### -SF-COMP-CONTENT – KSI

Total No. of Questions-81

Total No. of Printed Pages-4

Seat No.

[4857]-1073

#### S.E. (Computer Engineering) (First Semester) EXAMINATION, 2015

#### DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 PATTERN)

#### Time: Two Hours Maximum Marks: 50

N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.

- (ii) Figures to the right indicate full marks.
- (iii) Assume suitable data, if necessary.
- 1. (a) Implement each expression with NAND logic : [4]

  (i) ABC + DE
  - (ii) ABC + D' + E'.
  - (b) Convert the decimal number 650 to hexadecimal by repeated division by 16.
  - (c) Draw three input standard TTL NAND gate circuit and explain its operation. [6]

Or

(a) Using K-map convert the following standard POS expression into a minimum POS expression, a standard SOP expression and minimum SOP expression:
 (a) (A' + B' + C + D) (A + B' + C + D) (A + B + C + D')
 (A + B + C' + D') (A' + B + C + D') (A + B + C' + D).

# -SE-COMP-CONTENT – KSł

- (b) Prove the following rules of Boolean algebra: [2]
  - $(i) \quad \mathbf{A} + \mathbf{A}' \quad \mathbf{B} = \mathbf{A} + \mathbf{B}$
  - (ii) (A + B) (A + C) = A + BC.
- (c) Explain the advantages of open collector output. [4]
- 3. (a) Design a synchronous counter for

Avoid lockout condition. Use JK flip-flop for design. [6]

- (b) What are the full adder's inputs that will produce each of the following outputs? [2]
  - (i)  $\Sigma = 0$ ,  $C_{out} = 0$ 
    - (ii)  $\Sigma = 1$ ,  $C_{out} = 0$
    - (iii)  $\Sigma = 1$ ,  $C_{out} = 1$
    - $(iv) \quad \Sigma \,=\, 0, \ {\rm C_{out}} \,=\, 1.$
- (c) Explain the logic required to convert 6-bit binary number to gray code. Use that logic to convert the following binary numbers to gray code: [4]
  - (i) 101010
  - (ii) 111111
  - (iii) 000111
  - (iv) 111000.

Or

4. (a) Design a SEQUENCE DETECTOR using JK Flip-Flop to detect the following sequence. ...... 1001 ...... Use state table diagram, state transition table and K-map as design tools. Remove all redundant states and draw the final circuit diagram. [6]

[4857]-1073

# -SE-COMP-CONTENT – KSł

- (b) Determine the output for the following input states : [  $D_0=0,\ D_1=1,\ D_2=1,\ D_3=0,\ s_0=1,\ s_1=0.$  Use 4 : 1 MUX.
- (c) Add the following BCD numbers: [4]
  - (i) 1000 + 0110
    - (ii) 0111 + 0101
  - (iii) 0111 + 0010
  - (iv) 1000 + 0001.
- (a) What is ASM chart? Give its application and explain the MUX controller method with the suitable example. [6]
  - (b) What is VHDL? Write a VHDL code for 3: 8 decoder using behavioral modeling style. [7]

Or

- (a) Explain different modeling styles used in VHDL language with example.
  - (b) Draw an ASM chart for the 2-bit counter with the following specifications:
    - (i) It will count UP if X = 1
    - (ii) It will maintain the state if X = 0
    - (iii) Produces output = 1.

If the counter bits are equal unconditionally, otherwise output = 0 unconditionally. X is an external input. [7]

[4857]-1073 3 P.T.O.

# -SE-COMP-CONTENT – KSŁ

- (a) Show how PAL is programmed for the following 3 variable logic function:
  - (i) X = AB'C + A'BC' + A'B' + AC
  - (ii) Y = A'B'C' + AB'C' + A + AB,
  - (b) What is FPGA? Explain in detail the architecture of FPGA. [7]

Or

- 8. (a) What is the difference between PAL and PLA with suitable example ? [6]
  - b) Design a BCD to Excess-3 code converter and implement using suitable PLA. [7]