Total No. of Questions-8

[Total No. of Printed Pages-4

Seat No.

[4757]-1073

S.E. (Computer Engg.) (First Semester) EXAMINATION, 2015 DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 PATTERN)

Time: Two Hours Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4 and Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if necessary.
- (a) Minimize the following function using K-map and realize using logic gates:

$$F(A, B, C, D) = \sum m (1, 5, 7, 13, 15)$$

+ d(0, 6, 12, 14)

(b) Convert the following: [2]

 $(46)_{10} = (?)_8$

(c) List the differences between CMOS and TTL. [6]

P.T.O.

Or

2.	(a)	Convert the following numbers into binary numbers ? [4	ì
		(i) (37) ₈	
		(ii) (25.5) ₁₀	
	(b)	Explain standard TTL characteristics in detail. [6	5]
	(c)	Represent the following signed number in 2's complemen	t
		method: [2	2]
		(i) +25	
		(ii) -25	
3.	(a)	Design a 3-bit excess 3 to 3-bit BCD code converter using	g
		logic gate.	5]
	(b)	Design mod-5 synchronous counter using J-K flip-flop. [4	
	(c)	Draw the excitation table of J-K flip-flop. [2	3]
		Or	
4.	(a)	Design a 4-bit binary to Gray code converter circuit using	g
		logic gates. [4	ŋ
	(b)	Design a Mod 20 counter using decade counter IC7490. [6	5]
	(c)	Perform the following : [2	2]
		$(11011)_2 + (0101)_2 = (?)_2$	
[475	71 1079	9	

5.	(a)	State and explain basic component of ASM chart? Also explain		
		the salient features of ASM chart.	[7]	
	(b)	Write VHDL code 4 : 1 multiplexer using behaviour	al and	
		data flow modelling style.	[6]	
		Or		
6.	(a)	Design a sequence generator circuit to generate the se	quence	
		1-2-3-7-1 using Multiplexer controller based ASM app	roach.	
		Consideration:	[7]	
		(i) If control input $C = 0$, the sequence generator in the same state.	eircuit	
		(ii) If control input C = 1, the sequence generator goes into next state.	circuit	
	(b)	Explain the following statements used in VHDL with s	uitable	
		examples :	[6]	
		(i) CASE		
		(ii) With select-when		
		(iii) Loop statement.		
7.	(a)	Comparison between PROM, PLA and PAL.	[7]	
	(b)	Draw and explain the basic architecture of FPGA.	[6]	
[4757]-1073		3	P.T.O.	
A 20 (1858)				

Or

8. (a) A combinational circuits is defined by the function :

 $F_1(A, B, C) = \sum m (0, 1, 3, 7)$

 $F_0(A, B, C) = \sum m (1, 2, 5, 6)$

Implement this circuit with PLA.

(b) A combinational circuits is defined by the function :

 F_1 (A, B, C) = $\sum m$ (0, 1, 5, 6, 7)

Implement this circuit with PAL.

