Total No	of Or	ıestio	ns ·	81				0		CIT.	4 m 3				
	, 01 Q	103010		o]				3	0	SE	AT N				
P649						[58	69]-	277			[]	otal	No. o	f Pag	es : 3
				S.E	. (C	mpu	- K	*	ineer	ing)					
		DA	TA		•	_		_		GORI	TH	MS			
				(20	19.P	atter	× 'n) (s	Sem	ester	- II)					
				,) '		, (,					
<i>Time</i> : 2½		-		0	, (20						1	Max.	Mark	s:70
Instruction					-())	0.4.0		0.6	0.7	0.0					
1) 2)				_ ((- \ »	Q.4, Q wn wh			_						
<i>3)</i>			A 7			wn wn te full			essur y.						
4)		/ \ _		(A)		cessar		.5•				9			
,) Y	2)		•						3			
		(0									ُرِيْ	, V			
Q1) a)			-		_	_				node			_	_	_
	ush	ng ac	ljace	ency r	natrix	x, adja	acenc	y list	and a	idjace	ncy	mul	ti list.	•	[6]
	J.									(O.)					
b)	Co	nside	er th	e grap	oh rep	resen	ited b	y the	follo	wing	adja	cenc	y ma	ıtrix :	[6]
		1	2	3	4	5	6		000						
	1	0	6	1	5	0	0	2							
	2	6	0	5	0	3.	θ	3	,						
	3	1	5	0	5	6	4	20.							
	4	5	0	5	0	0	2								
	5	0	3	6	0	0.0	6								
	6	0	0	4	2	6	0								:00
	-		l	<u> </u>	(7	•	1						Č.	3
	Fin	d mi	nim	ıım sr	anni)* ng tred	e of t	his o	ranh 1	ısing p	rim	's A1	gorit	hm	/
	T 111	→ 1111			- Service		- 01 6	5	apii t	.55		D 1 1	5011	diam'r.	

Write a short note on topological sorting. c)

[6]

OR

Write non-recursive pseudo for Depth First Search (DFS). **Q2)** a) [6]

Consider the given graph and find the shortest path by using Dijkstra's b) algorithm. From source to all other nodes **[6]**

Show BFS and DFS for the following graph with starting vertex as 1. c) Explain with proper steps. [6]

Explain with example

[6]

- Red Black Tree i)
- Splay Tree ii)
- Construct AVL tree for following sequence of keys. [6] b) 1, 2, 3, 4, 8, 7, 6, 5, 11, 10
- What is OBST in data structure? and what are advantages of OBST?[5]

 OR

 Explain the following: c)

Q4) a)

- Static and dynamic tree tables with suitable example. [3] i)
- Dynamic programming with principle of optimality. [3] ii)
- Write short note on: b)

[6]

- AA tree i)
- K dimensional tree ii)
- Explain AVL tree rotations with example c)

[5]

		26
Q5)	a)	Construct B tree of order 5 for the following data: [6]
		78, 21, 14, 11, 97, 85, 74, 63, 45, 42, 57
	b)	Explain B+ tree delection with example. [6]
	c)	What is B+ tree? Give structure of it's internal note. What is the difference
		between B and B+ tree. [6]
		OR
Q6)	a)	Build B+ tree of order 3 for the following
		data:
		F, S, Q, K, C, L, H, T, V, W, M, R [6]
	b)	Write an algorithm of B tree deletion. [6]
	c)	Explain with example trie.tree. Give advantage and applications of trie
		tree [6]
		×′′ %.′′
<i>Q7</i>)	a)	Define sequential file organization. Give it's advantages and disadvantages.
	1 \	
	b)	What is file? List different file opening modes in C++. Explain concept of inverted files.
	c)	of inverted files. [6] Write short note on external sort. [5]
	C)	write short note on external sort.
		OR
Q8)	a)	A write a C++ program to create a file. Insert records into the file by
20)	u)	opening file in append mode. Search for a specific record into file. [6]
	b)	Sort the following elements using two way merge sort with $m = 3$.
		20, 47, 15, 8, 9, 4, 40, 30, 12, 17, 11, 56, 28, 35 [6]
	c)	Explain indexed sequential file organization. Compare it with direct access
	,	
		file. (5)
		O .*