-SE-COMP-CONTENT – KSł

Total No. of Questions-81

[Total No. of Printed Pages-3

Seat No.

[5057]-253

S.E. (Computer Engineering) (First Semester) EXAMINATION, 2016

DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 PATTERN)

4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.

- (ii) Figures to the right indicate full marks.
- (iii) Assume suitable data, if necessary,
- 1. (a) Do the required conversions for the following numbers : [6]
 - (i) $(205.76)_{10} = ()_2$
 - (ii) $(7A2B)_{16} = ()_8$
 - (iii) (6516)₁₀ = ()₁₆
 - Define the following terms for TTL family: [2]
 - (i) Fan Out

(b)

- (ii) Speed of Operation.
- Explain the operation of CMOS NOR gate. [4]

Or

 (a) Minimize the following functions using K-map and realize using logic gates: [4]

 $F(A,\ B,\ C,\ D)\ =\ \Sigma m(0,\ 2,\ 8,\ 10,\ 14).$

P.T.O.

-SE-COMP-CONTENT – KSł

_		(b) Perform the following operation using 2's complement
		method ; [2]
		$(27)_{10} - (14)_{10} = (?).$
		(c) Explain the working of three input TTL NAND gate with Totem-
		pole output. [6]
	3.	(a) Implement the following function using 4 : 1 multiplexer : [4] $F(A, B, C, D) = \Sigma m(0, 3, 7, 9, 11, 14, 15).$
		(b) Convert the following Gray code numbers to Binary : [2] $ (i) (101101)_2 $
		(ii) (111111) ₂
	-	(c) What are the applications of Flip-Flops ? Explain the working
		of SR Flip <mark>-Flop.</mark> [6]
		Or
	4.	(a) Explain with suitable equations and diagrams concept of look
		ahead carry Generator for 4-bit adder circuit. [6]
		(b) Design MOD 76 counter by using IC 7490. [6]
	5.	(a) Explain the following modelling styles of VHDL with suitable
		example : [6]
		(i) Behaviour modelling style
		(ii) Data flow modelling style.
		(b) What is ASM chart ? Explain components of ASM chart. What

[5057]-253

are applications of ASM chart in digital system design ? [7]

S	E-(N	1P-	CO	NT	EN	Τ –	KS ł
---	-----	--	---	-----	----	----	----	-----	-------------

Or

6.	(a)	Draw an ASM chart and state table for 3-bit Up counter having					
		control input E : [7]					
		(i) If control input E = 0 ; Counter remains in same state					
		(ii) If control input E = 1 : Counter goes to next state.					
	(b)	What is VHDL ? Explain entity and architecture declaration					
		in VHDL with suitable example. [6]					

- 7. (a) Draw and explain the basic architecture of FPGA. [6]
 - (b) A combinational circuits is defined by the functions: [7]

 $F_1(A, B, C) = \Sigma m(0, 2, 5, 7)$ $F_2(A, B, C) = \Sigma m(0, 1, 6, 7)$

Implement this circuit with PLA.

Or

- (a) Comparison between PROM, PLA and PAL.
 - (b) What is CPLD ? Give the difference between CPLD and FPGA. [6]

[7]