

<left><right><roo
t>

Pre-order Traversal
l The preorder traversal of a nonempty binary tree is

defined as follows:

l Visit the root node

l Traverse the left sub-tree in preorder

l Traverse the right sub-tree in preorder

In-order traversal
l The in-order traversal of a nonempty binary tree is

defined as follows:

l Traverse the left sub-tree in in-order

l Visit the root node

l Traverse the right sub-tree in inorder

l

The in-order traversal output of the given tree isH D I B E A F C G

Post-order traversal
l The in-order traversal of a nonempty binary tree is

defined as follows:
l Traverse the left sub-tree in post-order
l Traverse the right sub-tree in post-order
l Visit the root node

l

The in-order traversal output of the given tree isH I D E B F G C A

Operations on Binary tree

Topic Time Required Weightage

Create/Recursive
Traversals

1 hour 6M/4M

Non recursive
Traversals 1 hour 6M/4M

void preorder(node *root)
{
 if (root != NULL)
 {
 cout<<root->data<<" ";
 preorder(root->left);
 preorder(root->right);
 }
}

void preorder_nonrec(node *T)
{
 stack s;
 while(T != NULL)
 {
 cout<<T->data<<" ";

s.push(T);
T=T->left;

}
 While(!s.empty())

{
T=s.pop();
T=T->right;
while(T != NULL)

 {
 cout<<T->data<<" ";

s.push(T);
T=T->left;

}
}

}

void Inorder_nonrec(node *T)
{
 stack s;
 while(T != NULL)
 {
 s.push(T);

T=T->left;
}

 While(!s.empty())
{

T=s.pop();
cout<<T->data<<" ";
T=T->right;
while(T != NULL)

 {
 s.push(T);

T=T->left;
}

}
}

Binary Search Tree (BST)

Topic Time Required Weightage

Definition

2 hour

2M

Need 2M

Operations on
BST

4M

Binary Search Tree
(BST)
l A binary search tree (BST) is a binary tree that is either

empty or in which every node contains a key (value) and

satisfies the following conditions:

l All keys in the left sub-tree of the root are smaller than

the key in the root node

l All keys in the right sub-tree of the root are greater than

the key in the root node

l The left and right sub-trees of the root are again binary

search trees

Binary Search Tree (BST)

Why Binary Search Tree
?
l Let us consider a problem of searching a list.

l If a list is ordered searching becomes faster if we use

contiguous list(array).

l But if we need to make changes in the list, such as

inserting new entries or deleting old entries,

(SLOWER!!!!) because insertion and deletion in a

contiguous list requires moving many of the entries every

time.

Why Binary Search Tree
?
l So me may think of using a linked list because it permits

insertion and deletion to be carried out by adjusting only

few pointers.

l But in an n-linked list, there is no way to move through the

list other than one node at a time, permitting only

sequential access.

l Binary trees provide an excellent solution to this problem.

By making the entries of an ordered list into the nodes of

a binary search tree, we find that we can search for a key

in O(logn)

Binary Search Tree
(BST)

Time
Complexit

y
Array Linked List BST

Search O(n) O(n) O(logn)

Insert O(1) O(1) O(logn)

Delete O(n) O(n) O(logn)

Operations on Binary Search Tree
(BST)
l Following operations can be done in BST:

l Search(k, T): Search for key k in the tree T. If k is found in

some node of tree then return true otherwise return false.

l Insert(k, T): Insert a new node with value k in the info field in

the tree T such that the property of BST is maintained.

l Delete(k, T):Delete a node with value k in the info field from

the tree T such that the property of BST is maintained.

l FindMin(T), FindMax(T): Find minimum and maximum element

from the given nonempty BST.

Searching Through The BST

l Compare the target value with the element in the

root node

If the target value is equal, the search is

successful.

If target value is less, search the left subtree.

If target value is greater, search the right subtree.

If the subtree is empty, the search is

unsuccessful.

Insertion of a node in BST
l To insert a new item in a tree, we must first verify that

its key is different from those of existing elements.

l If a new value is less, than the current node's value, go

to the left subtree, else go to the right subtree.

l Following this simple rule, the algorithm reaches a node,

which has no left or right subtree.

l By the moment a place for insertion is found, we can say

for sure, that a new value has no duplicate in the tree.

Algorithm for insertion in
BST

l Check, whether value in current node and a new value are equal.

If so, duplicate is found. Otherwise,

l if a new value is less, than the node's value:

l if a current node has no left child, place for insertion has been

found;

l otherwise, handle the left child with the same algorithm.

l if a new value is greater, than the node's value:

l if a current node has no right child, place for insertion has been

found;

l otherwise, handle the right child with the same algorithm.

Deleting a node from the
BST

51

l While deleting a node from BST, there may be three

cases:

1.The node to be deleted may be a leaf node:

l In this case simply delete a node and set null pointer to

its parents those side at which this deleted node exist.

Deleting a node from the
BST

52

1.The node to be deleted has one child

l In this case the child of the node to be deleted is appended to

its parent node.

Suppose node to be deleted is 18

Deleting a node from the
BST

53

Threaded Binary Search Tree

Topic Time Required Weightage

Need

1 hour

2M

Advantages of TBT

2M

Disadvantages of
TBT

Converting Binary
Tree to TBT

4M

Implementation of
TBT

 1 hour

4M

Traversal
Techniques of TBT

4M

Why TBT?

• In a linked list representation of binary tree, there are more

null links than actual pointers. These null links can be replaced

by pointers called threads to other nodes.

• A left null link of a node is replaced with the address of it’s

inorder predecessor and right null link is replaced with address

of it’s inorder successor

Node structure of TBT

• In the memory representation of a tree node

we must be able to distinguish between

threads and normal pointers so two extra

fields lbit and rbit are added.

• lbit=1 means actual left child is present

• rbit=1 means actual right child is present

• lbit=0 means left link is replaced with thread

• rbit=0 means right link is replaced with thread

 Node Structure of TBT

lbit left
child
address

Data right
child
address

rbit

Huffman Algorithm 1h
l Huffman algorithm is a method for building an extended

binary tree with a minimum weighted path length from

a set of given weights.

• This is a method for the construction of minimum

redundancy codes.

• Applicable to many forms of data transmission

• multimedia codecs such as JPEG and MP3

Huffman
Algorithm

l 1951, David Huffman found the “most efficient method of

representing numbers, letters, and other symbols using binary

code”. Now standard method used for data compression.

l In Huffman Algorithm, a set of nodes assigned with values if

fed to the algorithm. Initially 2 nodes are considered and their

sum forms their parent node.

l When a new element is considered, it can be added to the tree.

l Its value and the previously calculated sum of the tree are used

to form the new node which in turn becomes their parent.

Huffman Algorithm

l Lets say you have a set of numbers and their frequency

of use and want to create a huffman encoding for them

Value Frequencie
s

1 5

2 7

3 10

4 15

5 20

6 45

Huffman
Algorithm
l Creating a Huffman tree is simple. Sort this list by frequency and make

the two-lowest elements into leaves, creating a parent node with a
frequency that is the sum of the two lower element's frequencies:

12:*

/ \
5:1 7:2

l The two elements are removed from the list and the new parent node,
with frequency 12, is inserted into the list by frequency. So now the
list, sorted by frequency, is:

10:3

12:*
15:4
20:5
45:6

Huffman Algorithm
•

You then repeat the loop, combining the two lowest elements. This results in: 22:*

/ \
10:3 12:*

/ \
5:1 7:2

• The two elements are removed from the list and the new parent node,
with frequency 12, is inserted into the list by frequency. So now the
list, sorted by frequency, is:

15:4

20:5
22: *
45:6

Huffman Algorithm

Expression Tree 1h

• Definition: An expression tree is a representation of

expressions arranged in a tree-like data structure. In

other words, it is a tree with leaves as operands of the

expression and nodes contain the operators.

• Constructing an Expression tree

 Algorithm(scan postfix expression from left to right)

1.Get one symbol at a time

2.If symbol is operand then create a node and push pointer onto

stack

3.If symbol is operator then pop pointer to two trees T1 and T2

from stack and form a new tree whose root is operator and

whose left and right children point to T1 and T2 respectively.

4.Repeat Steps 1,2 and 3 till end of expression

5.Pop the pointer from stack which is pointer to the root of

expression tree.

Example of Expression Tree

• Expression tree for 3 + ((5+9)*2) would be:

References
l

Horowitz, Sahani, Dinesh Mehata, ―Fundamentals of Data Structures in C++‖, Galgotia Publisher, ISBN: 8175152788, 9788175152786.

l

Data-Structures-Book-By-Seymour-Lipschutz

l

https://www.siggraph.org/education/materials/HyperGraph/video/mp eg/mpegfaq/huffman_tutorial.html

l https://en.wikipedia.org/wiki/Binary_search_tree
l https://www.cs.swarthmore.edu/~newhall/unixhelp/Java_bst.pdf
l https://www.cs.usfca.edu/~galles/visualization/BST.html
l https://www.cs.rochester.edu/~gildea/csc282/slides/C12-bst.pdfl

http://www.tutorialspoint.com/data_structures_algorithms/tree_data_structure.htm

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

