SPPU-SE-COMP-CONTENT – KSKA Git

Total No. of Questions-8]

[Total No. of Printed Pages-3

Seat	
No.	

[5352]-562

S.E. (Com. Engg.)(I-Sem.) EXAMINATION, 2018 DIGITAL ELECTRONICS AND LOCIC DESIGN (2015 PATTERN)

 Time : Two Hours
 Maximum Marks : 50

 N.B. :-- (i)
 Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q,7 or Q.8.

 Q.8.

- (ii) Neat diagram must be draw wherever necessary.
- (iii) Assume suitable data, if necessary.

1. (a) Design two bit comparator using gates (consider A1 MSB and A0 LSB) [4]

(b) Minimize the following logic function using K-map and realize using logic gates : [4] $F(A,B,C,D) = \Sigma M(1, 5, 7, 13, 15) + d (0, 6, 12, 14).$

(c) Design 3-bit synchronous counter using T filp-flop. [4]

Or

2. (a) Design a sequence generator for the sequence 1010 using shift register. [6]

(b) Simplify the following function using Qunie-McCluskey minimization technique : [6] $Y(A, B, C, D) = \Sigma m (0, 1, 2, 3, 5, 7, 8, 9, 11, 14).$

P.T.O.

SPPU-SE-COMP-CONTENT – KSKA Git

3.	(<i>a</i>)	State and explain basic components of ASM chart. Draw ASM
		chart for MOD 3 UP counter. [6]
	(<i>b</i>)	Implement 3 bit binary to gray code converter using PLA.[6]
		Or
4.	(<i>a</i>)	Write VHDL code for full adder using data flow modeling style.[4]
	(<i>b</i>)	Explain entity declaration for 4 : 1 multiplexer having enable
		line. [2]
	(<i>c</i>)	Design BCD to Excess-3 code converter using PLA. [6]
5.	(<i>a</i>)	Explain with neat diagram CMOS inverter. [4]
	(<i>b</i>)	State the following characteristics of digital IC logic family
		TTL and CMOS : [4]
		(<i>i</i>) FAN out
		(<i>ii</i>) Noise Margin
	(<i>c</i>)	Explain TTL open collector logic. [5]
		Or
6.	(<i>a</i>)	Give the classification of logic family. [4]
	(<i>b</i>)	Draw three imput standard TTL NAND gate and explain its
		operation. [5]
	(<i>c</i>)	Explain wired logic in CMOS. [4]
7.	(<i>a</i>)	Give the significance of the following pins of mirocontroller
		8051 : [7]
		(<i>i</i>) ALE
[5352	2]-562	2

SPPU-SE-COMP-CONTENT – KSKA Git

- (*ii*) INT1
- (*iii*) TXD
- (*vi*) PSEN
- (*v*) EA
- (*vi*) WR
- (vii) RXD.
- (b) Explain addressing modes of 8051 with example (any 3).[6]

Or

- 8. (a) Which pins of 8051 are used for interrupt. Draw and explain IF register. [5]
 - (b) Compare microprocessor and microcontroller. [2]
 - (c) Explain the following instructions with respective to microcontroller
 8051 and give example of each : [6]
 - (*i*) DIV
 - (*ii*) L JUMP
 - (*iii*) PUSH.