DataStructuresAndAlgorithms/Codes/Practical-C15 (Prims).cpp
2025-01-06 19:14:48 +05:30

171 lines
4.4 KiB
C++
Executable File

/*
THIS CODE HAS BEEN TESTED AND IS FULLY OPERATIONAL.
Problem Statement: You have a business with several offices; you want to lease phone lines to connect them up with each other; and the phone company charges different amounts of money to connect different pairs of cities. You want a set of lines that connects all your offices with a minimum total cost. Solve the problem by suggesting appropriate data structures.
Code from DataStructuresAndAlgorithms (SPPU - Second Year - Computer Engineering - Content) repository on KSKA Git: https://git.kska.io/sppu-se-comp-content/DataStructuresAndAlgorithms/
*/
// BEGINNING OF CODE
#include <iostream>
#include <vector>
#include <cstdint>
#define MAX_NUM_CITIES 10
using namespace std;
struct edge {
int start;
int end;
int wt;
};
class graph {
int adj_mat[MAX_NUM_CITIES][MAX_NUM_CITIES] = {0};
string city_names[MAX_NUM_CITIES];
int city_count;
edge mst[MAX_NUM_CITIES - 1];
void add_to_list(vector<edge> &, edge);
int cost;
public:
graph();
void prims_algo(int);
void display_mst();
};
void graph::add_to_list(vector<edge> &list, edge e) {
list.push_back(e);
for (int i = list.size() - 1; i > 0; i--) {
if (list[i].wt < list[i - 1].wt) {
swap(list[i], list[i - 1]);
} else {
break;
}
}
}
graph::graph() {
cost = 0;
cout << "Number of cities are (1-" << MAX_NUM_CITIES << "):\t";
cin >> city_count;
city_count = (city_count > MAX_NUM_CITIES) ? MAX_NUM_CITIES : city_count;
for (int i = 0; i < city_count; i++) {
cout << "Enter city:\n" << i + 1 << ":\t";
cin >> city_names[i];
}
// initialize all matrix with max value
for (int i = 0; i < city_count; i++)
for (int j = 0; j < city_count; j++) adj_mat[i][j] = INT32_MAX;
int num_pairs;
cout << "Number of city pairs are:\t";
cin >> num_pairs;
cout << "City codes are:\t" << endl;
for (int i = 0; i < city_count; i++) {
cout << i << " - " << city_names[i] << endl;
}
int x, y, wt;
for (int i = 0; i < num_pairs; i++) {
cout << "Enter pair:\n" << i + 1 << ":\t";
cin >> x >> y;
cout << "Enter cost between city " << city_names[x] << " & city "
<< city_names[y] << ":\t";
cin >> wt;
adj_mat[x][y] = wt;
adj_mat[y][x] = wt;
}
}
void graph::prims_algo(int start) {
bool visited[MAX_NUM_CITIES] = {0};
int visited_count = 1;
visited[start] = 1;
vector<edge> adj;
for (int i = 0; i < city_count; i++) {
if (adj_mat[start][i] != INT32_MAX) {
edge e;
e.start = start;
e.end = i;
e.wt = adj_mat[start][i];
add_to_list(adj, e);
}
}
while (visited_count != city_count) {
edge m = adj.front();
adj.erase(adj.begin());
if (!visited[m.end]) {
mst[visited_count - 1] = m;
cost += m.wt;
for (int i = 0; i < city_count; i++) {
if (adj_mat[m.end][i] != INT32_MAX) {
edge e;
e.start = m.end;
e.end = i;
e.wt = adj_mat[e.start][i];
add_to_list(adj, e);
}
}
visited[m.end] = 1;
visited_count++;
}
}
}
void graph::display_mst() {
cout << "Most efficient network is:\t" << endl;
for (int i = 0; i < city_count - 1; i++) {
cout << city_names[mst[i].start] << " to " << city_names[mst[i].end]
<< " of weight " << mst[i].wt << endl;
}
cout << endl << "The cost of network is:\t" << cost << endl;
}
int main() {
// prims algo
graph g;
int start;
cout << "Enter beginning city:\t";
cin >> start;
start = (start > MAX_NUM_CITIES - 1) ? 0 : start;
g.prims_algo(start);
g.display_mst();
return 0;
}
// END OF CODE
/*
SAMPLE OUTPUT:
Number of cities are (1-10): 3
Enter city:
1: Paris
Enter city:
2: Pune
Enter city:
3: Nagar
Number of city pairs are: 2
City codes are:
0 - Paris
1 - Pune
2 - Nagar
Enter pair:
1: 1
2
Enter cost between city Pune & city Nagar: 5
Enter pair:
2: 0
1
Enter cost between city Paris & city Pune: 10
Enter beginning city: Pune
Most efficient network is:
Paris to Pune of weight 10
Pune to Nagar of weight 5
The cost of network is: 15
*/