#### **SE COMP (2019 Course) DIGITAL ELECTRONICS AND LOGIC** DESIGN MINIMIZATION **TECHNIQUE TOPIC: IC, LOGICAL FUNCTION**



#### To study pin configuration of logic gates IC To study the representation of logical function/Boolean function

| Unit I                                                                                      | M | inimization Technique           | (06 Hours) |  |  |
|---------------------------------------------------------------------------------------------|---|---------------------------------|------------|--|--|
| Logic Design Minimization Technique -: Minimization of Boolean function using K-map(up to 4 |   |                                 |            |  |  |
| variables) and Quine Mc-Clusky Method, Representation of signed number- sign magnitude      |   |                                 |            |  |  |
| representation ,1's complement and 2's complement form (red marked can be removed), Sum of  |   |                                 |            |  |  |
| product and Product of sum form, Minimization of SOP and POS using K-map.                   |   |                                 |            |  |  |
| #Exemplar/Case Studies                                                                      | S | Digital locks using logic gates |            |  |  |
|                                                                                             |   |                                 |            |  |  |

### **INTEGRATED CIRCUIT**

- An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small plate ("chip") of semiconductor material, normally silicon.
- ICs can be made very compact, having up to several billion transistors and other electronic components in an area the size of a human fingernail.

## **INTEGRATED CIRCUIT**

LEVEL OF INTEGRATION

**1.SSI : Small Scale Integration** 

-It has less than 100 components(about 10gates)

#### 2.MSI: Medium Scale Integration

-It contains less than 500 components or have more than 10 but less than 100 gates.

#### 3.LSI: Large scale integration

-Number of components is between 500 and 300000 or have more than 100gates.

4.VLSI:very large scale integration.

-A process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. .

IC:



IC:



IC:

#### IC 7400 : NAND Gate = Pin configuration is same as AND gate



# **Logic Functions**

- Logical functions can be expressed in several ways:
  - Truth table
  - Logical expressions
  - Graphical form

Example:

- Majority function
  - Output is 1 whenever majority of inputs is 1
  - We use 3-input majority function

# Logic Functions (cont.)

3-input majority function

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Logical expression form
F = A B + B C + A C



# Logical Equivalence

 $\square$  All three circuits implement function F =





# Logical Equivalence (Cont.)

- Derivation of logical expression from a circuit
  - Trace from the input to output
    - Mrite down intermediate logical expressions



## Logical Equivalence (Cont.)

Proving logical equivalence: Truth table method

| Α | В | F1 = A B | $F3 = (A + B) (A + \overline{B}) (\overline{A} + B)$ |
|---|---|----------|------------------------------------------------------|
| 0 | 0 | 0        | 0                                                    |
| 0 | 1 | 0        | 0                                                    |
| 1 | 0 | 0        | 0                                                    |
| 1 | 1 | 1        | 1                                                    |
|   |   |          |                                                      |

#### How to minimize a Boolean/Logical function?

- There are four ways to solve any function.
- 1.Boolean Algebra.
- 2.K-Map.
- 3. Quine-McCluskey Technique.
- 4. Variable Mapping Function.

#### Basic Theorems of Boolean Algebra

- 1. Identity Elements 1. A = A 0 + A = A
- 3. Idempotent Laws A + A = A A . A = A
- 5. Distributive Laws A . (B + C) = A.B + A.C A + (B . C) = (A+B) . (A+C)
- 7. Absorption Laws A + (A . B) = A A . (A + B) = A
- 9. Elimination Laws

- 2. Inverse Elements A . A = 0 A + A = 1
- 4. Boundess Laws A + 1 = 1 A . 0 = 0
- 6. Order Exchange Laws A . B = B . A A + B = B + A

8. Associative Laws A + (B + C) = (A + B) + C A . (B . C) = (A . B) . C

10. De Morgan Theorem

 $(\overline{A + B}) = \overline{A} \cdot \overline{B}$  $(\overline{A \cdot B}) = \overline{A} + \overline{B}$