What is Programmable Array Logic (PAL)?

Programmable Array Logic (PAL) is a type of device which comes from the class of programmable logic devices (PLDs) and is used to implement combinational circuits. The basic configuration of a PAL consists of a programmable AND array and followed by a fixed OR gate. It differs from PLA in a manner, that PAL consists of an AND array followed by a fixed OR array whereas in case of PLA it has an AND array followed by a programmable OR gate. In PAL, since only AND array is programmable it is easier to use but it is not that flexible.

A schematic diagram of the basic configuration of PAL can be drawn as:

Programmable Array Logic (PAL) Examples

Example 1

Implement the following Boolean expression using PAL, $F1 = \sum m (3,5,7)$ and $F2 = \sum m (4,5,7)$.

Solution

Since, $F1 = \sum m$ (3,5,7) and $F2 = \sum m$ (4,5,7). Truth table for Boolean functions F1 and F2 can be drawn as:

Inpu	its	Outputs		
Α	В	C	F1	F2
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	0	0	1
1	0	1	1	1
1	1	0	0	0
1	1	1	1	1

Now, for these Boolean functions, using the K-Map we can find the simplified Boolean expressions as:

A PAL program table can be also drawn representing the terms in the Boolean expression as:

	product term	ANI A	D ila B	c's	0(p's	
1	AC	t	-	1	-	
Z	BC	-	l	1	Fi = AC+BC	
3	AB	l	0	-	E-ACLAR	
4	AC	۱	-	1	2-MCTAB	

The logic diagram of the combinational circuit implemented using PAL can be drawn as:

Example 2

Implement the following Boolean expressions using a suitable PLA.

A $(x,y,z) = \sum m (1,2,4,6)$ B $(x,y,z) = \sum m (0,1,6,7)$ C $(x,y,z) = \sum m (2,6)$ D $(x,y,z) = \sum m (1,2,3,5,7)$

Solution

Truth table for Boolean functions A, B, C and D can be drawn as:

Input			Output				
x	Y	Z	Α	В	C		
0	0	0	0	1	0	0	
0	0	1	1	1	0	1	
0	1	0	1	0	1	1	
0	1	1	0	0	0	1	
1	0	0	1	0	0	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	0	1	

Solving K-Map to get the required Boolean expressions:

A PLA program table can be also drawn representing the terms in the Boolean expression as:

Ч	2		
	0		
0	ſ	A=22+242+92	
١	0		
0	-	B= 7. 9 + 24	
1	=	1	
1	0	C= 42	
-	3	D= Z+xy	
	0 1 0 1 1 1		

The logic diagram of the combinational circuit implemented using PLA can be drawn as:

