
Graphs

Contents

• Definition of Graphs and Related
Concepts

• Terminology

• Representation of Graphs

• Graphs as ADTs

• Graph Traversal

• Applications of Graphs

Terminology
• Definition:
• A set of points that are joined by lines

• Graphs also represent the relationships
among data items

• G = { V , E }; that is, a graph is a set of
vertices and edges

• V(G): a finite, nonempty set of vertices

• E(G): a set of edges (pairs of vertices)

• A subgraph consists of a subset of a
graph’s vertices and a subset of its edges

Terminology

FIGURE 1 An ordinary line graph

Terminology

FIGURE 2 (a) A campus map as a graph;
(b) a subgraph

Terminology

FIGURE 20-3 Graphs that are (a) connected;
(b) disconnected; and (c) complete

Terminology

FIGURE 4 (a) A multigraph is not a graph;
(b) a self edge is not allowed in a graph

Terminology

FIGURE 5 (a) A weighted graph;
(b) a directed graph

Terminology

• path: passes through vertex only once and
there exist an edge from one vertex to the
next vertex.

• Cycle: a path that begins and ends at same
vertex

• Simple cycle: cycle that does not pass
through other vertices more than once

• Connected graph: each pair of distinct
vertices has a path between them

Terminology

• Complete graph: each pair of distinct
vertices has an edge between them

• Graph cannot have duplicate edges
between vertices

• Multigraph: does allow multiple edges

• Weighted graph: When labels represent
numeric values, graph is called a weighted
graph

Terminology

• Undirected graphs: edges do not indicate a
direction

• Directed graph, or digraph: each edge has
a direction

Concepts: Degree
• Undirected graph: The degree of a vertex is

the number of edges touching it.

• For a directed graph, the in-degree is the number of
edges entering the vertex, and the out-degree is the
number leaving it. The degree is the in-degree + the
out-degree.

degree 4

in-degree 2, out-degree 1

• Trees are special cases of graphs!!
• No unique node call root
• A cycle can be formed
• Applications

Trees vs graphs

Representation of Graphs

FIGURE 6 (a) A directed graph and
(b) its adjacency matrix

Representation of Graphs

FIGURE 7 (a) A weighted undirected graph and
(b) its adjacency matrix

Adjacency Matrix: Pros and
Cons

16

• advantages
 fast to tell whether edge exists between any

two vertices i and j (and to get its weight)

• disadvantages
 consumes a lot of memory on sparse graphs

(ones with few edges)
 redundant information for undirected graphs

Steps: Graph using adjacency matrix
l Create and display a graph using

adjacency matrix

1. Initialize g[i][j]=0;
2. Enter the no. of nodes required
 3. for(i=0;i<n;i++)

 {

 for(j=0;j<n;j++)
 {
 cin>>graph[i][j];
 }
 }

 4. for(i=0;i<n;i++)
 {
 for(j=0;j<n;j++)
 {
 cout<<graph[i][j];
 }
 }

Representation of Graphs

FIGURE 8 (a) A directed graph and
(b) its adjacency list

Representation of Graphs

FIGURE 9 (a) A weighted undirected graph and
(b) its adjacency list

class node

{

 int/char vertex;

 node *next;

} ;

node *G[10];

Data Structures and Problem Solving with C++: Walls and Mirrors, Frank Carrano, © 2012

Algorithm

Adjacency List: Pros and Cons

21

• advantages:
 new nodes can be added easily
 new nodes can be connected with existing

nodes easily

• disadvantages:
 determining whether an edge exists between

two nodes: O(average degree)

Adjacency matrix vs. adjacency list
representation

• Adjacency matrix
 Good for dense graphs --|E|~O(|V|2)
 Memory requirements: O(|V| + |E|) = O(|V|2)
 Connectivity between two vertices can be

tested quickly
• Adjacency list

 Good for sparse graphs -- |E|~O(|V|)
 Memory requirements: O(|V| + |E|)=O(|V|)
 Vertices adjacent to another vertex can be

found quickly

Graph operations and Storage
Structure

1.Create(): using adjacency matrix or
adjacency list.

2.Display(): using BFS and DFS.

Storage Structure :

Graph creation using adjacency matix or
adjacency list.

Graphs as ADTs

ADT graph operations
 Test whether graph is empty.
 Get number of vertices in a graph.
 Get number of edges in a graph.
 See whether edge exists between two given

vertices.
 Indegree()
 Outdegree()
 Display()

Graph Traversals

• Visits all of the vertices that it can reach
– Happens if and only if graph is connected

• Connected component is subset of vertices
visited during traversal that begins at given
vertex

Graph Traversal (Contd.)

• In both DFS and BFS, the nodes of the
undirected graph are visited in a
systematic manner so that every node
is visited exactly one.

• Both BFS and DFS give rise to a tree:
 When a node x is visited, it is labeled

as visited, and it is added to the tree
 If the traversal got to node x from

node y, y is viewed as the parent of
x, and x a child of y

Depth-First Search

• DFS follows the following rules:
1. Select an unvisited node x, visit it, and treat as

the current node

2. Find an unvisited neighbor of the current node,
visit it, and make it the new current node;

3. If the current node has no unvisited neighbors,
backtrack to the its parent, and make that parent
the new current node;

4. Repeat steps 3 and 4 until no more nodes can be
visited.

5. If there are still unvisited nodes, repeat from step

Illustration of DFS
0 1

2
4

5

6

7

8

9

10

11

0

1
4

2

5

6
7

8

9

11

10

DFS Tree

Graph G

Implementation of DFS

• Observations:
 the last node visited is the first node from

which to proceed.
 Also, the backtracking proceeds on the

basis of "last visited, first to backtrack too".
 This suggests that a stack is the proper

data structure to remember the current
node and how to backtrack.

DFS (Pseudo Code)
 procedure DFS-iterative(G,v):
2 let S be a stack
3 S.push(v)
4 while S is not empty
5 v = S.pop()
6 if v is not labeled as discovered:
7 label v as discovered
8 for all edges from v to w in

G.adjacentEdges(v) do
9 S.push(w)

Depth-First Search

• Goes as far as possible from a vertex before
backing up

• Recursive algorithm

Depth-First Search
• Iterative algorithm, using a stack

33

Breadth-First Search
• BFS follows the following rules:

1. Select an unvisited node x, visit it, have it be the
root in a BFS tree being formed. Its level is called
the current level.

2. From each node z in the current level, in the order
in which the level nodes were visited, visit all the
unvisited neighbors of z. The newly visited nodes
from this level form a new level that becomes the
next current level.

3. Repeat step 2 until no more nodes can be visited.

4. If there are still unvisited nodes, repeat from Step

Illustration of BFS
0 1

2
4

5

6

7

8

9

10

11

0

1 42

5

6 7 8

9

11

10

BFS Tree Graph G

Implementation of BFS

• Observations:
 the first node visited in each level is the first

node from which to proceed to visit new
nodes.

• This suggests that a queue is the proper
data structure to remember the order of
the steps.

We will redo the BFS on the previous
graph, but this time with queues

BFS (Pseudo Code)
BFS(input: graph G)
 {
 Queue Q;
 Integer x, z, y;

while (G has an unvisited node x)
 {

visit(x);
 Enqueue(x,Q);

while (Q is not empty)
 {

z := Dequeue(Q);
for all (unvisited neighbor y of z)

 {
 visit(y);
 Enqueue(y,Q);

 }
}

 }
}

Breadth-First Search

• Visits all vertices adjacent to vertex before
going forward

• Breadth-first search uses a queue

Depth-First Search

FIGURE 10 Visitation order for (a) a depth-first search;
(b) a breadth-first search

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, © 2013

 39

Optimization problems

• An optimization problem is one in which you want to
find, not just a solution, but the best solution

• A “greedy algorithm” sometimes works well for
optimization problems

• A greedy algorithm works in phases. At each phase:
 You take the best you can get right now, without

regard for future consequences
 You hope that by choosing a local optimum at

each step, you will end up at a global optimum

 40

Example: Counting money

• Suppose you want to count out a certain amount of
money, using the fewest possible bills and coins

• A greedy algorithm would do this would be:
At each step, take the largest possible bill or coin that
does not overshoot
 Example: To make $6.39, you can choose:

• a $5 bill
• a $1 bill, to make $6
• a 25¢ coin, to make $6.25
• A 10¢ coin, to make $6.35
• four 1¢ coins, to make $6.39

• For US money, the greedy algorithm always gives the
optimum solution

 41

A failure of the greedy algorithm

• In some (fictional) monetary system, “krons” come in 1
kron, 7 kron, and 10 kron coins

• Using a greedy algorithm to count out 15 krons, you
would get
 A 10 kron piece
 Five 1 kron pieces, for a total of 15 krons
 This requires six coins

• A better solution would be to use two 7 kron pieces
and one 1 kron piece
 This only requires three coins

• The greedy algorithm results in a solution, but not in
an optimal solution

spanning trees

A tree is a connected undirected graph with no cycles. It is a
spanning tree of a graph G if it spans G (that is, it includes
every vertex of G) and is a subgraph of G (every edge in the
tree belongs to G).

A connected,
undirected graph

Four of the spanning trees of the graph

Spanning Trees

FIGURE 20 The DFS spanning tree rooted at vertex a
for the graph in Figure 20-11

Spanning Trees

FIGURE 21 The BFS spanning tree rooted at vertex a
for the graph in Figure 20-11

Spanning Trees
• Tree: an undirected connected graph

without cycles

• Observations about undirected graphs
1. Connected undirected graph with n vertices

must have at least n – 1 edges.

2. Connected undirected graph with n vertices,
exactly n – 1 edges cannot contain a cycle

3. A connected undirected graph with n vertices,
more than n – 1 edges must contain at least
one cycle

Minimum spanning tree Algorithms

Kruskal’s algorithm

-Select the shortest edge in a
network

-Select the next shortest edge
which does not create a cycle

-Repeat step 2 until all vertices
have been connected

Prim’s algorithm

-Select any vertex

-Select the shortest edge
connected to that vertex

-Select the shortest edge
connected to any vertex
already connected

-Repeat step 3 until all vertices
have been connected

A cable company want to connect five villages to their network
which currently extends to the market town of Avonford. What is
the minimum length of cable needed?

Avonford Fingley

Brinleig
h

Cornwell

Donster

Edan

2

7

4
5

8 6 4

5

3

8

Example

We model the situation as a network, then the problem
is to find the minimum connector for the network

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

List the edges in
order of size:

ED 2
AB 3
AE 4
CD 4
BC 5
EF 5
CF 6
AF 7
BF 8
CF 8

Kruskal’s Algorithm

Select the shortest
edge in the network

ED 2

Kruskal’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the next shortest
edge which does not
create a cycle

ED 2
AB 3

Kruskal’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the next shortest
edge which does not
create a cycle

ED 2
AB 3
CD 4 (or AE 4)

Kruskal’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the next shortest
edge which does not
create a cycle

ED 2
AB 3
CD 4
AE 4

Kruskal’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the next shortest
edge which does not
create a cycle

ED 2
AB 3
CD 4
AE 4
BC 5 – forms a cycle
EF 5

Kruskal’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

All vertices have been
connected.

The solution is

ED 2
AB 3
CD 4
AE 4
EF 5

Total weight of tree: 18

Kruskal’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select any vertex

A

Select the shortest
edge connected to
that vertex

AB 3

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the shortest
edge connected to
any vertex already
connected.

AE 4

Prim’s Algorithm

Select the shortest
edge connected to
any vertex already
connected.

ED 2

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the shortest
edge connected to
any vertex already
connected.

DC 4

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Select the shortest
edge connected to
any vertex already
connected.

EF 5

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8

All vertices have been
connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18

•Both algorithms will always give solutions with the
same length.

•They will usually select edges in a different order
– you must show this in your workings.

•Occasionally they will use different edges – this
may happen when you have to choose between
edges with the same length. In this case there is
more than one minimum connector for the
network.

Some points to note

Minimum Spanning Trees

• Prim’s Algorithm

 Minimum spanning tree algorithm

•Kruskal’s Algorithm
 T (the final spanning tree) is defined to be the empty
set;

2. For each vertex v of G, make the empty set out of v;

3. Sort the edges of G in ascending (non-decreasing)
order;

4. For each edge (u, v) from the sored list of step 3.

 If u and v belong to different sets

 Add (u,v) to T;

 Get together u and v in one single set;

5. Return T

Data Structures and Problem Solving with C++: Walls and Mirrors, Frank Carrano, © 2012

Dijkstra's shortest-path algorithm
An Example

1

2

3

4

5

6

2

4

2 1

3

4

2

 3

2

Initialize

1

0

Select the node with
the minimum temporary
distance label.

Update Step

2

3

4

5

6

2

4

2 1

3

4

2

 3

2

2

4

0

1

Choose Minimum Temporary
Label

1

3

4

5

6

2

4

2 1

3

4

2

 3

2

2

4

0

2

Update Step

1

2

3

4

5

6

2

4

2 1

3

4

2

 3

2

2

4

6

43

0

The predecessor
of node 3 is now
node 2

Choose Minimum Temporary
Label

1

2 4

5

6

2

4

2 1

3

4

2

 3

2

2

3

6

4

0

3

Update

1

2 4

5

6

2

4

2 1

3

4

2

 3

2

0

d(5) is not changed.

3

2

3

6

4

Choose Minimum Temporary
Label

1

2 4

6

2

4

2 1

3

4

2

 3

2

0

3

2

3

6

4

5

Update

1

2 4

6

2

4

2 1

3

4

2

 3

2

0

3

2

3

6

4

5

d(4) is not changed

6

Choose Minimum Temporary
Label

1

2

6

2

4

2 1

3

4

2

 3

2

0

3

2

3

6

4

5

6

4

Update

1

2

6

2

4

2 1

3

4

2

 3

2

0

3

2

3

6

4

5

6

4

d(6) is not updated

Choose Minimum Temporary
Label

1

2

2

4

2 1

3

4

2

 3

2

0

3

2

3

6

4

5

6

4

6

There is nothing to update

End of Algorithm

1

2

2

4

2 1

3

4

2

 3

2

0

3

2

3

6

4

5

6

4

6

All nodes are now permanent

The predecessors form a tree

The shortest path from node 1 to node 6 can
be found by tracing back predecessors

Shortest Paths

• Shortest path between two vertices in a
weighted graph has smallest edge-weight
sum

FIGURE (a) A weighted directed graph
and (b) its adjacency matrix

Shortest Paths

FIGURE A trace of the shortest-path algorithm applied to
the graph in Figure 20-24 a

Shortest Paths

FIGURE 26 Checking weight [u] by examining the graph:
(a) weight [2] in step 2; (b) weight [1] in step 3;

Shortest Paths

FIGURE Checking weight [u] by examining the graph:
(c) weight [3] in step 3; (d) weight [3] in step 4

Shortest Paths

• Dijkstra’s shortest-path algorithm

Shortest Paths

• Dijkstra’s shortest-path algorithm, ctd.

Applications of Graphs

FIGURE A directed graph without cycles

• Topological Sorting

Applications of Graphs

FIGURE The graph in Figure 14 arranged according to
the topological orders (a) a, g,

d, b, e, c, f and (b) a, b, g, d, e, f, c

Applications of Graphs

• Topological sorting algorithm

Applications of Graphs

FIGURE A trace of topSort1 for the
graph in Figure 14

Applications of Graphs

FIGURE A trace of topSort1 for the
graph in Figure 20-14

Applications of Graphs

FIGURE A trace of topSort1 for the
graph in Figure 14

Applications of Graphs

FIGURE A trace of topSort1 for the
graph in Figure 20-14

Webgraph-Webgraph-
It is a directed graph whose vertices are nothing
but the web pages and directed edges between
any two vertices are nothing but the web pages
and the directed edges between any two vertices
V1 and V2 exists if there is a hyperlink present on
web page V1 referring to page V2.
Application-
•Webgraph is used to calculate PageRank.The
PageRank is an algorithm used for measuring the
importance of website pages.
•For determining the web pages of similar topics,
the webgraph is used.
•Used to identify hubs and authorities of web
pages.

Case Studies-

Google Maps-Google Maps-
It is a service developed by Google.
It offers services for satellite imagery ,street
maps,360 views of streets and real time traffic
conditions
Technologies Used-
•Makes use of Javascripts.
•Adobe Flash
•.JPG,.PNG,.PDG,.GIF or .BMP for floor plan.

Case Studies-

connected components
In graph, a connected component (or just component) of an
undirected graph is a subgraph in which any two vertices are
connected to each other by paths, and which is connected to no
additional vertices in the supergraph.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

