
UNIT 1
HASHING

Mrs. Shalaka P. Deore
M.E.S. College of Engineering, Pune.

ONE DAY ONLINE SYLLABUS
IMPLEMENTATION FACULTY
DEVELOPMENT PROGRAM

ON
Data Structures and Algorithms

Unit 1 Hashing: Syllabus

Unit 1 Hashing: objective and outcome

OBJECTIVE:

To understand advanced data structures like Hash tables,
Skip list to solve complex problems in various domains.

To study various hash functions.
To understand various collision resolution techniques.

OUTCOME:

Identify and articulate the complexity goals and benefits
of a good hashing scheme for real-world applications.

Analyze the algorithmic solutions for resource
requirements and optimization

Need of hashing

Suppose we want to design a system for storing students
records and we want to perform following operations
efficiently:
Insert, Search and Delete operations on the basis of student

Id. class Studentinfo
{
 long Id; // Unique Student Id
 String name; // Student name
 String class; // Student class
}

Possible data structure options and their respective time
complexity
• A array implementation would take O(log n)time if binary

search is used.
• A linked list implementation would take O(n) time.

Is there an alternative to get O(1) access time ?

Hashing

 Hashing is the process of indexing and retrieving
 element in a data structure to provide faster

way of finding the element using the hash key.

(With hashing we get O(1) search time on average (under
reasonable assumptions) and O(n) in worst case.)

Duration : 1 Hour
Reference :
1. “Fundamentals of Data Structures in C++” by Horowitz, Sahani, Dinesh Mehata
2. https://www.geeksforgeeks.org/hashing-data-structure/#basicHashing

Basic concepts : hash table

Hash table is a data structure used for storing and
retrieving data quickly.

All data is inserted into hash table based on hash key
value. It is used to map the data with the index in the
hash table.

Other basic concepts of hashing
Buckets: A bucket in a hash file is unit of storage

(typically a disk block) that can hold one or more
records.The hash table consists of b buckets and each
bucket consists of s slots. (Usually s = 1)

Collision: Collision is situation in which hash function
returns the same address for more than one record.

Probe: Alternative list of location produces after
collision occurs.

Synonym: The set of keys that hash to the same location
are called as synonyms.

Other basic concepts of hashing
Overflow: When hash table becomes full and new record

needs to be inserted then it is called overflow. An
overflow occurs when we hash a new identifier into a full
bucket

Perfect hash function: It is a function that maps distinct
key elements into hash table with no collision

Load factor or Load density of hash table:
 lo = n/m
 n = no. of elements stored
in the table

 m = size of the table

Hash Functions
A good hash function should:

· Minimize collisions.

· Be easy and quick to compute.

· Distribute key values evenly in the hash table.

· Use all the information provided in the key.

Duration : 1 Hour
Reference :
1. “Fundamentals of Data Structures in C++” by Horowitz, Sahani, Dinesh Mehat
2. https://www.tutorialspoint.com/Hash-Functions-and-Hash-Tables

Division Method

Idea:
Computes hash value from key using the % operator.
Map a key k into one of the m slots by taking the

remainder of k divided by m
 h(k) = k mod m

Example: k=1276, n=10,
 h(1276) = 1276 mod 10 = 6

Advantage: fast, requires only one operation
Disadvantage:

Certain values of m are not good choice, e.g.,
 power of 2 : Table size that is a power of 2 like 32 and 1024

should be avoided, for it leads to more collisions.

 non-prime numbers : Generally a prime number is a best choice
which will spread keys evenly. Prime numbers not close to powers
of 2 are better table size values.

Multiplication Method

Idea:
Multiply key k by a constant A, where 0 < A < 1
Extract the fractional part of kA and multiply the fractional

part by m
Take the floor of the result

h(k) = m (k A mod 1)

Example: k=123, m=100, A=0.618033

 h(123) = 100 (123 * 0.618033 mod 1)

 = 100 (76.018059 mod 1)

 = 100 (0.018059) = 1
Advantage: Value of m is not critical and it can work with any

value of A
Disadvantage: Slower than division method

fractional part of kA = kA - kA

Digit Extraction method

Idea
Selected digits are extracted form the key and used as

address

Address = selected digits from key

Example: If six digit employee number is 379245 then
select first digit as the index so 379 is the key address.

Disadvantages:
 · May not evenly distribute key values in the hash
 table

Folding

Idea
It involves splitting keys into two or more parts and then

combining the parts to form the hash addresses.

To map the key 25936715 to a range between 0 and 9999,
we can:

· split the number into two as 2593 and 6715 and
· add these two to obtain 9308 as the hash value.

Very useful if we have keys that are very large.

 Advantage:
· Fast and simple especially with bit patterns

 · It is ability to transform non-integer keys into integer
values.

Mid-square method

Idea
The key is squared and the middle part of the result taken

as the hash value.

To map the key 3121 into a hash table of size 1000, we
square it 31212 = 9740641 and extract 406 as the
hash value.

 Advantage : Works well if the keys do not contain a lot
of leading or trailing zeros.

 Disadvantage:
· Selection of middle part
· Non-integer keys have to be pre-processed to

obtain corresponding integer
values.

Universal hashing
Idea
For any hash function if the table size m is much

smaller than universe size U, then for any hash function
h, there is some large subset of U that has the same hash
value.

So we need set of hash functions and select hash
function random.

U
(universe of keys)

K
(actual
keys)

0

m - 1

h(k3)

h(k2) = h(k5)

h(k1)

h(k4)

k1

k4 k2

k5
k3

Collision handling techniques

Separate chaining

Open addressing
-Linear Probing
-Quadratic Probing
-Double Probing

Duration : 3 Hour
Reference :
1. “Fundamentals of Data Structures in C++” by Horowitz, Sahani, Dinesh Mehata
2.https://courses.cs.washington.edu/courses/cse326/00wi/handouts/

lecture16/sld025.htm

Separate chaining

Maintain array of linked list
Separate list is maintained for all elements mapped to the

same value

Separate chaining: pros and cons

PROS:
Collision resolution is simple
No problem of load factor can hold more number of

elements
Table size need not be prime number

CONS:
Implementation of separate data structure (linked list)

required for chains
The main cost of chaining is the extra space required for

linked list

Open addressing : Linear probing

Table remains a simple array of size m

On insert(x),
 First compute h(x)= x mod m,
 if the collision occur,
 find another location by sequentially

 searching for the next available slot

Go to h(x)+1, h(x)+2 etc..

Insert following keys into hash table using
linear probing where table size m=7 and
h(x)= x mod m, keys={ 76,93,40,47,10,55}

Types of linear probing

Linear probing with chaining (without replacement)
 Excessive collision when occurs it becomes very difficult to maintain

indexes of same hash key
 Extra field is added to maintain chain Key Chain
Example: Let M = 10 , H(X)= X MOD M, 0
 KEYS={0,1,4,71,64,89,11,33} 1
 2
 3

 4
 5
 6
 7
 8
 9

0 -1

1 2

71 3

11 -1

4 5

64 -1

33 -1

-1

-1

89 -1

Types of linear probing

Linear probing with chaining (with replacement)
 Problem of misplaced starting location of the chain is handled.
 Extra field is added to maintain chain Key Chain
Example: Let M = 10 , H(X)= X MOD M, 0
 KEYS={0,1,4,71,64,89,11,33} 1
 if add 22 : 1->11->71 2
 3

 4
 5
 6
 7
 8
 9

0 -1 0 -1

1 2 1 3

71 3 22 -1

11 -1 11 7

4 5 4 5

64 -1 64 -1

33 -1 33 -1

-1 71 -1

-1

89 -1

Primary clustering problem

Long chunks of occupied slots are created
Increases search time

Quadratic hashing

It is one of the ways to reduce “Primary clustering
problem”

Resolve collisions by examining certain cells away from
the original probe point

Collision policy:
 - Start from original hash location i
 - If collision occur search for i+12, i+22, i+32…..

Hash function :
hi(x) = (h(x) + i 2) mod m
where i = 0,1,2,3…….

Insert following keys into hash table using
quadratic probing where table size m=7 and
h(x)= x mod m, keys={ 76,40,48,5,55}

Double hashing

It reduces clustering in a better way
Use primary hash function h1 (k) to determine the first slot
Use a second hash function h2 (k) to determine the increment for

the probe sequence

h(k,i) = (h1(k) + i h2(k)) mod m, i=0,1,...

Initial probe: h1(k)
Second probe is offset by h2(k) mod m, so on ...
Advantage: avoids clustering

Insert following keys into hash table using quadratic probing where
table size m=7 and h1(x)= x mod m, H2(x)= 5- (x mod
5),keys={76,40,48,5,55}

Open addressing: pros and cons

PROS:
All data items are stored in the hash table itself no need

of separate data structure
More efficient storage-wise

CONS:
Dependent on choosing a proper table size
The keys of the objects to be hashed must be distinct

Hash table overflow

An overflow occurs when the home bucket for a new pair
(key, element) is full.

We may tackle overflows by searching the hash table in
some systematic manner for a bucket that is not full.

Linear probing (linear open addressing).
Quadratic probing.
Random probing.
Eliminate overflows by allowing each bucket to keep a

list of all pairs for which it is home bucket.
Array linear list.
Chain.
Open addressing is performed to ensure that all elements

are stored directly into the hash table

Extendible hashing
Dynamic hashing method
Bulky data : Disk accesses increased
Extendible hashing reduces disk accesses while retrieving

the data
It handle large amount of data
It required to convert data into binary format
Directories: The directories store addresses of the

buckets in pointers. An id is assigned to each directory
which may change each time when Directory Expansion
takes place.

Buckets: The buckets are used to hash the actual data.

Duration : 1 Hour
Reference:
• https://www.geeksforgeeks.org/extendible-hashing-dynamic-approach-

to-dbms/

Extendible hashing

Global depth: It is associated with the directories. They
denote the number of bits which are used by the hash
function to categorize the keys.

 Global depth = Number of bits in directory id.
Local depth: Local depth is associated with the buckets.

Local depth in accordance with the global depth is used
to decide the action that to be performed in case an
overflow occurs. Local depth is always less than or equal
to the Global depth.

Bucket splitting: When the number of elements in a
bucket exceeds a particular size, then the bucket is split
into two parts.

Directory expansion: Directory expansion takes place
when a bucket overflows.

Example:

Elements: 16,4,6,22,24,10,31,7,9,20,26.
Bucket Size: 3 (Assume)
Hash Function: Suppose the global depth is X. Then the Hash

Function returns X LSBs.
 {16- 10000, 4- 00100, 6- 00110, 22- 10110, 24- 11000,
 10- 01010,31- 11111,7- 00111,9- 01001,20- 10100 }

{16- 10000, 4- 00100, 6- 00110, 22- 10110, 24- 11000, 10- 01010,31- 11111,7-
00111,9- 01001,20- 10100 }

Some Applications of Hash Table

 Database systems: Specifically, those that require efficient random
access. Generally, database systems try to optimize between two types
of access methods: sequential and random. Hash tables are an important
part of efficient random access because they provide a way to locate
data in a constant amount of time.

 Data dictionaries: Data structures that support adding, deleting, and
searching for data. Although the operations of a hash table and a data
dictionary are similar, other data structures may be used to implement
data dictionaries. Using a hash table is particularly efficient.

 Symbol tables: The tables used by compilers to maintain information
about symbols from a program. Compilers access information about
symbols frequently. Therefore, it is important that symbol tables be
implemented very efficiently.

 Network processing algorithms: Hash tables are fundamental
components of several network processing algorithms and
applications, including route lookup, packet classification, and
network monitoring.

 File System : The hashing is used for the linking of the file
name to the path of the file. To store the correspondence
between the file name and path, and the physical location of
that file on the disk, the system uses a map, and that map is
usually implemented as a hash table.

 Password Verification: Cryptographic hash functions are very
commonly used in password verification

 Pattern Matching: The hashing is also used to search for
patterns in the strings. Rabin-karp algorithm is use hashing for
the searching of a pattern in a string The pattern matching is
also used to detect plagiarism.

Some Applications of Hash Table

Problems for which hash tables are not suitable

• Problems for which data ordering is required.
- Hash table is an unordered data structure, certain

 operations like iterating through the keys in order efficiently

• Problems having multidimensional data.

• Problems in which the data does not have unique keys.
- Open-addressed hash tables cannot be used if the data does

not have unique keys. An alternative is use separate-chained
hash tables.

Skip list:
Randomized Data
Structure

Duration : 2 Hour
Reference :
1. “Advanced Data Structures”, by Peter Brass
2.https://courses.cs.washington.edu/courses/cse326/00wi/handouts/

lecture16/sld025.htm

Introduction of Skip list

 A skip list is a probabilistic data structure and an extended
version of the linked list.

 The skip list is used to store a sorted list of elements or data
with a linked list and very useful for concurrently accessing
element.

 In one single step, it skips elements of the entire list, hence
referred as skip list.

 It allows the user to search, remove, and insert the element
very quickly.

There are the following operations:
 Insertion operation: It is used to add a new node
 Deletion operation: It is used to delete a node in a specific situation.
 Search Operation: The search operation is used to search a particular node

in a skip list.
 Average case time complexity of all above operations is O(logn)

 Head
 Head
[https://www.youtube.com/watch?
v=UGaOXaXAM5M&ab_channel=ShusenWang]
Applications of the Skip list
 It is used in distributed applications. In distributed systems, the nodes

of skip list represents the computer systems and pointers represent
network connection

Case Study: Book call number and dictionary

Report writing points:
 - Dictionary concepts with phone book call number

 example
 - Explain Dictionary as ADT
 - Types of Dictionaries :
 · Ordered Dictionaries

 · Unordered Dictionaries
 - Comparison with other data structures

References
Horowitz, Sahani, Dinesh Mehata, “Fundamentals of Data

Structures in C++”, Galgotia Publisher, ISBN: 8175152788,
9788175152786.

Peter Brass, “Advanced Data Structures”, Cambridge
University Press, ISBN: 978-1-107- 43982-5

https://www.geeksforgeeks.org/hashing-data-structure/
#basicHashing

https://www.tutorialspoint.com/Hash-Functions-and-Hash-
Tables

https://courses.cs.washington.edu/courses/cse326/00wi/
handouts/lecture16/sld025.htm

https://www.geeksforgeeks.org/extendible-hashing-dynamic-
approach-to-dbms/

https://iq.opengenus.org/skip-list/
https://www.youtube.com/watch?

v=UGaOXaXAM5M&ab_channel=ShusenWang
https://www.cscjournals.org/manuscript/Journals/IJEA/

Volume5/Issue1/IJEA-45.pdf
https://www.researchgate.net/publication/

277409678_Efficient_hash_tables_for_network_applications

Thank you

shalaka.deore@mescoepune.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

