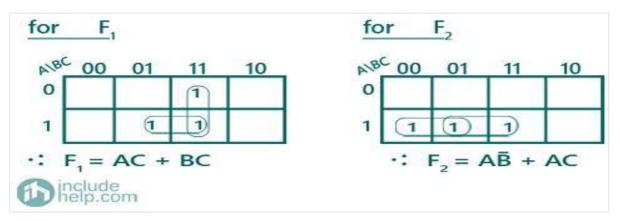

What is Programmable Logic Array (PLA)?

Programmable Logic Array (PLA) is a type of device which comes from the class of programmable logic devices (PLDs) and is used to implement combinational circuits. The basic configuration of a PLA consists of a programmable AND gate followed by a programmable OR gate. Although PLA contains the word programmable inside it, it does not have to be programmed explicitly using any programming languages like C, C++, Java, Python, etc.

A schematic diagram of the basic configuration of PLAs can be drawn as:

Programmable Logic Array (PLA) Examples

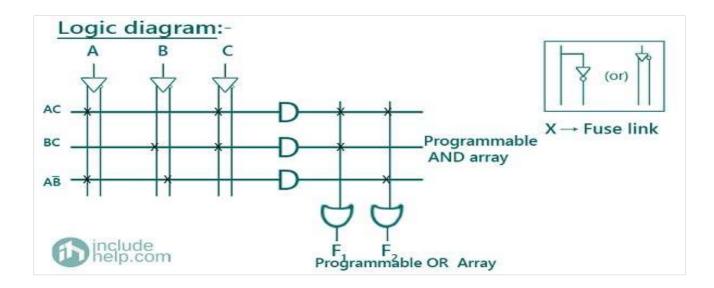
Example 1


A combinational circuit is defined by the function $F1 = \sum m (3,5,7)$, $F2 = \sum m (4,5,7)$. Implement the circuit using a PLA which consists of 3 inputs (A, B and C), 3 product terms and two outputs.

Solution

Since, $F1 = \sum m$ (3,5,7) and $F2 = \sum m$ (4,5,7). Truth table for Boolean functions F1 and F2 can be drawn as:

Inputs			Outputs			
A	В	С	F1	F2		
0	0	0	0	0		
0	0	1	0	0		
0	1	0	0	0		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	1	1		
1	1	0	0	0		
1	1	1	1	1		


Now, for these Boolean functions, using the K-Map we can find the simplified Boolean expressions as:

A PLA program table can be also drawn representing the terms in the Boolean expression as:

	Product term	i/P'S ABC	o/P'S F ₁ F ₂	no . of $i/P'S \longrightarrow 3$ no. of Product $\longrightarrow 3$
1	AC	1 - 1	1 1	terms
2	BC	- 1 1	1 -	no . of $o/P'S \longrightarrow 2$
3	AB	10-	- 1	

The logic diagram of the combinational circuit implemented using PLA can be drawn as:

Example 1

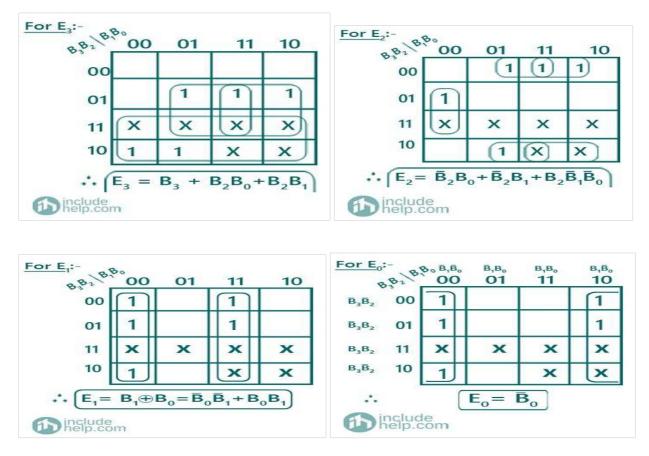
Design a BCD to Excess-3 code converter and implement it using a suitable PLA.

Solution

Truth table for BCD to Excess-3 converter can be drawn as:

Input (BCD Code)				Output (Excess-3 Code)				
Вз	B ₂	Bı	Bo	Ез	E ₂	E1	Eo	
0	0	0	0	0	0	1	1	
0	0	0	1	0	1	0	0	
0	0	1	0	0	1	0	1	
0	0	1	1	0	1	1	0	
0	1	0	0	0	1	1	1	
0	1	0	1	1	0	0	0	
0	1	1	0	1	0	0	1	
0	1	1	1	1	0	1	0	
1	0	0	0	1	0	1	1	
1	0	0	1	1	1	0	0	

Note: Since, BCD numbers are from 0-9, hence other combinations representing (10-15) are considered as don't cares while solving the K-Map.


Boolean Expressions for all the outputs can be written as:

 $E_3 = \sum m (5,6,7,8,9) + \sum d (10,11,12,13,14,15)$ $E_2 = \sum m (1,2,3,4,9) + \sum d (10,11,12,13,14,15)$

 $E_1 = \sum m (0,3,4,7,8) + \sum d (10,11,12,13,14,15)$

 $E_0 = \sum m (0,2,4,6,8) + \sum d (10,11,12,13,14,15)$

Solving K-Map to get the required Boolean expressions:

A PLA program table can be also drawn representing the terms in the Boolean expression as:

Inputs				Outputs			
B ₃	B ₂	В,	B	E ₃	E ₂	Ε,	E
1	-20	-	-	1	-	-	-
-	1	-	1	1	-	-	-
-	1	1	-	1	-	-	-
-	0	-	1	<u></u>	1	-	-
-	0	1	-		1	-	-
-	1	0	0	-	1	-	-
-	-	0	0	-	-	1	-
-	-	1	1		-	1	-
-	-	-	0	-	-	-	1
	B ₃ - - - - -		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The logic diagram of the combinational circuit implemented using PLA can be drawn as:

