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Course Objectives 

To introduce several Discrete Mathematical Structures found to be serving

as tools even today in the development of theoretical computer science.

1. To introduce students to understand, explain, and apply the foundational
mathematical concepts at the core of computer science.

2. To understand use of set, function and relation models to understand practical
examples, and interpret the associated operations and terminologies in context.

3. To acquire knowledge of logic and proof techniques to expand mathematical
maturity.

4. To learn the fundamental counting principle, permutations, and combinations.

5. To study how to model problem using graph and tree.

6. To learn how abstract algebra is used in coding theory.
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Course Outcomes
On completion of the course, learner will be able to –

CO1: Formulate problems precisely, solve the problems, apply formal proof techniques, and
explain the reasoning clearly.

CO2: Apply appropriate mathematical concepts and skills to solve problems in both familiar
and unfamiliar situations including those in real-life contexts.

CO3: Design and analyze real world engineering problems by applying set theory,
propositional logic and to construct proofs using mathematical induction.

CO4: Specify, manipulate and apply equivalence relations; construct and use functions and apply
these concepts to solve new problems.

CO5: Calculate numbers of possible outcomes using permutations and combinations; to model
and analyze computational processes using combinatorics.

CO6: Model and solve computing problem using tree and graph and solve problems using
appropriate algorithms.

CO7: Analyze the properties of binary operations, apply abstract algebra in coding theory and
evaluate the algebraic structures.
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Learning Resources

 Text Books:
1. C. L. Liu, “Elements of Discrete Mathematics”‖, TMH, ISBN 10:0-07-066913-9.2.
2. N. Biggs, “Discrete Mathematics”, 3rd Ed, Oxford University Press, ISBN 0 –19-

850717–8.

 Reference Books:
1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”‖, Tata McGraw-Hill,

ISBN 978-0-07-288008-3
2. Bernard Kolman, Robert C. Busby and Sharon Ross, “Discrete Mathematical

Structures”‖, Prentice-Hall of India /Pearson, ISBN: 0132078457, 9780132078450.
3. Narsingh Deo, “Graph with application to Engineering and Computer Science”,

Prentice Hall of India, 1990, 0 –87692 –145 –4.
4. Eric Gossett, “Discrete Mathematical Structures with Proofs”, Wiley India Ltd,

ISBN:978-81-265-2758-8.
5. Sriram P.and Steven S., “Computational Discrete Mathematics”, Cambridge University

Press, ISBN 13: 978-0-521-73311-3.
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Unit II

Relations and Functions 

Duration: (07 Hours)

Mapping of Course Outcomes: CO2,CO4



Unit-II: Contents
 Relations and their Properties, n-ary relations and their applications,

Representing relations,

 Closures of relations, Equivalence relations, Partial orderings, Partitions,

 Hasse diagram, Lattices, Chains and Anti-Chains, Transitive closure
and Warshall‘s algorithm.

 Functions-Surjective, Injective and Bijective functions, Identity function,
Partial function, Invertible function, Constant function, Inverse functions
and Compositions of functions,

 The Pigeonhole Principle.

 Exemplar/ Case Studies: Know about the great philosophers-Dirichlet
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Relation-Introduction 

 Relationships between elements of sets are represented using the

structure called a relation, which is just a subset of the Cartesian

product of the sets.

 A common notion of relation is a type of association that exists

between two or more objects.

 Example:

 Age – height

 Mother – daughter

 Student – class

 Time – temperature

 Person – citizenship
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Relation-Introduction 

 Example:

 “Is the mother of” is a relation between the set of all females and the set

of all people.

 It consists of all the pairs (person 1, person 2) where person 1 is the mother of person 2.

 x is the father of y.

 The number x is greater than the number y.

 From above example it’s clear that order of object is very important.
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Binary Relation

 A (binary) relation R between the sets A & B (written as R: A ↔ B) is a

subset of the Cartesian product A × B.

i.e. R ⊆A × B

 If (x, y) ∈ R, we say x is related to y, & denote it by x R y.

 If (x, y) ∉ R, we say x is not related to y & denote it by x y.

 Example: Let A={a, b, c} and B={1, 2, 3}.

 Is R = {(a,1),(b,2),(c,3)} a relation from A to B?

 Is Q = {(1,a),(2,b)} a relation from A to B?

 Is P = {(a,a),(b,c),(b,a)} a relation from A to A?

 Is S = {(a,1),(b,2),(c,2)} a relation from A to B?
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Binary Relation

 If there are two sets A and B and Relation from A to B is R(x,y)

 The set A is called the domain of the relation and the set B the codomain

 Domain = Set of first elements in the Cartesian product.

{ x | (x,y) ∈ R for some y in B}

 Range = Set of second elements in the Cartesian product.

{ y | (x,y) ∈ R for some x in A}.

 Example: Let A = {1, 2, 3, 4}. Which ordered pairs are in the relation?

 R = {(a, b) | a < b}?

 R = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

 Domain= {1, 2, 3} & Range= {2, 3, 4}
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Types of Relation

 The Empty Relation between sets A and B, or on E, is the empty set ∅.
 Example: If set A = {1, 2, 3} then, one of the void relations can be R = {x, y} where,

|x – y| = 8. Here R = ∅ ⊆A × A

 The Full Relation between sets A and B is the set A × B.

 Example: Let A={a,b,c} and B={1,2,3} then R={(a,1),(b,2),(c,3)}

 The Identity Relation on set A is the set {(x, x) | x ∈A}

 Example: Let A={1,2,3} then IA={(1,1),(2,2),(3,3)}

 The Relation R in set A is said to Universe Relation if R= A × A

 Example: A={a,b,c} then R =A × A={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)}
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Types of Relation

 The Inverse Relation R' (Converse Relation Rc) of a relation R is defined

as – R' or Rc = {(b, a) | (a, b) ∈ R}. Let R be a relation from set A to set B,

then inverse relation R' is from set B to set A.

 Example: Let A = (1, 2, 3, 4, 5) and

 R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4), (3, 3), (4, 4), (5, 5)}

 R' ={(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (2, 2), (4, 2), (3, 3), (4, 4), (5, 5)}

 The Complement of a relation R is defined as Ȓ={(a,b) | (a,b) ∉ R}.

 i.e. a Ȓ b iff a b Or Ȓ = ( A x B ) – R

 R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4), (3, 3), (4, 4), (5, 5)}

 Ȓ = {(2, 1), (2, 3), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5),(4, 1), (4, 2), (4, 3), (4, 5), (5, 1),

(5, 2), (5, 3), (5, 4)}
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Types of Relation

 The Composite Relation: Let R1 be a binary relation from a set A to a set

B, R2 a binary relation from B to a set C.

 Then the composite relation from A to C denoted by R1.R2. Or

 R1.R2 = {(a,c) | a R1 b, b R2 c ; for a ∈A, c ∈ C}

 Example: A = {1, 2, 3}, B = {a, b, c, d}, C = {x, y, z}.

 R : A ↔ B R = {(1, a), (1, b), (2, b), (2, c)}.

 S : B ↔ C S = {(a, x), (a, y), (b, y), (d, z)}.

 R.S = {(1, x), (1, y), (2, y)}.
Mr. S. B. Shinde  Asst Professor, MESCOE Pune



Types of Relation

 Combining Relations: Since relations from A to B are subsets of A x B,

two relations from A to B can be combined through set operations.

 Example: Let A = {1, 2, 3} & B = {1, 2, 3, 4}. The relations R1 = {(1, 1),

(2, 2), (3, 3)} and R2 = {(1, 1), (1, 2), (1, 3), (1, 4)} can be combined to

obtain

 R1 ∪ R2 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)},

 R1 ∩ R2 = {(1, 1)},

 R1 − R2 = {(2, 2), (3, 3)},

 R2 − R1 = {(1, 2), (1, 3), (1, 4)},

Mr. S. B. Shinde  Asst Professor, MESCOE Pune



Example on Types of Relation

 Example 1: Let A = {1,2,3}, B = {0,1,2} and C = {a,b}.

R = {(1,0), (1,2), (3,1), (3,2)}

S = {(0,b), (1,a), (2,b)} Find R.S

Solution : R.S = {(1,b), (3,a), (3,b)}

 Example 2: Let R be the relation {(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)},

and let S be the relation {(2, 1), (3, 1), (3, 2), (4, 2)}. Find R.S

Solution: R.S = {(1,1), (1,2), (2,1) (2, 2)}
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Example on Types of Relation

 Example 3: Let A = (1, 2, 3, 4, 5) and R = {(1,1), (1,2), (1,3), (1,4), (1,5),

(2,2), (2,4), (3,3), (4,4), (5,5)}. Find Inverse, Complement, Identity and

Universal Relation R.

Solution:
U = {(1,1), (1,2), (1,3), (1,4), (1,5), (2,1),(2,2), (2,3),(2,4), (2,5), (3,1),
(3,2), (3,3), (3,4), (3,5), (4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3),
(5,4), (5,5)}

IA = {(1,1), (2,2), (3,3), (4,4), (5,5)}

Ȓ = {(2,1), (2,3), (2,5), (3,1), (3,2), (3,4), (3,5), (4,1), (4,2), (4,3), (4,5),
(5,1), (5,2), (5,3), (5,4)}

R' = {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (2, 2), (4, 2),(3, 3), (4, 4), (5, 5)}.
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Example on Types of Relation

 Example 4: Let A = (1,2,3,4), Let R1 = {(x,y) | x + y = 5} and

R2 = {(x,y)| y - x = 1}. Verify (R1.R2)c = R2c. R1c.

Solution:

R1 = {(1,4),(2,3),(3,2),(4,1)} And

R2 = {(1,2),(2,3),(3,4)}

(R1.R2) = {(2,4),(3,3),(4,2)}

(R1.R2)c = {(4,2),(3,3),(2,4)} ---------------- (A)

R2c= {(2,1),(3,2),(4,3)}

R1c = {(4,1),(3,2),(2,3),(1,4)}

R2c. R1c = {(2,4),(3,3),(4,2)} ---------------(B)

Therefore from (A) & (B) we get, (R1.R2)c = R2c. R1c.
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Examples

 Example 5: Let A be the set of students at your school and B the set of
books in the school library. Let R1 and R2 be the relations consisting of all
ordered pairs (a, b), where student a is required to read book b in a course,
and where student a has read book b, respectively. Describe the ordered
pairs in each of these relations.
a)R1 ∪ R2 b) R1 ∩ R2 c) R1⊕ R2 d) R1 − R2 e) R2 − R1

Solution: the set of pairs (a, b) where
a) a is required to read b in a course or has read b.
b) a is required to read b in a course and has read b.
c) a is required to read b in a course or has read b, but not both; equivalently,

the set of pairs (a, b) where a is required to read b in a course but has not
done so, or has read b although not required to do so in a course.

d) a is required to read b in a course but has not done so.
e) a has read b although not required to do so in a course.
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Powers of a Relation
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 Let R be a relation on the set A. The powers Rn, n = 1, 2, 3, . . . , are

defined recursively by R1 = R and Rn+1 = Rn ◦ R.

 The definition shows that R2 = R◦R, R3 = R2◦R = (R ◦ R)◦R, and so on.

 Example 6: Let R = {(1, 1), (2, 1), (3, 2), (4, 3)}. Find the powers Rn, n = 2, 3,4,……

Solution: We have R = {(1, 1), (2, 1), (3, 2), (4, 3)}.

R2 = R◦R = [{(1, 1), (2, 1), (3, 2), (4, 3)}] [{(1, 1), (2, 1), (3, 2), (4, 3)}]

R2 = {(1, 1), (2, 1), (3, 1), (4, 2)}. 

R3 = R2 ◦R = [{(1, 1), (2, 1), (3, 1), (4, 2)}]  [{(1, 1), (2, 1), (3, 2), (4, 3)}]

R3 = {(1, 1), (2, 1), (3, 1), (4, 1)}. 

R4 = R3 ◦R  = [{(1, 1), (2, 1), (3, 1), (4, 1)}] [{(1, 1), (2, 1), (3, 2), (4, 3)}]

R4 = {(1, 1), (2, 1), (3, 1), (4, 1)}



Powers of a Relation
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 Example 7: R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}.

Solution: R1 = {(1,2),(2,3),(2,4), (3,3)}

R2 = {(1,3), (1,4), (2,3), (3,3)}

R3 = {(1,3), (2,3), (3,3)}

R4 = {(1,3), (2,3), (3,3)}

 Example 8: Let R be the relation on the set {1, 2, 3, 4, 5} containing the ordered pairs (1,

1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), and (5, 4).

Find a) R2. b) R3. c) R4. d) R5.

Solution: R1 =

R2 =

R3 =

R4 =

R5 =



Representation of Relations 

 Let A =(1,2,3,4,8) & B =(1,4,6,9) R={(x,y) | y is divisible by x}.

Solution: The relation R consists of the ordered pairs:

R={(1,1),(1,4),(1,6),(1,9),(2,4),(2,6),(3,6),(3,9),(4,4)}
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 2. Tabular Representation 1. Ordered Pair



Representation of Relations 

 Let A =(1,2,3,4,8) & B =(1,4,6,9) R={(x,y) | y is divisible by x}.
R={(1,1),(1,4),(1,6),(1,9),(2,4),(2,6),(3,6),(3,9),(4,4)}
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 4. Digraph Representation

In edge (a,b), vertex a is called the initial
vertex and the vertex b is called the
terminal vertex.

An edge of the form (a, a) is represented
using an arc from the vertex a back to
itself. Such an edge is called a loop.

 3. Matric Representation

A relation between finite sets can be
represented using a zero–one matrix.

The zero–one matrix representing R has
1 as its (i,j) entry when ai is related to bj,
and 0 in this position if ai is not related
to bj.

MR =   

1 1 1 10 1 1 00 0 1 10 1 0 00 0 0 0



Examples

 Example 1: Let A ={0, 1, 2}, B = {u,v} and R = {(0,u), (0,v), (1,v), (2,u)}.
Show all forms of representation of given relation R.
Solution:
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 Example 2: Let A = {1,2,3,4}. Define a R≠ b if and only if a ≠ b. What is
Inverse Complement of R≠ and Also representation of given relation R≠.

Solution: R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}



Examples

 Example 3: Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the

relation R = {(a, b) | a divides b}?. Draw all form of representations for R.

Solution: R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}.
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Examples

 Example 4: List the ordered pairs in the relation R from A = {0, 1, 2, 3, 4}
to B = {0, 1, 2, 3}, where (a, b) ∈ R if and only if

i. a = b.
ii. a + b = 4.
iii. a > b.
iv. a | b.

Solution:

i. {(0,0), (1,1), (2,2), (3,3)}

ii. (1,3),(2,2),(3, 1), (4,0)}

iii. {(1,0), (2,0), (2,1),(3,0), (3,1),(3,2),(4,0), (4,1), (4,2), (4,3)}

iv. a | b means that b is a multiple of a (a is not allowed to be 0).

{(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (3, 0), (3, 3), (4, 0)}.
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Examples

 Example 5: Consider these relations on the set of integers: Which of these

relations contain each of the pairs: (1, 1), (1, 2), (2, 1), (1, −1), and (2, 2)?

R1 = {(a, b) | a ≤ b}, R4 = {(a, b) | a = b},

R2 = {(a, b) | a > b}, R5 = {(a, b) | a = b + 1},

R3 = {(a, b) | a = b or a = −b}, R6 = {(a, b) | a + b ≤ 3}.

Solution:

(1, 1) → R1, R3, R4 and R6

(1, 2) → R1 and R6

(2, 1) → R2, R5 and R6

(1, −1) → R2 , R3 and R6

(2, 2) → R1 , R3 and R4
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Examples
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 Example 6: How many relations are there on a set with n elements.



Examples
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Examples
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 Example 7: How many different relations are there from a set with m

elements to a set with n elements?

Solution:

 There are mn elements of the set A x B, if A is a set with m elements

and B is a set with n elements.

 A relation from A to B is a subset of A x B.

 Thus the question asks for the number of subsets of the set A x B,

which has mn elements.

 By the product rule, it is 2mn.



Examples

 Example 9: Let A = {a1, a2, 3} and B = {b1, b2, b3, b4, b5}. Which
ordered pairs are in the relation R represented by the matrix.
Solution:
R = {(a1,b2), (a2,b1), (a2,b3),
(a2,b4), (a3,b1), (a3,b3), (a3,b5)}.

 Example 10: What are the ordered pairs in the R represented by the
directed graph:
Solution:
The ordered pairs (x, y) in the relation are
R = {(1, 3), (1, 4), (2, 1), (2, 2), (2, 3),
(3, 1), (3, 3), (4, 1), (4, 3)}.
Each of these pairs corresponds to an
edge of the directed graph, with (2, 2)
and (3, 3) corresponding to loops.
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MR = 
0 1 0 0 01 0 1 1 01 0 1 0 1



Representing Relations using Zero–One 
Matrices
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 Let A = [aij ] and B = [bij ] be m × n zero–one matrices.

 The Join of A and B is the zero–one matrix with (i, j)th entry aij ∨ bij. The

join of A and B is denoted by A ∨ B.

 The Meet of A and B is the zero–one matrix with (i, j)th entry aij ∧ bij.

The meet of A and B is denoted by A ∧ B.

 Example: Let A = {1,2,3} and B = {u,v} and

R1 = {(1,u), (2,u), (2,v), (3,u)} R2 = {(1,v),(3,u),(3,v)}

MR1 =

1 01 11 0 MR2 =

0 10 01 1 M(R1 ∨ R2) =    

1 11 11 1 M(R1 ∧ R2) =    

0 00 01 0



Matrix Relation for Union and 
Intersection operation 

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 The Boolean operations join and meet can be used to find the matrices

representing the union and the intersection of two relations. Suppose that

R1 and R2 are relations on a set A represented by the matrices MR1 and MR2,

respectively.

 The matrix representing the union of these relations has a 1 in the positions

where either MR1 or MR2 has a 1.

 The matrix representing the intersection of these relations has a 1 in the

positions where both MR1 andMR2 have a 1.

 Thus, the matrices representing the union and intersection of these relations

are MR1 ∪ R2 = MR1 ∨MR2 and MR1 ∩ R2 = MR1 ∧MR2



Matrix Relation for Union and 
Intersection operation 
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 Example: Suppose that the relations R1 and R2 on a set A are represented by the

matrices. What are the matrices representing R1 ∪ R2 and R1 ∩ R2?

MR1 =
1 0 11 0 00 1 0

MR2 =
1 0 10 1 11 0 0

Solution:

MR1 ∪ R2 = MR1 ∨MR2 =
1 0 11 1 11 1 0

MR1  ∩ R2 = MR1 ∧MR2 ==
1 0 10 0 00 0 0



Matrix for the Composite of relations
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 The matrix for the composite of relations can be found using the Boolean product

of the matrices.

 The Boolean product denoted by ʘ, of an m-by-n matrix (aij) and n-by-p matrix

(bjk) of 0s and 1s is an m-by-p matrix (mik) where

mik = 1,        if aij = 1 and bjk = 1 for some k=1,2,...,n

0, otherwise.

 Suppose that R is a relation from A to B and S is a relation from B to C. From the

definition of the Boolean product, this means that

MS◦R = MR ʘ MS

 The matrix representing the composite of two relations can be used to find the

matrix for MR
n . In particular𝑴𝑹𝒏 = 𝑴𝑹[𝒏]



Matrix for the Composite of relations
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 Example 1: Let A = {1,2}, {1,2,3} and C = {a,b}. 

R = {(1,2),(1,3),(2,1)} is a relation from A to B. 

S = {(1,a),(3,b),(3,a)} is a relation from B to C. 

R.S = {(1,b),(1,a),(2,a)}

MR ʘ MS =       
0 1 11 0 0 ʘ

1 00 01 1
MR =     

0 1 11 0 0 MS =   
1 00 01 1

(0 ∧ 1) ∨ (1 ∧ 0) ∨ (1 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 0) ∨ (1 ∧ 1)
(1 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 1)

0 ∨ 0 ∨ 1 0 ∨ 0 ∨ 1

1 ∨ 0 ∨ 0 0 ∨ 0 ∨ 0

MS ◦ R =   MR ʘ MS =         
1 11 0



Matrix for the Composite of relations

 Example 2: Find the matrix representing the relations S ◦ R, where the
matrices representing R and S are
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MR = 
1 0 11 1 00 0 0 MS = 

0 1 00 0 11 0 1 MR ʘ MS =    
1 0 11 1 00 0 0 ʘ

0 1 00 0 11 0 1
(1 ∧ 0) ∨ (0 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (0 ∧ 0 ) ∨ (1 ∧ 0) (1 ∧ 0) ∨ (0 ∧ 1 ) ∨ (1 ∧ 1)
( 1 ∧ 0) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (1∧ 1) ∨ (1 ∧ 0 ) ∨ (0 ∧ 0) (1 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 1)

(0 ∧ 0 ) ∨ (0 ∧ 0) ∨ (0 ∧ 1) (0 ∧ 1) ∨ (0 ∧ 0 ) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 1)

0 ∨ 0 ∨ 1 1 ∨ 0 ∨ 0 0 ∨ 0 ∨ 1
0 ∨ 0 ∨ 0 1 ∨ 0 ∨ 0 0 ∨ 1 ∨ 0

0 ∨ 0 ∨ 0 0 ∨ 0 ∨ 0 0 ∨ 0 ∨ 0 MS◦R =  MR ʘ MS =  
1 1 10 1 10 0 0



Matrix for the Composite of relations

 Example: Find the matrix representing the relation R2, where the matrix
representing R is

 Example: Let R be the relation represented by the matrix. Find the

matrices that represent a) R2. b) R3. c) R4.

Solution: We compute the Boolean powers of MR; thus𝑀𝑅2 = 𝑀𝑅[2] =  MR ʘ MR𝑀𝑅3 = 𝑀𝑅[3] = 𝑀𝑅2 ʘ𝑀𝑅𝑀𝑅4 = 𝑀𝑅[4] = 𝑀𝑅[3]ʘ𝑀𝑅
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MR =
0 1 00 1 11 0 0 Solution:   𝑀𝑅2 = 𝑀𝑅[2] =    

0 1 11 1 10 1 0
MR =   

0 1 00 0 11 1 0
R2 =
0 0 11 1 00 1 1 R3 = 

1 1 00 1 11 1 1 R4 = 
0 1 11 1 11 1 1



Properties of a Relation

1. Reflexive Relation:

2. Irreflexive Relation:

3. Symmetric Relation:

4. Anti-Symmetric Relation:

5. Asymmetric Relation:

6. Transitive Relation:

7. Equivalence Relation:
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Reflexive Relation

 Reflexive Relation: Relation R on a set A is called reflexive if (a,a)∈ R for

every element a ∈A.

 A relation is reflexive if, we observe that for all values a: aRa.

 A Relation R is reflexive if all the elements on the

Main diagonal of Matrix representation MR are

equal to 1, and the elements off the main

diagonal can be either 0 or 1.

 Every Node has a self-loop.

 A relation R is said to be not reflexive if there exist at least one element

a ∈ A such that (a,a) ∉ R. i.e. a a
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Reflexive Relation

 Example: Relation Rdiv ={(a,b) if a | b} on A = {1,2,3,4}. Is Rdiv reflexive?

Solution: Rdiv = {(1,1), (1,2), (1,3), (1,4),(2,2), (2,4), (3,3), (4,4)}

Rdiv reflexive because (1,1), (2,2), (3,3), and (4,4) ∈A.

 Example: Relation Rfun on A = {1,2,3,4} defined as:

Rfun = {(1,2),(2,2),(3,3)}.

Solution: No. Rfun is not reflexive relation since (1,1) and (4,4) ∉ Rfun.
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MRdiv = 

1 1 1 10 1 0 10 0 1 00 0 0 1



Irreflexive Relation

 Irreflexive Relation: Relation on a set A is called irreflexive if (a, a) ∉ R

for every element a ∈ A.

 A relation is Irreflexive if, we observe that for all values a: aRa does not

hold.

 A relation R is reflexive if and only if Matrix

representation (MR) has 0 in every position

on its main diagonal.

 No node has a self-loop.

 R = {(a, b), (b, a)} on set X = {a, b} is irreflexive.
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Irreflexive Relation

 Example: Relation R≠ on A = {1,2,3,4}, such that

aR≠ b if and only if a ≠ b.

Solution:

R≠ = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

R≠ irreflexive Because (1,1),(2,2),(3,3) and (4,4) ∉ R≠

 Example: Relation Rfun on A = {1,2,3,4} defined as:

Rfun = {(1,2),(2,2),(3,3)}. Is Rfun irreflexive?

Solution: No, Because (2,2) and (3,3) ∈ Rfun.
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Symmetric Relation 

 Symmetric Relation: Relation R on a set A is called symmetric

if (b, a) ∈ R whenever (a, b) ∈ R ∀ (a, b) ∈A.

i. e. ∀ (a, b) ∈A (a,b) ∈ R → (b,a) ∈ R.

 A relation is symmetric if, we observe that for all values of

a&b: aRb implies bRa

 R is symmetric if and only if mij = mji, for all pairs of integers i and j.

Recalling the definition of the transpose

of a matrix, we see that R is symmetric

if and only if MR=(MR)t, that is,

if MR is a symmetric matrix.

 Every link is Bidirectional.
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Symmetric Relation

 Example: Let Rdiv ={(a b), if a | b} on A = {1,2,3,4}. Is Rdiv symmetric?

Solution: Rdiv = {(1,1), (1,2), (1,3), (1,4),(2,2), (2,4), (3,3), (4,4)}

Rdiv is not symmetric since (1,2) ∈ R but (2,1) ∉ R.

 Example: Relation R≠ on A ={1,2,3,4} such that aR≠ b if and only if a ≠ b.

Solution: R≠ = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

R ≠ symmetric, If (a,b) ∈ R ≠ →(b,a) ∈ R ≠

 Example: Relation Rfun on A = {1,2,3,4} defined as:

Rfun = {(1,2),(2,2),(3,3)}. Is Rfun symmetric?

Solution: It is not symmetric relation since (1,2) ∈ Rfun and (2,1) ∉ Rfun
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Anti-Symmetric Relation 

 Anti-Symmetric Relation: A relation R on a set A such that for all

(a, b) ∈A, if (a, b) ∈ R and (b, a) ∈ R, then a = b is called antisymmetric.

i. e. [(a,b) ∈ R and (b,a) ∈ R] → a = b where (a, b) ∈A.

 No link is Bidirectional.

 The matrix of an antisymmetric relation has 

the property that if mij =1 then mji = 0 for  i ≠ j.

 In other words, either mij = 0 or mji = 0 when i ≠ j.

 A relation R on a set A such that for all (a, b) ∈A, if (a, b) ∈ R and (b, a) ∈
R, then a ≠ b is called not antisymmetric.
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Anti-Symmetric Relation 

 Imp Notes:

 A relation is symmetric if and only if a R b implies that b R a.

 A relation is antisymmetric if and only if there are no pairs of distinct

elements a and b with a related to b and b related to a. That is, the only

way to have a related to b and b related to a is for a and b to be the same

element.

 The terms symmetric and antisymmetric are not opposites, because a

relation can have both of these properties or may lack both of them. A

relation cannot be both symmetric & antisymmetric if it contains some pair

of the form (a,b), where a = b.
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Anti-Symmetric Relation 

 Example: Let A = {1,2,3,4} and Rfun= {(1,2),(2,2),(3,3)}.

Is Rfun Antisymmetric?

Solution: Yes Rfun antisymmetric since there are no cases of (a, b) and (b, a)

in Rfun.

 Example: Let A = {1,2,3,4} and

R = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)} Is R Antisymmetric?

Solution: It is not antisymmetric since it includes both (2,3) and (3,2), but 2 ≠ 3.
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MRfun =   

0 1 0 00 1 0 00 0 1 00 0 0 0



Asymmetric Relation 

 Asymmetric Relation: Relation R on a set A is called asymmetric if

(a, b) ∈ R implies that (b, a) ∉ R ∀ a,b ∈A.

 Example: If A = {1, 2, 3} then

R1 = {(1,2), (2,3), (3,1)} and R2 = {(1,2), (2,3), (3,2)}

Is R1 and R2 Asymmetric?

Solution: R1 is asymmetric relation and R2 is not asymmetric relation as (2,3)

and (3,2) ∈ R2.
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Transitive Relation 

 Transitive Relation: Relation R on a set A is called transitive if whenever

(a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R for all a, b, c ∈A.

 i. e. [(a,b) ∈ R and (b,c) ∈ R] → (a,c) ∈ R for all a, b, c ∈A.

 Example: Is Rdiv R≠ and Rfun transitive?

 Rdiv = {(1,1), (1,2), (1,3), (1,4),(2,2), (2,4), (3,3), (4,4)}.

 R≠ = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}

 Rfun = {(1,2),(2,2),(3,3)}.

Solution:

 Rdiv is transitive relation as (1,2), (2,4) → (1,4).

 R≠ is not transitive since (1,2) ∈ R ≠ and (2,1) ∈ R ≠ but (1,1) ∉ R≠.

 Rfun is transitive relation.
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Equivalence Relation 

 Equivalence Relation: A relation is an Equivalence Relation if it is

reflexive, symmetric, and transitive.

 Two elements a and b that are related by an equivalence relation are called

equivalent.

 The notation a ∼ b or "a ≡ b" is often used to denote that a and b are

equivalent elements with respect to a particular equivalence relation.

 Example: The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2,1), (2,3), (3,2),

(1,3), (3,1)} on set A = {1, 2, 3} is an equivalence relation since it is

reflexive, symmetric, and transitive.
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Equivalence Relation 

 Example: Let R be the relation on the set of real numbers such that aRb if

and only if a−b is an integer. Is R an equivalence relation?

Solution: Because a−a =0 is an integer for all real numbers a, aRa for all

real numbers a. Hence, R is reflexive.

Now suppose that aRb. Then a−b is an integer, so b−a is also an integer.

Hence, bRa. It follows that R is symmetric.

If aRb and bRc, then a−b and b–c are integers. Therefore, a−c=( −b)+(b−c)

is also an integer. Hence, aRc. Thus, R is transitive.

Consequently, R is an equivalence relation.

Mr. S. B. Shinde  Asst Professor, MESCOE Pune



Equivalence Classes

 Let R be an equivalence relation on a set A. The set of all elements that are

related to an element a of A is called the equivalence class of a.

 The equivalence class of a with respect to R is denoted by [a]R . i. e.

[a]R = {s ∈A | (a, s) ∈ R}.

 When only one relation is under consideration, we can delete the subscript

R and write [a] for this equivalence class.

 If b ∈[a]R, then b is called a representative of this equivalence class.

 Any element of a class can be used as a representative of this class. That is,

there is nothing special about the particular element chosen as the

representative of the class.

 Any two equivalence classes are either equal or disjoint.
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Equivalence Classes

 THEOREM 1: Let R be an equivalence relation on a set A. These

statements for elements a and b of A are equivalent:

(i) aRb (ii) [a] = [b] (iii) [a] ∩ [b] ≠ ∅
 THEOREM 2: Let R be an equivalence relation on a set S. Then the

equivalence classes of R form a partition of S. Conversely, given a partition

{Ai | i ∈ I } of the set S, there is an equivalence relation R that has the sets

Ai , i ∈ I , as its equivalence classes.
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Partition of a Set
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 A partition of a set S is a collection of disjoint nonempty subsets of S that

have S as their union.

 In other words, the collection of subsets Ai, i ∈ I (where I is an index set)

forms a partition of S if and only if:

Ai ≠ ∅ for i ∈ I,

Ai ∩ Aj = ∅ when i ≠ j,

And

 i ∈ I Ai = S



Example on Properties of Relations

 Example 1: For each of these relations on the set {1,2,3,4} decide whether

it is reflexive, symmetric, antisymmetric, and transitive.

i. {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}

ii. {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

iii. {(2, 4), (4, 2)}

iv. {(1, 2), (2, 3), (3, 4)}

v. {(1, 1), (2, 2), (3, 3), (4, 4)}

vi. {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}
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Example on Properties of Relations 

i. {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}

 Not reflexive because we do not have (1, 1), and (4, 4).

 Not symmetric because we we have (2, 4) but not (4, 2). And also we have

(3, 4), but not have (4, 3).

 Not antisymmetric because we have both (2, 3) and (3,2) but 2 ≠ 3.

 It is Transitive. We can ignore the element 1 since it never appears. If (a, b)

is in this relation, then by inspection we see that a must be either 2 or 3.

But (2, c) and (3, c) are in the relation for all c ≠ 1; thus (a, c) has to be in

this relation whenever (a, b) and (b, c) are. This proves that the relation is

transitive.
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Example on Properties of Relations 

ii. {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)}

 Reflexive because (a, a) is in the relation for all a = 1, 2, 3, 4.

 Symmetric because that both (1, 2) and (2, 1) are in the relation.

 Not antisymmetric because both (1, 2) and (2, 1) are in the relation.

 Transitive because we have (1,2), (2,1) and also (1,1) in the relation.

iii. {(2, 4), (4, 2)}

 Irreflexive because we do not have (a, a) for all a = 1, 2, 3, 4.

 Symmetric because for every (a, b), we have (b, a).

 Not antisymmetric because we have both (2, 4) and (4, 2) in a relation.

 Not transitive, since although (2,4) and (4,2) are in the relation, (2,2) is not.
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Example on Properties of Relation 

iv. {(1, 2), (2, 3), (3, 4)}

 Irreflexive because we do not have (a; a) for all a = 1, 2, 3, 4.

 Not symmetric because we do not have (2, 1), (3, 2), and (4,3).

 Antisymmetric because for every (a, b), we do not have (b, a) in relation.

 Not transitive because we do not have (1,3) for (1, 2) and (2, 3).

v. {(1, 1), (2, 2), (3, 3), (4, 4)}

 Reflexive because we have (a; a) for every a = 1, 2, 3, 4.

 Symmetric because we do not have a case where (a, b) and a ≠ b.

 Antisymmetric because we do not have a case where (a, b) and a ≠ b.

 It is trivially transitive, since the only time the hypothesis (a, b) ∈ R /\ ( b,

c) ∈ R is met is when a= b = c.
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Example on Properties of Relations

vi. {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)}

 Irreflexive because we do not have (a; a) for all a = 1, 2, 3, 4.

 Not symmetric because the relation does not contain (4,1), (3,2), (4,2), and

(4,3).

 Not antisymmetric because we have (1,3) and (3,1).

 Not transitive because we do not have (2,1) for (2,3) and (3,1).
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Example on Properties of Relations

Example 2: Consider the following relations on {1, 2, 3, 4}, decide whether it is
reflexive, symmetric, antisymmetric, and transitive.

i. R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)},

ii. R2 = {(1, 1), (1, 2), (2, 1)},

iii. R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

iv. R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},

v. R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},

vi. R6 = {(3, 4)}.
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Relation Reflexive Symmetric Antisymmetric Asymmetric Transitive

R1 Y

R2 Y

R3 Y Y

R4 Y Y Y

R5 Y Y Y

R6 Y Y Y



Example on Properties of Relations

 Identify the reflexive, symmetric, antisymmetric, and transitive properties

for following digraph representation.
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For A:

 Not Reflexive

 Symmetric

 Antisymmetric

 Transitive

For B:

 Irreflexive

 Not Symmetric

 Not Antisymmetric

 Not Transitive

For D:

 Ireflexive

 Not Symmetric

 Antisymmetric

 Transitive

For C:

 Irreflexive

 Not Symmetric

 Antisymmetric

 Not Transitive



Example on Properties of Relations

 Example 3: Consider the relation on A= {1, 2, 3, 4, 5, 6}.

R= {(i, j) | i - j = 2}. Is R an Equivalences Relation?

Solution: R={(1,3),(3,1),(2,4),(4,2),(3,5),(5,3),(4,6),(6,4)}

 Relation R is not Reflexive as (2,2) is not belong to R.

 Relation R is Symmetric and not Transitive Relation.

 Therefore is not a Equivalences Relation

 Example 4: Suppose that the relation R on a set is represented by the
matrix. Is R reflexive, symmetric, and/or antisymmetric?
Solution: Because all the diagonal elements of this matrix
are equal to 1, R is reflexive. Moreover, because MR

is symmetric, it follows that R is symmetric.
It is also easy to see that R is not antisymmetric.
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MR =  
1 1 01 1 10 1 1



Example on Properties of Relations

 Example 5: Determine whether the relations for the directed graphs are

reflexive, symmetric, antisymmetric,

and/or transitive.

 Relation R is reflexive.

 Relation R is neither symmetric nor antisymmetric

because there is an edge from a to b but not one from b to a, but there are edges in both directions

connecting b and c.

 Relation R is not transitive because there is an edge from a to b and an edge from b to c, but no edge

from a to c.

 Relation S is not reflexive because loops are not present at all the vertices of the directed graph of S.

 Relation S It is symmetric and not antisymmetric, because every edge between distinct vertices is

accompanied by an edge in the opposite direction.

 It is also not hard to see from the directed graph that S is not transitive, because (c, a) and (a, b)
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Example on Properties of Relations

 Example 6: Which of these relations on {0, 1, 2, 3} are equivalence

relations? Determine the properties of an equivalence relation that the

others lack.

a) {(0, 0), (1, 1), (2, 2), (3, 3)}

b) {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

c) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}

d) {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)}
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Example on Properties of Relations

 Example 6: Solution:

a) This is an equivalence relation; it is easily seen to have all three properties. The

equivalence classes all have just one element.

b) This relation is not reflexive since the pair (1, 1) is missing. It is also not

transitive, since the pairs (0, 2) and (2, 3) are there, but not (0, 3).

c) This is an equivalence relation. The elements 1 and 2 are in the same

equivalence class; 0 and 3 are each in their own equivalence class.

d) This relation is reflexive and symmetric, but it is not transitive. The pairs (1, 3)

and (3, 2) are present, but not (1, 2).

e) This relation would be an equivalence relation were the pair (2, 1) present. As it

is, its absence makes the relation neither symmetric nor transitive
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Closures of Relations

 The Closure of a relation R with respect to property P is the relation

obtained by adding the minimum number of ordered pairs to R to obtain

property P.

 In terms of the digraph representation of R

 To find the reflexive closure - add loops.

 To find the symmetric closure - add arcs in the opposite direction.

 To find the transitive closure - if there is a path from a to b, add an

arc from a to b.

 Note: Reflexive and symmetric closures are easy. Transitive closures can be very

complicated.
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Reflexive Closure

 Consider the relation R = {(1, 1), (1, 2), (2, 1), (3, 2)} on the set A = {1, 2,

3} is not reflexive.

 How can we produce a reflexive relation containing R that is as small as

possible?

 This can be done by adding (2, 2) and (3, 3) to R, because these are the

only pairs of the form (a, a) that are not in R.

 The new relation will be R = {(1, 1), (1, 2), (2, 1), (3, 2), (2, 2), (3, 3)} and

is called as reflexive closure of R.

 As this example illustrates, given a relation R on a set A, the reflexive

closure of R can be formed by adding to R all pairs of the form (a, a) with a∈A, not already in R.
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Reflexive Closure

 Reflexive closure of R equals R ∪ Δ,

where Δ= {(a, a) | a ∈A} is the diagonal relation on A.

 Add loops to all vertices on the digraph representation of R.

 Put 1’s on the diagonal of the connection matrix of R.

 Example: Let R be the relation on the set A = {0, 1, 2, 3} R= {(0, 1), (1,

1), (1, 2), (2, 0), (2, 2), (3, 0)}. Find reflexive closure of R.

Solution: The reflexive closure R = R ∪ Δ, where Δ= {(a, a) | a ∈A}.

R = {(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)}

Therefore Δ = {(0, 0), (1, 1), (2, 2), (3, 3)}.

R = R ∪Δ = {(0, 0),(0, 1),(1, 1),(1, 2),(2, 0),(2, 2),(3, 0),(3, 3)}.
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Symmetric Closure

 Consider the relation R= {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)} on {1, 2, 3} is

not symmetric.

 How can we produce a symmetric relation that is as small as possible and contains

R?

 To do this, we need only add (2, 1) and (1, 3), because these are the only pairs of

the form (b, a) with (a, b) ∈ R that are not in R.

 This new relation is symmetric and contains R. Furthermore, any symmetric

relation that contains R must contain this new relation, because a symmetric

relation that contains R must contain (2, 1) and (1, 3). Consequently, this new

relation is called the symmetric closure of R.

 Adding these pairs produces a relation that is symmetric, that contains R, and that

is contained in any symmetric relation that contains R.
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Symmetric Closure

 The symmetric closure of a relation can be constructed by taking the

union of a relation with its inverse that is, R ∪ R−1 is the symmetric closure

of R, where R−1 = {(b, a) | (a, b) ∈ R}.

 Reverse all the arcs in the digraph representation of R.

 Take the transpose MT of the connection matrix M of R.

 Example: Let R be the relation on the set A = {0, 1, 2, 3} R= {(0, 1), (1, 1), (1, 2), (2, 0),

(2, 2), (3, 0)}. Find symmetric closure of R.

Solution: The symmetric closure of R = R ∪ R−1, where R−1 = {(b, a) | (a, b) ∈ R}.

R = {(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)}

R−1 = {(1, 0), (1, 1), (2, 1), (0, 2), (2, 2), (0, 3)}

R = R ∪ R−1 = { (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0),(2 ,1), (2, 2), (3, 0)}.
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Example of Reflexive & Symmetric 
Closure

 Example: Draw the directed graph of the reflexive closure and Symmetric closure of the

relations with the directed graph shown.

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 
  

   

Reflexive Closure
Add loops to all vertices on the 

digraph representation of R

Symmetric Closure
Reverse all the arcs in the digraph 

representation of R

Directed Graph



Transitive Closure

 Suppose that a relation R is not transitive.

 How can we produce a transitive relation that contains R such that this new

relation is contained within any transitive relation that contains R?

 Can the transitive closure of a relation R be produced by adding all the

pairs of the form (a, c), where (a, b) and (b, c) are already in the relation?

 Consider the relation R = {(1, 3), (1, 4), (2, 1), (3, 2)} on the set {1, 2, 3,

4}.

 This relation is not transitive because it does not contain all pairs of the

form (a, c) where (a, b) and (b, c) are in R.

Mr. S. B. Shinde  Asst Professor, MESCOE Pune



Transitive Closure

R = {(1, 3), (1, 4), (2, 1), (3, 2)} 

 The pairs of this form not in R are (1, 2), (2, 3), (2, 4), and (3, 1).

R = {(1, 3), (1, 4), (2, 1), (3, 2), (1, 2), (2, 3), (2, 4), (3, 1)} 

 Adding these pairs does not produce a transitive relation, because the resulting

relation contains (3, 1) and (1, 4) but does not contain (3, 4).

 This shows that constructing the transitive closure of a relation is more

complicated than constructing either the reflexive or symmetric closure.

 The transitive closure of a relation can be found by adding new ordered pairs that

must be present and then repeating this process until no new ordered pairs are

needed.
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Transitive Closure

 Theorem 1: Let R be a relation on a set A. The connectivity relation R∗ consists

of the pairs (a, b) such that there is a path of length at least one from a to b in R.

Because Rn consists of the pairs(a, b)such that there is a path of length n from a to

b, it follows that R∗ is the union of all the sets Rn. In other words,

i.e. R∗ = R ∪ R2 ∪ R3 ∪ R4 ∪ R5 ∪…….. ∪ Rn.

 Theorem 2: The transitive closure of a relation R equals the connectivity relation

R*.

 Theorem 3: Let MR be the zero–one matrix of the relation R on a set with n

elements. Then the zero–one matrix of the transitive closure R∗ is

MR∗ = MR ∨MR
[2] ∨MR

[3] ∨•••∨MR
[n]
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Transitive Closure

Example: A={1,2,3,4}R={(1,2),(1,4),(2,3),(3,4)}.Find its transitive closure

Solution: Let R be a relation on a set A and R* be transitive closure.

R∗= R ∪ R2 ∪ R3∪ R4

R = {(1,2),(1,4),(2,3),(3,4)}

R2= R.R= [{(1,2),(1,4),(2,3),(3,4)}] .[{(1,2),(1,4),(2,3),(3,4)]

R2 = {(1,3),(2,4)}

R3 = R2.R = [{(1,3),(2,4)}].[{(1,2),(1,4),(2,3),(3,4)}].

R3 = {(1,4)}

R4 = R3.R= [{(1,4)}].[{(1,2),(1,4),(2,3),(3,4)]

R4 = ∅
R∗= R ∪ R2 ∪ R3∪ R4 = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}.
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Transitive Closure

 Example: If A = {1, 2, 3, 4, 5}, R = {(1,2), (3,4), (4,5), (4,1), (1,1)}. Find

its transitive closure.

Solution: Let R be a relation on a set A and R* be transitive closure.

R∗= R ∪ R2 ∪ R3∪ R4∪ R5

R = {(1,2),(3,4),(4,5),(4,1),(1,1)}.

R2 = R.R = {(3,5) (3,1),(4,2),(4,1),(1,2),(1,1)}

R3 = R2.R = {(3,2),(3,1),(4,2),(4,1),(1,1),(1,2)}

R4 = R3.R = {(3,1),(3,2),(4,1),(4,2),(1,1),(1,2)}

R5 = R4.R = {(3,1),(3,2),(4,1),(4,2),(1,1),(1,2)}

R* = {(3,4), (4,5),(3,1),(3,2),(4,1),(4,2),(1,1),(1,2),(3,5)}
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Transitive Closure

 Example: Find the zero–one matrix of the transitive closure of the relation

MR where

Solution: From Theorem 3,we have MR
∗ = MR ∨MR

[2] ∨MR
[3]

To find𝑀𝑅[2] we have,
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MR =  
1 0 10 1 01 1 0
𝑀𝑅[2]= MR ʘ MR =

1 0 10 1 01 1 0 ʘ   
1 0 10 1 01 1 0

(1 ∧ 1) ∨ (0 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (0 ∧ 0 ) ∨ (1 ∧ 0)

(0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 1) (0 ∧ 1 ) ∨ (1 ∧ 0 ) ∨ (0 ∧ 0)
(1 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (1 ∧ 1 ) ∨ (1 ∧ 0) (1 ∧ 1 ) ∨ (1 ∧ 0 ) ∨ (0 ∧ 0)

1 ∨ 0 ∨ 1 0 ∨ 0 ∨ 1 1 ∨ 0 ∨ 0

0 ∨ 0 ∨ 0 0 ∨ 1 ∨ 0 0 ∨ 0 ∨ 0

1 ∨ 0 ∨ 0 0 ∨ 1 ∨ 0 1 ∨ 0 ∨ 0

𝑀𝑅[2]= MR ʘ MR =
1 1 10 1 01 1 1



Transitive Closure

To find𝑀𝑅[3] we have,
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𝑀𝑅[3]= 𝑀𝑅[2]ʘ MR =
1 1 10 1 01 1 1 ʘ  

1 0 10 1 01 1 0
(1 ∧ 1) ∨ (1 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 0) ∨ (1 ∧ 1 ) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (1 ∧ 0 ) ∨ (1 ∧ 0)
( 0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1 ) ∨ (0 ∧ 1) (0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 0)
(1 ∧ 1 ) ∨ (1 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 0) ∨ (1 ∧ 1 ) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (1 ∧ 0) ∨ (1 ∧ 0)

1 ∨ 0 ∨ 1 0 ∨ 1 ∨ 1 1 ∨ 0 ∨ 0
0 ∨ 0 ∨ 0 0 ∨ 1 ∨ 0 0 ∨ 0 ∨ 0
1 ∨ 0 ∨ 1 0 ∨ 1 ∨ 1 1 ∨ 0 ∨ 0

𝑀𝑅[3]=       
1 1 10 1 01 1 1

MR
∗ = MR ∨ MR

[2] ∨MR
[3] =      

1 0 10 1 01 1 0 ∨ 1 1 10 1 01 1 1 ∨ 1 1 10 1 01 1 1
MR
∗ =  
1 1 10 1 01 1 1



Transitive Closures using Warshall’s
Algorithm

 Warshall's algorithm determines whether there is a path between any two

nodes in the graph. It does not give the number of the paths between two

nodes.

 Idea: Compute all paths containing node 1, then all paths containing nodes

1 or 2 or 1 and 2, and so on, until we compute all paths with intermediate

nodes selected from the set {1, 2, … n}.

 Warshall’s algorithm is an efficient method of finding the adjacency

matrix of the transitive closure of relation R on a finite set S from the

adjacency matrix of R. It uses properties of the digraph D, in particular,

walks of various lengths in D.
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Warshall’s algorithm Steps

 Step 1: We have |A| = n. Therefore We require W0,W1,W2,W3,…….Wn

Warshall sets W0 = Relation Matrix of R = MR.

 Step 2: To find transitive closure of relation R on set A, with |A| = n, compute Wk

from Wk-1 by using following steps:

a) Copy 1 to all entries in Wk from Wk-1, where there is 1 in Wk-1.

b) Find the row numbers R1, R2, R3,….. for which there is 1 in column k in Wk-1

and column numbers C1, C2, C3,….. for which there is 1 in row k in Wk-1.

c) Mark entries in Wk as 1 for (Ri,Ci). If there are not already 1.

 Step 3: Stop the procedure when Wn is obtained and its gives required transitive

closure.
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Example on Warshall’s algorithm
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0 0 1 0 0 00 0 0 1 0 01 0 0 0 1 00 1 0 0 0 10 0 1 0 0 00 0 0 1 0 0

 Example 1: Use Warshall Algorithm to find the transitive closures, where

A = {1,2,3,4,5,6} and R = {(1,3), (2,4), (3,1), (3,5), (4,2), (4,6), (5,3),

(6,4)}

Solution:

 Step 1: |A| = 6.

We have to find W0, W1, W2, W3, W4, W5 and W6 Warshall sets

W0 = 



Example on Warshall’s algorithm
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0 0 1 0 0 00 0 0 1 0 01 0 0 0 1 00 1 0 0 0 10 0 1 0 0 00 0 0 1 0 0

 Step 2: To find W1 from W0, Consider the first column and first row.

In R1: 1 is present at C3.

In C1: 1 is present at R3.

Thus add new entry in W1 at (R3,C3) =1.

W0 = 

0 0 1 0 0 00 0 0 1 0 01 0 1 0 1 00 1 0 0 0 10 0 1 0 0 00 0 0 1 0 0
W1 = 



Example on Warshall’s algorithm
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0 0 1 0 0 00 0 0 1 0 01 0 1 0 1 00 1 0 0 0 10 0 1 0 0 00 0 0 1 0 0

 Step 3: To find W2 from W1, Consider the second column and second row.

In R2: 1 is present at C4.

In C2: 1 is present at R4.

Thus add new entry in W2 at (R4,C4) =1.

W1 = 

0 0 1 0 0 00 0 0 1 0 01 0 1 0 1 00 1 0 1 0 10 0 1 0 0 00 0 0 1 0 0
W2 = 



Example on Warshall’s algorithm
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0 0 1 0 0 00 0 0 1 0 01 0 1 0 1 00 1 0 1 0 10 0 1 0 0 00 0 0 1 0 0

 Step 4: To find W3 from W2, Consider the third column and third row.

In R3: 1 is present at C1, C3, C5.

In C3: 1 is present at R1, R3, R5.

Thus add new entry in W3 at (R1,C1), (R1,C3), (R1,C5), (R3,C1),

(R3,C3), (R3,C5), (R5,C1), (R5,C3), (R5,C5) =1

W2 = 

1 0 1 0 1 00 0 0 1 0 01 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 0 0 1 0 0
W3 = 



Example on Warshall’s algorithm
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 Step 5: To find W4 from W3, Consider the fourth column and fourth row.

In R4: 1 is present at C2, C4, C6.

In C4: 1 is present at R2, R4, R6.

Thus add new entry in W4 at (R2,C2), (R2,C4), (R2,C6), (R4,C2),

(R4,C4), (R4,C6), (R6,C2), (R6,C4), (R6,C6) =1.

W3 = 

1 0 1 0 1 00 0 0 1 0 01 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 0 0 1 0 0
W4 = 

1 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 1



Example on Warshall’s algorithm
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 Step 6: To find W5 from W4, Consider the fifth column and fifth row.

In R5: 1 is present at C1, C3, C5.

In C5: 1 is present at R1, R3, R5.

Thus add new entry in W5 at (R1,C1), (R1,C3), (R1,C5), (R3,C1),

(R3,C3), (R3,C5), (R5,C1), (R5,C3), (R5,C5) =1

W4 = W5 = 

1 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 1
1 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 1



Example on Warshall’s algorithm
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0

0

0

 Step 7: To find W6 from W5, Consider the six column and six row.

In R6: 1 is present at C2, C4, C6.

In C6: 1 is present at R2, R4, R6.

Thus add new entry in W6 at (R2,C2), (R2,C4), (R2,C6), (R4,C2),

(R4,C4), (R4,C6), (R6,C2), (R6,C4), (R6,C6) =1.

W5 = W6 = 

1 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 1
1 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 1



Example on Warshall’s algorithm
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Hence W6 is the transitive closure

R* = {(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), 

(4,6), (5,1), (5,3) (5,5), (6,2), (6,4), (6,6)}

W6 = 

1 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 11 0 1 0 1 00 1 0 1 0 1



Example on Warshall’s algorithm
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 Example 2: Use Warshall Algorithm to find the transitive closures of these

relations on {1, 2, 3, 4}: R = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)}

Solution:

 Step 1: |A| = 4.

We have to find W0, W1, W2, W3, and W4 Warshall sets

R = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)}

W0 = 

0 1 0 01 0 1 00 0 0 11 0 0 0



Example on Warshall’s algorithm
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 Step 2: To find W1 from W0, Consider the first column and first row.

In R1: 1 is present at C2

In C1: 1 is present at R2, R4.

Thus add new entry in W1 at (R2,C2), (R4,C2) =1

W0 = W1 = 

0 1 0 01 0 1 00 0 0 11 0 0 0
0 1 0 01 1 1 00 0 0 11 1 0 0



Example on Warshall’s algorithm
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 Step 3: To find W2 from W1, Consider the second column and second row.

In R2: 1 is present at C1, C2, C3

In C2: 1 is present at R1, R2, R4.

Thus add new entry in W2 at (R1,C1), (R1,C2), (R1,C3), (R2,C1) (R2,C2),

(R2,C3), (R4,C1), (R4,C2), (R4,C3) =1.

W1 = W2 = 

1 1 1 01 1 1 00 0 0 11 1 1 0
0 1 0 01 1 1 00 0 0 11 1 0 0



Example on Warshall’s algorithm
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 Step 4: To find W3 from W2, Consider the third column and third row.

In R3: 1 is present at C4.

In C3: 1 is present at R1, R2, R4.

Thus add new entry in W3 at (R1,C4), (R2,C4), (R4,C4) =1.

W2 = W3 = 

1 1 1 11 1 1 10 0 0 11 1 1 1
1 1 1 01 1 1 00 0 0 11 1 1 0



Example on Warshall’s algorithm
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 Step 5: To find W4 from W3, Consider the fourth column and fourth row.

In R4: 1 is present at C1, C2, C3, C4

In C4: 1 is present at R1, R2, R3, R4.

Thus add new entry in W3 at (R1,C1), (R1,C2), (R1,C3), (R1,C4),

(R2,C1), (R2,C2), (R2,C3), (R2,C4), (R3,C1), (R3,C2), (R3,C3), (R3,C4),

(R4,C1), (R4,C2), (R4,C3), (R4,C4) = 1.

W3 = W4 = 

1 1 1 11 1 1 11 1 1 11 1 1 1
1 1 1 11 1 1 10 0 0 11 1 1 1



Example on Warshall’s algorithm
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Hence W4 is the transitive closure

R* = {(1,1), (1,2), (1,3), (1,4), 

(2,1), (2,2), (2,3), (2,4), 

(3,1), (3,2), (3,3), (3,4),

(4,1), (4,2), (4,3), (4,4)} 

W4 = 

1 1 1 11 1 1 11 1 1 11 1 1 1



Example on Warshall’s algorithm
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 Example 3: Use Warshall Algorithm to find the transitive closures of these
relations on A = {1, 2, 3, 4}

a) R = {(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)}

b) R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

c) R = {(1, 1), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 2)}



Example on Warshall’s algorithm
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 Example 4: Find the transitive closure of the relation R on A={1, 2, 3, 4)

defined by R = {(1,2), (1,3), (1,4), (2,1), (2,3), (3,4), (3,2), (4,2),(4,3)}.

 Example 5: Warshall's algorithm to compute the transitive closure of R∪S

for the relations R and S defined on A = {1,2,3,4} described as:



Partial Orderings
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 A relation R on a set S is called a partial ordering or partial order if it is

reflexive, antisymmetric, and transitive.

 A set S together with a partial ordering R is called a partially ordered set,

or POSET, and is denoted by (S, R).

 Members of S are called elements of the POSET.

 Partial orderings are used to give an order to sets that may not have a

natural one.

 Example: Let S = {1,2,3,4,5,6} and R = {(1,1), (2,2), (3,3), (4,4), (5,5),

(6,6), (6,1), (6,4), (1,4), (6,5), (3,4), (6,2)}. Then R is partial order on S,

and (S,R) is a poset.



Partial Orderings
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 Example 1: Show that the “greater than or equal” relation (≥) is a partial ordering

on the set of integers.

Solution:

 Because a ≥ a for every integer a, ≥ is reflexive.

 If a ≥ b and b ≥ a, then a = b. Hence, ≥ is antisymmetric.

 Finally, ≥ is transitive because a ≥ b and b ≥ c imply that a ≥ c.

 Thus, ≥ is a partial ordering on the set of integers and (Z, ≥) is a poset.

 Example 2: The divisibility relation | is a partial ordering on the set of positive

integers, because it is reflexive, antisymmetric, and transitive, as was shown in

Example 3. We see that (Z+, |) is a poset. Recall that (Z+ denotes the set of

positive integers.)



Partial Orderings
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 Example 3: Is the “divides” relation on the set of positive integers reflexive,

symmetric and transitive ?

Solution:

a. Because a | a whenever a is a positive integer, the “divides” relation is

reflexive. (Note that if we replace the set of positive integers with the set of all

integers the relation is not reflexive because by definition 0 does not divide 0.)

b. This relation is not symmetric because 1| 2, but 2 1. It is antisymmetric, for

if a and b are positive integers with a | b and b | a, then a = b.

c. Suppose that a divides b and b divides c. Then there are positive integers k and

l such that b = ak and c = bl. Hence, c = a(kl), so a divides c. It follows that

this relation is transitive.



Partial Orderings
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 Example 4: Show that the inclusion relation ⊆ is a partial ordering on the power

set of a set S.

 Because A⊆A whenever A is a subset of S,⊆ is reflexive.

 It is antisymmetric because A⊆ B and B ⊆A imply that A = B.

 Finally, ⊆ is transitive, because A⊆ B and B ⊆ C imply that A⊆ C.

 Hence, ⊆ is a partial ordering on P(S), and (P(S),⊆) is a poset.

 Example 5: Let A={0,1,2}and R={(0,0),(0,1),(0,2),(1,1),(1,2),(2,2)}.Show R is a

partial order relation.

Solution: The digraph for R on the right implies

Reflexive: Loops on every vertex.

Antisymmetric: No arrows of type (a,b) and (b,a).

Transitive:(0,1), (1,2) also we have (0,2).



Partial Orderings
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 Example 6: Let R be the relation on the set of people such that xRy if x and y are

people and x is older than y. Show that R is not a partial ordering.

Solution:

 Relation R is antisymmetric because if a person x is older than a person y,

then y is not older than x. That is, if (x, y)  R, then (y, x) R.

 The relation R is transitive because if person x is older than person y and y is

older than person z, then x is older than z. That is, if xRy and yRz, then xRz.

 Relation R is not reflexive, because no person is older than himself or herself.

i.e (x, x)  R for all people x. It follows that R is not a partial ordering.



Partial Orderings Notation
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 A set S together with a partial ordering R is called a partially ordered set, or POSET, and

is denoted by (S, R).

 In different posets different symbols such as ≤, ⊆, and |, are used for a partial ordering.

 Customarily, the notation a ⪯ b is used to denote that (a, b) ∈ R in an arbitrary poset

(S,R).

 This notation is used because the “less than or equal to” relation on the set of real numbers

is the most familiar example of a partial ordering and the symbol ⪯ is similar to the ≤

symbol.

 Note that the symbol ⪯ is used to denote the relation in any poset, not just the “less than

or equals” relation.

 The notation a ≺ b denotes that a ⪯ b, but a ≠ b. Also, we say “a is less than b” or “b is

greater than a” if a ≺ b.



Comparable Element
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 The elements a and b of a poset (S,⪯) are called comparable if either a⪯b

or b⪯a.

 When a and b are elements of S such that neither a⪯b nor b⪯a, a and b are

called incomparable.

 Example: In the poset (Z+,|), are the integers 3, 9 and 5, 7 comparable?

 The integers 3 and 9 are comparable, because 3 | 9. The integers 5 and 7

are incomparable, because 5 7 and 7 5.

 The adjective “partial” is used to describe partial orderings because pairs

of elements may be incomparable. When every two elements in the set are

comparable, the relation is called a total ordering.



Total Ordered Set & Well-Ordered Set
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 Total Ordered Set:

 If (S,⪯) is a poset and every two elements of S are comparable, S is called a

totally ordered Or linearly ordered set, and ⪯ is called a total order or a linear

order. A totally ordered set is also called a chain.

 The poset (Z, ≤) is totally ordered, because a ≤ b or b ≤ a whenever a and b are

integers.

 The poset (Z+,|) is not totally ordered because it contains elements that are

incomparable, such as 5 and 7.

 Therefore Poset (Z, ⪯) is a chain and (Z+,|) is not a chain.

 Well-Ordered Set:

 (S,⪯) is a well-ordered set if it is a poset such that ⪯ is a total ordering and every

nonempty subset of S has a least element.



Example
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 Example: Which of these relations on {0, 1, 2, 3} are partial orderings?

Determine the properties of a partial ordering that the others lack.

a.{(0, 0), (1, 1), (2, 2), (3, 3)}

b.{(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}

c.{(0, 0), (1, 1), (1, 2), (2, 2), (3, 3)}

d.{(0, 0), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}

e.{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),(2, 2), (3, 3)}

 Example: Which of these are POSETS?

a. (Z, =)

b. (Z, ≠)

c. (Z, ≥)

d. (Z, )

Yes- Partial ordering 

Not- Partial ordering 

Yes- Partial ordering 

Not- Partial ordering 

Yes- Partial ordering 

POSET

Not a POSET

POSET

Not a POSET



Hasse Diagram

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 A visual representation of a partial ordering.

 To construct a Hasse diagram for a finite poset (S,⪯), do the following:

1. Start with the directed graph for this relation. Because a partial ordering is

reflexive, a loop (a, a) is present at every vertex a. Remove these loops.

2. Next, remove all edges that must be in the partial ordering because of the

presence of other edges and transitivity. That is, remove all edges(x,y) for

which there is an element z ∈ S such that x≺ z and z ≺ x.

3. Finally, arrange each edge so that its initial vertex is below its terminal

vertex.

4. Remove all the arrows on the directed edges, because all edges point

“upward” toward their terminal vertex.



Hasse Diagram-Example
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 Example: Consider the directed graph for the partial ordering {(a, b) | a ≤
b} on the set{1,2,3,4}, shown in Figure (a) and draw Hasse Diagram for it.
Step 1: Remove self loops. i.e. (1,1), (2,2), (3,3) and (4,4) are removed.
Step 2: Remove all edges that must be present because of transitivity. Here
edges (1,3), (1,4), and (2,4) are removed.
Step 3: Also remove the arrows, as all arrows point upwards.



Hasse Diagram-Example

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Example: Draw the Hasse diagram representing the partial ordering {(a, b) |a 

divides b} on {1, 2, 3, 4, 6, 8, 12}.

Solution: R={(1,1),(1,2),(1,3),(1,4),(1,6),(1,8),(1,12),(2,2),(2,4),(2,6),(2,8),

(2,12),(3,3),(3,6),(3,12),(4,4),(4,8),(4,12),(6,6),(6,12),(8,8),((12,12)}.

 Begin with the digraph for this partial order, as shown in Fig (a). Remove

all loops, as shown in Fig (b).

 Then delete all the edges implied by the transitive property. These are

(1,4), (1,6), (1,8), (1,12), (2,8), (2,12), and (3,12).

 Arrange all edges to point upward, and delete all arrows to obtain the

Hasse diagram.

 The resulting Hasse diagram is shown in Fig (c).



Hasse Diagram-Example

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

Solution:



Hasse Diagram-Example

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Example : Draw the Hasse diagram for divisibility on the set:
a) {1, 2, 3, 4, 5, 6, 7, 8}
b) {1, 2, 3, 5, 7, 11, 13}
c) {1, 2, 3, 6, 12, 24, 36, 48}
d) {1, 2, 4, 8, 16, 32, 64}
e) {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60}

Solution:

We put x above y if y divides x.

We draw a line between x and y, where y divides x, if there is no number z in our

set, other than x or y, such that y | z /\ z | x.

Note that in part (b) the numbers other than 1 are all (relatively) prime, so the

Hasse diagram is short and wide,

Whereas in part (d) the numbers all divide one another, so the Hasse diagram is

tall and narrow.



Hasse Diagram-Example

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

Solution:



Chain and Anti Chain

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 A chain in a POSET P is a subset C ⊆ P such that any two elements in C

are comparable.

 An antichain in a POSET P is a subset A⊆ P Such that no two elements in

A are comparable.



Elements of POSETS

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Maximal Elements:

 Let (A,⪯) be a poset. Then a ∈ A is maximal in the poset if there is no

element b ∈A such that a ≺ b.

 Minimal Elements:

 Let (A,⪯) be a poset. Then a ∈ A is minimal in the poset if there is no

element b ∈A such that b ≺ a.

 Maximal and Minimal elements are easy to spot using a Hasse diagram.

They are the “top” and “bottom” elements in the diagram. There can be

more than one minimal and maximal element in a poset.



Elements of POSETS

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Greatest Element:

 Let (A,⪯) be a poset. Then a ∈ A is the greatest element if for every

element b ∈A, b⪯a.

 Least Element:

 Let (A,⪯) be a poset. Then a ∈ A is the least element if for every element b∈A, a⪯b.

 Upper Bound:

 Let S ⊆ A in the poset (A,⪯). If there exists an element u ∈ A such that s ⪯
u for all s ∈ S, then u is called an upper bound of S.



Elements of POSETS

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Lower Bound:

 Let S ⊆A in the poset (A,⪯). If there exists an element l ∈A such that l ⪯
s for all s ∈ S, then l is called a lower bound of S. 

 Least Upper Bound:

 If a is an upper bound of S such that a ⪯ u for all upper bound u of S then

a is the least upper bound of S, denoted by lub(S).

 Greater Lower Bound:

 If a is a lower bound of S such that l ⪯ a for all lower bound l of S then a

is the greatest lower bound of S, denoted by glb(S).



Example on Elements of POSETS

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Example 1: Which elements of the poset ({2, 4, 5, 10, 12, 20, 25},|) are 

maximal, and which are minimal?

Solution:

 Maximal elements are 12, 20, and 25, and

 Minimal elements are 2 and 5.

 As this example shows, a poset can have more than one maximal

element and more than one minimal element.



Example on Elements of POSETS
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 Example 2: Determine whether the posets represented by each of the Hasse

diagrams in below figure have a greatest element and a least element.

Solution:

 The least element of the poset with Hasse diagram (a) is a. and has no greatest element.

 The poset with Hasse diagram (b) has neither a least nor a greatest element.

 The poset with Hasse diagram (c) has no least element. Its greatest element is d.

 The poset with Hasse diagram (d) has least element a and greatest element d.



Example on Elements of POSETS
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 Example 3: Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and

{a, c, d, f} in the poset with the Hasse diagram shown in figure below. Also find

the glb and the lub of {b, d, g}, if they exist.

Solution:
 The upper bounds of {a, b, c} are e, f, j, and h, and its only lower bound is a.
 There are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, and f.
 The upper bounds of {a, c, d, f} are f, h, and j, and its lower bound is a.
 The upper bounds of {b, d, g} are g and h. Because g ≺ h, g is the lub. The lower

bounds of {b, d, g} are a and b. Because a≺ b, b is the glb.



Example on Elements of POSETS
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 Example 4: Answer these questions for the poset ({3, 5, 9, 15, 24, 45}, |).

a) Find the maximal elements.

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {3, 5}.

f) Find the least upper bound of {3, 5}, if it exists.

g) Find all lower bounds of {15, 45}.

h) Find the greatest lower bound of {15, 45}, if it exists.

24, 45

3, 5

DNE

DNE

15, 45

15

3, 5, 15

15



Example on Elements of POSETS
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 Example 5: Answer the questions for the poset ({{1}, {2}, {4}, {1, 2}, {1, 4}, {2,

4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}, ⊆).

a) Find the maximal elements

b) Find the minimal elements.

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {{2}, {4}}.

f) Find the least upper bound of {{2}, {4}}, if it exists.

g) Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}.

h) Find the greatest lower bound of {{1, 3, 4}, {2, 3, 4}},if it exists.

{1,2}, {1,3,4}, {2,3,4}.

{ 1} , { 2} { 4} 

DNE

DNE

{2,4} & {2,3,4}

{2,4} 

{3, 4}, {4}. 

{3,4} 



Example on Elements of POSETS
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 Example 6:Find the following for given POSET diagram:

a. Find the maximal elements:

b. Find the minimal elements:

c. Is there a greatest element?:

d. Is there a least element?:

e. Find all upper bounds of {a, b, c } :

f. Find the least upper bound of { a, b, c } , if it exists.

g. Find all lower bounds of {f, g, h}.

h. Find the greatest lower bound of {f, g, h}, if it exists.

 

 

l, m 

a, b, c 

No

No

l, k, m

k

DNE

DNE



Example on Elements of POSETS

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Example 7: Give lower/upper bounds & glb/lub of the sets:

{d,e,f}, {a,c} and {b,d}.

Solution:

 {d,e,f} 
 Lower bounds: ∅, thus no glb
 Upper bounds: ∅, thus no lub

 {a,c} 
 Lower bounds: ∅, thus no glb
 Upper bounds: {h}, lub: h 

 {b,d} 
 Lower bounds: {b}, glb: b 
 Upper bounds: {d,g}, lub: d, because d ≺ g 



Example on Elements of POSETS

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 Example 8: Find a) Minimal/Maximal elements? b) Bounds, glb, lub of

{c,e}? and c) Bounds, glb, lub of {b,i}?

Solution:

 Minimal/Maximal elements?

 Minimal element: a & Maximal elements: b,d,i,j

 Bounds, glb, lub of {c,e}?

 Lower bounds: {a,c}, thus glb is c

 Upper bounds: {e,f,g,h,i,j}, thus lub is e

 Bounds, glb, lub of {b,i}?

 Lower bounds: {a}, thus glb is a

 Upper bounds: ∅, thus no lub



Example on Elements of POSETS
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 Example 9: Answer the following questions concerning the poset ({2, 4, 6,

9, 12, 18,27, 36, 48, 60, 72}, | ).

a) Find the maximal elements.

b) Find the minimal elements

c) Is there a greatest element?

d) Is there a least element?

e) Find all upper bounds of {2, 9} .

f) Find the least upper bound of {2, 9}, if it exists.

g) Find all lower bounds of {60, 72}.

h) Find the greatest lower bound of {60, 72}, if it exists.



Example on Elements of POSETS
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 Example 10:For the Hasse diagram given below; find maximal, minimal,

greatest, least, LB, glb, UB, lub for the subsets;

a) {d, k, f}

b) {b, h, f}

c) {d}

d) {a, b, c}

e) {l, m}

 

 



Lattices

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 A poset in which every pair of elements has both a least upper bound and a

greatest lower bound is called a lattice.

 A lattice A is called a complete lattice if every subset S of A admits a glb

and a lub in A.

 To show that a partial order is not a lattice, it suffices to find a pair that

does not have an lub or a glb (i.e., a counter-example).



Lattices

Mr. S. B. Shinde  Asst Professor, MESCOE Pune

 For a pair not to have an lub/glb, the elements of the pair must first be

incomparable.

 You can then view the upper/lower bounds on a pair as a sub-Hasse

diagram: If there is no maximum/minimum element in this sub-diagram,

then it is not a lattice.

 Lattices have many special properties. Furthermore, lattices are used in

many different applications such as models of information flow and play an

important role in Boolean algebra.



Lattices

Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Example 1: Determine whether the posets with these Hasse diagrams are

lattices.

Solution:

 figure a is Lattices.

 figure b is not Lattices because, {b,c} has no lub However, it has a

glb={a}.

 figure c is Lattices.



Lattices
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 Example 2: Determine whether the posets with these Hasse diagrams are

lattices.

Solution:

 a) Yes. Every two elements will have a least upper bound and greatest lower

bound.

 b) No. If we take the elements b and c, then we will have f, g, and h as the upper

bound, but none of them will be the least upper bound.

 c) No, because the pair {b,c}does not have a least upper bound.



Function-Introduction

Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Definition :: Let A and B be nonempty sets. A function f from A to B,

denoted (f: A →B), is an assignment of exactly one element of B to each

element of A.

 We write f (a) = b if b is the unique element of B assigned by the function

f to the element a of A.



Function-Introduction
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 If f is a function from A to B, we say that A is the domain of f and B is the

codomain of f.

 If f (a) = b, we say that b is the image of a and a is a preimage of b.

 The range, or image, of f is the set of all images of elements of A. Also, if f

is a function from A to B, we say that f maps A to B.



Function-Introduction
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What are the domain, codomain, and range of the function that assigns grades to

students.

Solution: Let G be the function that assigns a grade to a student in our discrete

mathematics class. Note that G(Adams) = A, for instance.

The domain of G is the set {Adams, Chou, Goodfriend, Rodriguez, Stevens}, and

The codomain is the set {A,B,C,D, F}.

The range of G is the set {A,B,C, F}, because each grade except D is assigned to

some student.

 Example 1: Suppose that each student in a discrete

mathematics class is assigned a letter grade from the set

{A,B,C,D, F}. And suppose that the grades are A for

Adams, C for Chou, B for Goodfriend, A for

Rodriguez, and F for Stevens.



Function-Introduction
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 Example 2: Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla,

21), (Desire, 22), (Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate

student and this student’s age. Specify a function determined by this relation.

 Solution: If f is a function specified by R, then f (Abdul )= 22, f (Brenda)= 24,f

(Carla)= 21, f (Desire)= 22, f (Eddie)= 24, and f (Felicia)= 22.

 (Here, f (x) is the age of x, where x is a student.) For the domain, we take the set

{Abdul, Brenda, Carla, Desire, Eddie, Felicia}.

 We also need to specify a codomain, which needs to contain all possible ages of

students.

 Because it is highly likely that all students are less than 100 years old, we can take

the set of positive integers less than 100 as the codomain.

 The range of the function we have specified is the set of different ages of these

students, which is the set {21, 22, 24}.



Function-Introduction
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 Example 3: Let f be the function that assigns the last two bits of a bit

string of length 2 or greater to that string. For example, f (11010) = 10.

Then, the domain of f is the set of all bit strings of length 2 or greater, and

both the codomain and range are the set {00, 01, 10, 11}.

 Example 4: Let f : Z → Z assign the square of an integer to this integer.

Then, f (x) = x2, where the domain of f is the set of all integers, the

codomain of f is the set of all integers, and the range of f is the set of all

integers that are perfect squares, namely, {0, 1, 4, 9, . . . }.



Function-Introduction
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 Example 5: If we write (define) a function as: f(x)=x2 then we say: 'f of x

equals x squared' and we have:

f(-1) = 1 f(1)  = 1 f(2) = 4 f(5) = 25 f(7) = 49     

and so on.

This function f maps numbers to their squares.

 

 



Type of Function
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 Injective / One-to-one function:: A function f is said to be one-to-one, or

injective, if and only if f(x) = f(y) implies x = y for all x, y in the domain

of f. A function is said to be an injection if it is one-to-one.

 Alternative: A function is one-to-one if and only if f(x) ≠ f(y), whenever x

≠ y. This is the contrapositive of the definition.



Type of Function
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 Injective / One-to-one function:: A function f is said to be one-to-one, or

injective, if and only if f(x) = f(y) implies x = y for all x, y in the domain of

f. A function is said to be an injection if it is one-to-one.

 Example: Determine whether the function f from {a, b, c, d} to {1, 2, 3, 4,

5} with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one.

Solution: The function f is one-to-one

because f takes on different values at the

four elements of its domain.



Type of Function
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 Surjective / Onto function:: A function f from A to B is called onto, or

surjective, if and only if for every element b ∈ B there is an element a ∈ A

such that f(a) = b.

 Alternative: all co-domain elements are covered.



Type of Function
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 Surjective / Onto function:: A function f from A to B is called onto, or

surjective, if and only if for every element b ∈ B there is an element a ∈ A

such that f(a) = b.

Example: Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f

(a) = 3, f (b) = 2, f (c) = 1, and f (d) = 3. Is f an onto function?

Solution: Because all three elements of

the codomain are images of elements in

the domain, we see that f is onto. Note

that if the codomain were {1, 2, 3, 4},

then f would not be onto.



Type of Function
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Example: Different Types of Correspondences.

One-to-one, not onto

Not a function

One-to-one, and ontoOnto, not one-to-one

Neither one-to-one, nor onto



Type of Function
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 Bijective / One-to-one Correspondent::A function f is called a bijection if

it is both one-to one (injection) and onto (surjection).

 Example: Let f be the function from {a, b, c, d} to

{1, 2, 3, 4}with f (a) = 4, f (b) = 2, f (c) = 1, and

f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. Hence, f is a bijection

 Identity function:: Let A be a set. The identity function on A is the

function iA: A→ A where iA (x) = x.

 Example: Let A = {1, 2, 3} Then: iA(1) = 1 iA(2) = 2 and iA(3) = 3.



Type of Function-Summarize
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 Suppose that f : A → B.

 To show that f is injective

Show that if f (x) = f (y) for arbitrary x, y ∈ A with x = y, then x = y.

 To show that f is not injective 

Find particular elements x, y ∈ A such that x = y and f (x) = f (y).

 To show that f is surjective

Consider an arbitrary element y ∈ B and find an element x ∈ A such that f (x) = y.

 To show that f is not surjective

Find a particular y ∈ B such that f (x) = y for all x ∈ A.



Type of Function
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 Inverse functions:: Let f be a bijection from set A to set B. The inverse

function of f is the function that assigns to an element b from B the unique

element a in A such that f(a) = b.

 The inverse function of f is denoted by f-1. Hence, f-1(b) = a, when f(a) = b.

 If the inverse function of f exists, f is called invertible.

 Note: If f is not a bijection then it is not possible to define the inverse

function of f.



Type of Function
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 Inverse functions::

 Note: If f is not a bijection then it is not possible to define the inverse

function of f.

Solution:

Case 1: Assume f is not one-to-one: Inverse is not a function. One element

of B is mapped to two different elements.



Type of Function
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 Inverse functions::

 Note: If f is not a bijection then it is not possible to define the inverse

function of f.

Solution:

Case 2: Assume f is not onto: Inverse is not a function. One element of B is

not assigned any value in B.



Type of Function
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 Example: Let f be the function from {a, b, c} to {1, 2, 3} such that f(a) = 2,

f(b) = 3, and f(c) = 1. Is f invertible, and if it is, what is its inverse?

Solution: The function f is invertible because it is a one-to-one

correspondence.

The inverse function f−1 reverses the correspondence given by f, so f−1 (1) =

c, f−1 (2) = a, and f−1 (3) = b.



Type of Function
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 Composition of Functions::

 Let g be a function from the set A to the set B and let f be a function from

the set B to the set C. The composition of the functions f and g, denoted for

all a ∈A by f ◦ g, is defined by

(f ◦ g)(a) = f (g(a)).



Type of Function
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 Example: Let g be the function from the set {a, b, c} to itself such that g(a)

= b, g(b) = c, and g(c) = a.

Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f(a)

= 3, f(b) = 2, and f(c) = 1.

What is the composition of (f ◦ g), and what is the composition of (g ◦ f) ?

 Solution: The composition f ◦ g is defined by

(f ◦ g)(a) = f (g(a)) = f (b) = 2,

(f ◦ g)(b) = f (g(b)) = f (c) = 1, and

(f ◦ g)(c) = f (g(c)) = f (a) = 3.

Note that (g ◦ f) is not defined, because the range of f is not a subset of the

domain of g.



Type of Function
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 Example: Let f and g be the functions from the set of integers to the set of

integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the

composition of f and g? What is the composition of g and f ?

Solution: Both the compositions f ◦ g and g ◦ f are defined. Moreover,

(f ◦ g)(x) = f (g(x)) = f (3x + 2) = 2(3x + 2) + 3 = 6x + 7

and

(g ◦ f )(x) = g(f (x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11.

 Remark: Note that even though f ◦ g and g ◦ f are defined for the functions f and g in

above Example, f ◦ g and g ◦ f are not equal.

 In other words, the commutative law does not hold for the composition of functions.



Type of Function
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 Example: Given f(x) = x2 + 6 and g(x) = 2x – 1,

Find a) (f ∘ g) (x) and b) (g ∘ f) (x)

Solution:

a) (f ∘ g)(x)

= f(2x – 1)

= (2x – 1)2 + 6

= 4x2 – 4x + 1 + 6

= 4x2 – 4x + 7

b) (g ∘ f)(x)

= g(x2 + 6)

= 2(x2 + 6) – 1

= 2x2 + 12 – 1

= 2x2 + 11



Type of Function
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 Example: Let f(x)= x+2, g(x)= x-2 and h(x)=3x for x R, where R is set of

real numbers. Find (gOf), (fOg), (fOf), (gOg), (fOh), (hOg), (hOf),(fOhOg)

Solution:

 (gOf) = g(f(x)) = g(x+2) = (x+2)-2 = x

 (fOg) = f(g(x)) = f(x-2) = (x-2)+2 = x

 (fOf) = f(f(x)) = f(x+2) = (x+2)+2 = x+4

 (gOg) = g(g(x)) = g(x-2) = (x-2)-2 = x-4

 (fOh) = f(h(x)) = f(3x) = (3x)+2 = 3x+2

 (hOg) = h(g(x)) = h(x-2) =3(x-2) = 3x-6

 (hOf) = h(f(x)) = h(x+2) =3(x+2) = 3x+6

 (fOhOg) = fOh(g(x)) = fOh(x-2) =f(h(x-2)) = f(3x-6) = (3x-6)+2 = 3x-4



Pigeonhole Principle 
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 If k is a positive integer and k+1 objects are placed into k boxes, then at least one

of the boxes will contain two or more objects. OR

 In mathematics, the pigeonhole principle states that if n items are put into m

containers, with n > m, then at least one container must contain more than one

item.

 Proof: We prove the pigeonhole principle using

a proof by contraposition.

 Suppose that none of the k boxes contains more

than one object.

 Then the total number of objects would be at

most k. This is a contradiction, because there are

at least k+1 objects.

Pigeons in holes. Here there are n = 10
pigeons in m = 9 holes. Since 10 is greater
than 9, the pigeonhole principle says that
at least one hole has more than one
pigeon.
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 The abstract formulation of the principle: Let X and Y be finite sets and let

f: X → Y be a function.

 If X has more elements than Y, then f is not one-to-one.

 If X and Y have the same number of elements and f is onto, then f is one-to-one.

 If X and Y have the same number of elements and f is one-to-one, then f is onto.

 If “A” is the average number of pigeons per hole, where A is not an integer

then

 At least one pigeon hole contains ceil[A] (smallest integer greater than or equal to

A) pigeons

 Remaining pigeon holes contains at most floor[A] (largest integer less than or equal

to A) pigeons.
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 Example 01: In a group of 366 people, there must be two people with the

same birthday.

 Example 02: In a group of 27 English words, at least two words must start

with the same letter.

 Example 03: How many students must be in a class to guarantee that at

least two students receive the same score on the final exam, if the exam is

graded on a scale from 0 to 100 points?

Solution: There are 101 possible scores on the final. The pigeonhole

principle shows that among any 102 students there must be at least 2

students with the same score.
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 Generalized Pigeon hole Principle::: If n pigeonholes are occupied by

Kn+1 or more pigeons then at least one pigeonhole is occupied by K+1 or

more pigeons. OR

 If N objects are placed into k boxes, then there is at least one box

containing at least N/k objects.

 Example 4: Find the minimum no of students in a class to be ensure that three of

them born in the same month.

Solution: n = 12, K+1 =3 i.e. K=2, Kn+1 = 2*12+1 = 25
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 Example 5: What is the minimum number of students required in a discrete

mathematics class to be sure that at least six will receive the same grade, if there

are five possible grades, A, B, C, D, and F?

Solution: n = 5, K+1 =6 i.e. K=5, Kn+1 = 5*5+1 = 26

 Example 6: Show that 7 colors are used to paint 50 bicycles, and then at least 8

bicycles will be of same color.

Solution: n = 7, K+1 =8 i.e. K=7, Kn+1 = 7*7+1 = 50

 Example 7: How many cards must be selected from a standard deck of 52 cards to

guarantee that at least three cards of the same suit are chosen?

Solution: n = 4, K+1 =3 i.e. K=2, Kn+1 = 4*2+1 = 09
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 Example 8: If (Kn+1) pigeons are kept in n pigeon holes where K is a

positive integer, what is the average no. of pigeons per pigeon hole?

Solution:

 Average number of pigeons per hole = (Kn+1)/n = K + 1/n

 Therefore at least a pigeonholes contains (K+1) pigeons i.e.,

ceil[K +1/n] and remaining contain at most K i.e., floor[k+1/n] pigeons.

 i.e., the minimum number of pigeons required to ensure that at least one

pigeon hole contains (K+1) pigeons is (Kn+1).
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 Example 9: A bag contains 10 red marbles, 10 white marbles, and 10 blue

marbles. What is the minimum no. of marbles you have to choose randomly

from the bag to ensure that we get 4 marbles of same color?

Solution: Apply pigeonhole principle.

 No. of colors (pigeonholes) n = 3 and No. of marbles (pigeons) K+1 = 4

 Therefore the minimum no. of marbles required = Kn+1

 By simplifying we get Kn+1 = 10.

 Verification: ceil[Average] is [Kn+1/n] = 4

 [Kn+1/3] = 4

 Kn+1 = 10

 i.e., 3 red + 3 white + 3 blue + 1(red or white or blue) = 10
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 Example 10: Show that in any set of six classes, each meeting regularly

once a week on a particular day of the week, there must be two that meet on

the same day, assuming that no classes are held on weekends.

Solution: There are six classes: these are the pigeons.

There are five days on which classes may meet (Monday through Friday):

these are the pigeonholes.

Each class must meet on a day (each pigeon must occupy a pigeonhole).

By the pigeonhole principle at least one day must contain at least two

classes.
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 Example 11: What is the minimum number of students, each of whom

comes from one of the 50 states, who must be enrolled in a university to

guarantee that there are at least 100 who come from the same state?

Solution: The pigeons are the students (no slur intended), and the

pigeonholes are the states, 50 in number.

By the generalized pigeonhole principle:

n = 50, K+1 =100 i.e. K=99,  Kn+1 = 99*50+1 = 4951


