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Terminology
• Definition:
• A set of points that are joined by lines

• Graphs also represent the relationships 
among data items

• G = { V , E }; that is, a graph is a set of 
vertices and edges

• V(G): a finite, nonempty set of vertices

• E(G): a set of edges (pairs of vertices)

• A subgraph consists of a subset of a 
graph’s vertices and a subset of its edges



Terminology

FIGURE 1 An ordinary line graph



Terminology

FIGURE 2 (a) A campus map as a graph; 
(b) a subgraph



Terminology

FIGURE 20-3 Graphs that are (a) connected; 
(b) disconnected; and (c) complete



Terminology

FIGURE 4 (a) A multigraph is not a graph; 
(b) a self edge is not allowed in a graph



Terminology

FIGURE 5 (a) A weighted graph; 
(b) a directed graph



Terminology

• path:  passes through vertex only once and 
there  exist an edge from one vertex to the 
next vertex.

• Cycle: a path that begins and ends at same 
vertex

• Simple cycle: cycle that does not pass 
through other vertices more than once

• Connected graph: each pair of distinct 
vertices has a path between them



Terminology

• Complete graph: each pair of distinct 
vertices has an edge between them

• Graph cannot have duplicate edges 
between vertices

• Multigraph: does allow multiple edges

• Weighted graph: When labels represent 
numeric values, graph is called a weighted 
graph



Terminology

• Undirected graphs: edges do not indicate a 
direction

• Directed graph, or digraph: each edge has 
a direction



Concepts: Degree
• Undirected graph: The degree of a vertex is 

the number of edges touching it.

• For a directed graph, the in-degree is the number of 
edges entering the vertex, and the out-degree is the 
number leaving it. The degree is the in-degree + the 
out-degree.

degree 4

in-degree 2, out-degree 1



• Trees are special cases of graphs!!
• No unique node call root
• A cycle can be formed 
• Applications

Trees vs graphs



Representation of Graphs

FIGURE 6 (a) A directed graph and 
(b) its adjacency matrix



Representation of Graphs

FIGURE 7 (a) A weighted undirected graph and 
(b) its adjacency matrix



Adjacency Matrix: Pros and 
Cons
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• advantages
 fast to tell whether edge exists between any 

two vertices i and j (and to get its weight)

• disadvantages
 consumes a lot of memory on sparse graphs 

(ones with few edges)
 redundant information for undirected graphs



Steps: Graph using adjacency matrix
l Create and display a graph using 

adjacency matrix

1. Initialize g[i][j]=0;
2. Enter the no. of nodes required 
   3. for(i=0;i<n;i++)

     {
     

  for(j=0;j<n;j++)
          {
                 cin>>graph[i][j];
          }
      }

 4. for(i=0;i<n;i++)
     {
         for(j=0;j<n;j++)
         {
            cout<<graph[i][j];
         }
      }



Representation of Graphs

FIGURE 8 (a) A directed graph and 
(b) its adjacency list



Representation of Graphs

FIGURE 9 (a) A weighted undirected graph and 
(b) its adjacency list



class node

{ 

   int/char vertex;

   node *next;

} ;

node *G[10];

Data Structures and Problem Solving with C++: Walls and Mirrors, Frank Carrano, ©  2012

Algorithm



Adjacency List: Pros and Cons
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• advantages:
 new nodes can be added easily
 new nodes can be connected with existing 

nodes easily

• disadvantages:
 determining whether an edge exists between 

two nodes: O(average degree)



Adjacency matrix vs. adjacency list 
representation 

• Adjacency matrix
 Good for dense graphs --|E|~O(|V|2)
 Memory requirements: O(|V| + |E| ) = O(|V|2 )
 Connectivity between two vertices can be 

tested quickly
• Adjacency list

 Good for sparse graphs -- |E|~O(|V|)
 Memory requirements: O(|V| + |E|)=O(|V|) 
 Vertices adjacent to another vertex can be 

found quickly



Graph operations and Storage 
Structure

1.Create(): using adjacency matrix or 
adjacency list.

2.Display(): using BFS and DFS.

Storage Structure :

Graph creation using adjacency matix or 
adjacency list.



Graphs as ADTs

ADT graph operations
 Test whether graph is empty.
 Get number of vertices in a graph.
 Get number of edges in a graph.
 See whether edge exists between two given 

vertices.
 Indegree()
 Outdegree()
 Display()



Graph Traversals

• Visits all of the vertices that it can reach
– Happens if and only if graph is connected

• Connected component is subset of vertices 
visited during traversal that begins at given 
vertex



Graph Traversal (Contd.)

• In both DFS and BFS, the nodes of the 
undirected graph are visited in a 
systematic manner so that every node 
is visited exactly one.

• Both BFS and DFS give rise to a tree:
 When a node x is visited, it is labeled 

as visited, and it is added to the tree
 If the traversal got to node x from 

node y, y is viewed as the parent of 
x, and x a child of y



Depth-First Search 

• DFS follows the following rules: 
1. Select an unvisited node x, visit it, and treat as 

the current node 

2. Find an unvisited neighbor of the current node, 
visit it, and make it the new current node; 

3. If the current node has no unvisited neighbors, 
backtrack to the its parent, and make that parent 
the new current node; 

4. Repeat steps 3 and 4 until no more nodes can be 
visited. 

5. If there are still unvisited nodes, repeat from step 
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Implementation of DFS

• Observations: 
 the last node visited is the first node from 

which to proceed. 
 Also, the backtracking proceeds on the 

basis of "last visited, first to backtrack too". 
 This suggests that a stack is the proper 

data structure to remember the current 
node and how to backtrack. 



DFS (Pseudo Code)
 procedure DFS-iterative(G,v):
2      let S be a stack
3      S.push(v)
4      while S is not empty
5            v = S.pop() 
6            if v is not labeled as discovered:
7                label v as discovered
8                for all edges from v to w in 

G.adjacentEdges(v) do
9                    S.push(w)



Depth-First Search

• Goes as far as possible from a vertex before 
backing up

• Recursive algorithm



Depth-First Search
• Iterative algorithm, using a stack
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Breadth-First Search 
• BFS follows the following rules: 

1. Select an unvisited node x, visit it, have it be the 
root in a BFS tree being formed. Its level is called 
the current level. 

2. From each node z in the current level, in the order 
in which the level nodes were visited, visit all the 
unvisited neighbors of z. The newly visited nodes 
from this level form a new level that becomes the 
next current level. 

3. Repeat step 2 until no more nodes can be visited. 

4. If there are still unvisited nodes, repeat from Step 



Illustration of BFS
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Implementation of BFS

• Observations: 
 the first node visited in each level is the first 

node from which to proceed to visit new 
nodes. 

• This suggests that a queue is the proper 
data structure to remember the order of 
the steps. 

We will redo the BFS on the previous 
graph, but this time with queues



BFS (Pseudo Code)
BFS(input: graph G)
 {
  Queue Q;  
    Integer x, z, y; 

while (G has an unvisited node x) 
 {

visit(x);  
           Enqueue(x,Q); 

while (Q is not empty)
            {

z := Dequeue(Q); 
for all (unvisited neighbor y of z)

                              {
       visit(y); 
                                       Enqueue(y,Q); 

    }
}

   }
}



Breadth-First Search

• Visits all vertices adjacent to vertex before 
going forward

• Breadth-first search uses a queue



Depth-First Search

FIGURE 10 Visitation order for (a) a depth-first search; 
(b) a breadth-first search

Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, ©  2013
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Optimization problems

• An optimization problem is one in which you want to 
find, not just a solution, but the best solution

• A “greedy algorithm” sometimes works well for 
optimization problems

• A greedy algorithm works in phases. At each phase:
 You take the best you can get right now, without 

regard for future consequences
 You hope that by choosing a local optimum at 

each step, you will end up at a global optimum
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Example: Counting money

• Suppose you want to count out a certain amount of 
money, using the fewest possible bills and coins

• A greedy algorithm would do this would be:
At each step, take the largest possible bill or coin that 
does not overshoot
 Example: To make $6.39, you can choose:

• a $5 bill
• a $1 bill, to make $6
• a 25¢ coin, to make $6.25
• A 10¢ coin, to make $6.35
• four 1¢ coins, to make $6.39

• For US money, the greedy algorithm always gives the 
optimum solution
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A failure of the greedy algorithm

• In some (fictional) monetary system, “krons” come in 1 
kron, 7 kron, and 10 kron coins

• Using a greedy algorithm to count out 15 krons, you 
would get
 A 10 kron piece
 Five 1 kron pieces, for a total of 15 krons
 This requires six coins

• A better solution would be to use two 7 kron pieces 
and one 1 kron piece
 This only requires three coins

• The greedy algorithm results in a solution, but not in 
an optimal solution



spanning trees

A tree is a connected undirected graph with no cycles. It is a 
spanning tree of a graph G if it spans G (that is, it includes 
every vertex of G) and is a subgraph of G (every edge in the 
tree belongs to G).

A connected,
undirected graph

Four of the spanning trees of the graph



Spanning Trees

FIGURE 20 The DFS spanning tree rooted at vertex a 
for the graph in Figure 20-11



Spanning Trees

FIGURE 21 The BFS spanning tree rooted at vertex a 
for the graph in Figure 20-11



Spanning Trees
• Tree: an undirected connected graph 

without cycles

• Observations about undirected graphs
1. Connected undirected graph with n vertices 

must have at least n – 1 edges.

2. Connected undirected graph with n vertices,  
exactly n – 1 edges cannot contain a cycle

3. A connected undirected graph with n vertices, 
more than n – 1 edges must contain at least 
one cycle



Minimum spanning tree Algorithms

Kruskal’s algorithm

-Select the shortest edge in a 
network

-Select the next shortest edge 
which does not create a cycle

-Repeat step 2 until all vertices 
have been connected

Prim’s algorithm

-Select any vertex

-Select the shortest edge 
connected to that vertex

-Select the shortest edge 
connected to any vertex 
already connected

-Repeat step 3 until all vertices 
have been connected



A cable company want to connect five villages to their network     
which currently extends to the market town of Avonford. What is 
the minimum length of cable needed?
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8

Example



We model the situation as a network, then the problem 
is to find the minimum connector for the network
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List the edges in 
order of size:

ED  2
AB  3
AE  4
CD  4
BC  5
EF  5
CF  6
AF  7
BF  8
CF  8

Kruskal’s Algorithm



Select the shortest
edge in the network

ED  2

Kruskal’s Algorithm
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Select the next shortest
edge which does not
create a cycle

ED  2
AB  3

Kruskal’s Algorithm
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Select the next shortest
edge which does not
create a cycle

ED  2
AB  3
CD  4 (or AE  4)

Kruskal’s Algorithm
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Select the next shortest
edge which does not
create a cycle

ED  2
AB  3
CD  4 
AE  4

Kruskal’s Algorithm
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Select the next shortest
edge which does not
create a cycle

ED  2
AB  3
CD  4 
AE  4
BC  5 – forms a cycle
EF  5

Kruskal’s Algorithm
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All vertices have been
connected.

The solution is

ED  2
AB  3
CD  4 
AE  4
EF  5

Total weight of tree: 18

Kruskal’s Algorithm
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Select any vertex

A

Select the shortest 
edge connected to 
that vertex

AB  3

Prim’s Algorithm
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Select the shortest
edge connected to 
any vertex already 
connected.

AE  4

Prim’s Algorithm



Select the shortest
edge connected to 
any vertex already 
connected.

ED  2

Prim’s Algorithm

A F

B C

D

E

2

7

4
5

8 6 4

5

3

8



Select the shortest
edge connected to 
any vertex already 
connected.

DC  4

Prim’s Algorithm
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Select the shortest
edge connected to 
any vertex already 
connected.

EF  5  

Prim’s Algorithm
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Prim’s Algorithm
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All vertices have been
connected.

The solution is

AB 3
AE 4
ED 2
DC 4
EF 5

Total weight of tree: 18



•Both algorithms will always give solutions with the 
same length.

•They will usually select edges in a different order 
– you must show this in your workings.

•Occasionally they will use different edges – this 
may happen when you have to choose between 
edges with the same length. In this case there is 
more than one minimum connector for the 
network.

Some points to note



Minimum Spanning Trees

• Prim’s Algorithm



      Minimum spanning tree algorithm

•Kruskal’s Algorithm
 T (the final spanning tree) is defined to be the empty 
set;

2. For each vertex v of G, make the empty set out of v;

3. Sort the edges of G in ascending (non-decreasing) 
order;

4. For each edge (u, v) from the sored list of step 3.

      If u and v belong to different sets

         Add (u,v) to T;

         Get together u and v in one single set;

5. Return T

Data Structures and Problem Solving with C++: Walls and Mirrors, Frank Carrano, ©  2012



Dijkstra's shortest-path algorithm 
An Example
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Select the node with 
the minimum temporary 
distance label.



Update Step
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Label

1

3

4

5

6

2

4

2  1

3

4

2

   3

2

2

4

0

2









Update Step
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The predecessor 
of node 3 is now 
node 2
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Label 

1

2 4

6

2

4

2  1

3

4

2

   3

2

0

3

2

3

6

4



5



Update 

1

2 4

6

2

4

2  1

3

4

2

   3

2

0

3

2

3

6

4



5

d(4) is not changed
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Choose Minimum Temporary 
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End of Algorithm 
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All nodes are now permanent

The predecessors form a tree

The shortest path from node 1 to node 6 can 
be found by tracing back predecessors



Shortest Paths

• Shortest path between two vertices in a 
weighted graph has smallest edge-weight 
sum

FIGURE (a) A weighted directed graph 
and (b) its adjacency matrix



Shortest Paths

FIGURE A trace of the shortest-path algorithm applied to 
the graph in Figure 20-24 a



Shortest Paths

FIGURE 26 Checking weight [u] by examining the graph: 
(a) weight [2] in step 2; (b) weight [1] in step 3;



Shortest Paths

FIGURE Checking weight [u] by examining the graph: 
(c) weight [3] in step 3; (d) weight [3] in step 4



Shortest Paths

• Dijkstra’s shortest-path algorithm



Shortest Paths

• Dijkstra’s shortest-path algorithm, ctd.



Applications of Graphs

FIGURE A directed graph without cycles

• Topological Sorting



Applications of Graphs

FIGURE The graph in Figure 14 arranged according to 
the topological orders (a) a, g,

d, b, e, c, f and (b) a, b, g, d, e, f, c



Applications of Graphs

• Topological sorting algorithm



Applications of Graphs

FIGURE  A trace of topSort1 for the 
graph in Figure 14



Applications of Graphs

FIGURE A trace of topSort1 for the 
graph in Figure 20-14



Applications of Graphs

FIGURE A trace of topSort1 for the 
graph in Figure 14



Applications of Graphs

FIGURE A trace of topSort1 for the 
graph in Figure 20-14



Webgraph-Webgraph-
It is a directed graph whose vertices are nothing 
but the web pages and directed edges between 
any two vertices are nothing but the web pages 
and the directed edges between any two vertices 
V1 and V2 exists if there is a hyperlink present on 
web page V1 referring to page V2.
Application-
•Webgraph is used to calculate PageRank.The 
PageRank is an algorithm used for measuring the 
importance of website pages.
•For determining the web pages of similar topics, 
the webgraph is used.
•Used to identify hubs and authorities of web 
pages.

Case Studies-



Google Maps-Google Maps-
It is a service developed by Google.
It offers services for satellite imagery ,street 
maps,360 views of streets and real time traffic 
conditions
Technologies Used-
•Makes use of Javascripts.
•Adobe Flash
•.JPG,.PNG,.PDG,.GIF or .BMP for floor plan.

Case Studies-



connected components
In graph, a connected component (or just component) of an 
undirected graph is a subgraph in which any two vertices are 
connected to each other by paths, and which is connected to no 
additional vertices in the supergraph.
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