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SE (Comp.Engg.)



Cartesian products
The Cartesian product of set A and set B 
is denoted by
 A×B and equals {(a, b)⏐a∈A and b∈B}. 
The elements of A×B are ordered pairs. 
The elements of A1×A2×…×An are 
ordered n-tuples.
|A×B|=|A|×|B|



• Ex . A={2, 3, 4}, B={4, 5} , C={x,y}
• A × B ={<2,4>,<2,5>,<3,4>,<3,5>,<4,4>,<4,5>}



Relations

• Any subsets of A×B is called 
a binary relation from A to B.  
Any subset of A×A is called a binary relation on 
A.
For finite sets A and B with |A|=m and |B|=n, 
there are 2mn relations from A to B. 



• Example: Let A = {1, 2, 3, 4}. Which ordered 
pairs are in the relation R = {(a, b) | a < b} ?

• Solution:   R = {(1,2),(1,3),(1,4),(2,3)(2,4)(3,4)}

• Domain= set of first elements in the cartesian product .
• Range= set of second elements in the cartesian 

product .

Domain={1,2,3}
Range={2,3,4}



• Converse of a Relation A is given by the 
relation  Ã  such that the elements in the 
ordered pairs in A are interchanged.

• i.e    if  xAy then y Ã  x.



Matrix Representation of a 
Relation
• MR = [mij] (where i=row, j=col)

▪ mij={1 iff (i,j) ∈ R and 0 iff (i,j) ∉ R}

• Ex: R : {1,2,3}→{1,2} where x > y        
–  R = {(2,1),(3,1),(3,2)}
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Graph Representation of a Relation



Properties of Relations

• A relation R on a set A is called reflexive if 
 (a, a)∈R for every element a∈A.

• A relation on a set A is called irreflexive if 
(a, a)∉R for every element a∈A.



• A relation R on a set A is called symmetric if 
(b, a)∈R whenever (a, b)∈R for all a, b∈A. 

A relation R on a set A is called asymmetric  if 
• (a, b)∈R implies that (b, a)∉R for all a,b∈A. 
• A relation R on a set A is called antisymmetric if 

whenever (a, b)∈R and (b, a)∈R, a = b 



• A relation R on a set A is called transitive if 
whenever (a, b)∈R and (b, c)∈R, then (a, 
c)∈R for a, b, c∈A.



Equivalence Relations

• Any binary relation that is:
Reflexive
Symmetric
Transitive

Is Equivalence Relations



Equivalence Classes 

Let R be an equivalence relation on a set A. The 
set of all elements that are related to an element 
a of A is called the equivalence class of a. 
• The equivalence class of a with respect to R is 

denoted by [a]R.
• If b∈[a]R, b is called a representative of this 

equivalence class.



Ex. A={1,2,3}
R={(1,2)(2,3)}
[a]={x is element of A such that (x,a) is element in R}

 
[1]    ={}                       [2]={1}                       [3]={2} 

R



Partition

A partition of a set S is a collection of disjoint 
nonempty subsets of S that have S as their 
union. In other words, the collection of subsets 
Ai, 
i∈I, forms a partition of S if and only if 
• (i)   Ai ≠ ∅ for i∈I
•   Ai ∩ Aj = ∅, if i ≠ j
•  ∪i∈I Ai = S



S={1,2,3...........8,9} check for each of following partition or not....

{{1,3,5}{2,6}{4,8,9}}          not partitions as 7 is not in any of the subset

{{1,3,5}{2,4,6,8}{7,9}}     valid partitions

{{1,3,5}{2,4,6,8}{5,7,9}}          not partitions as {1,3,5} {5,7,9} are not disjoint
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Warshall’s algorithm to find 
Transitive Closure for given Graph

Graph 1 given
Transitive Closure of Graph 
1



C1                      C2                        C3                    C4
R2=R2 OR R1,  R4=R4 OR R2,                             R2=R2 OR R4,      R4=R4 OR R4



Partial order Relation

• A relation R on a set S is called a partial 
ordering or partial order if it is reflexive, 
antisymmetric, and transitive.

•  A set S together with a partial ordering R is 
called a partially ordered set, or POSET and 
denoted by (S,R). A partial order R is also 
denoted as .        (R,      )   



• The elements a and b of a poset (S,    )  are 
called comparable if either  a    b  or b    a.  
Otherwise a and b are called incomparable.

• If (S,    ) is a partial ordering set and every two 
elements of S are comparable, S is called a 
totally ordered or linearly ordered set.

• A totally ordered set is called a Chain.



Hasse Diagrams

• Given any partial order relation defined on a 
finite set, it is possible to draw the directed 
graph so that all of these properties are 
satisfied.

• This makes it possible to associate a 
somewhat simpler graph, called a Hasse 
diagram, with a partial order relation defined 
on a finite set.



• Start with a directed graph of the relation in 
which all arrows point upward.  Then 
eliminate:

1. the loops at all the vertices,
2. all arrows whose existence is implied by the 

transitive property,
3. the direction indicators on the arrows.



• Let A = {1, 2, 3, 9, 19} and consider the 
“divides” relation on A:

• For all 
                                    a|b or b=Ka for some integer K

Hasse DiagramDighraph



• For the poset ({1,2,3,4,6,8,12}, |)



Extremal Elements: Maximal

• An element a in a poset (S, ≤) is called 
maximal if no element b in S exists such that, 

a ≤ b
• If there is one unique maximal element a, it is 

called the maximum element (or the greatest 
element)



Extremal Elements: Minimal

• An element a in a poset (S, ≤) is called 
minimal if no element b in S exists such that, 

b≤ a
• If there is one unique minimal element a, it is 

called the minimum element (or the least 
element)





• Let (S, ≤) be a poset and let A⊆S.  If u is an 
element of S such that a ≤ u for all a∈A then u 
is an upper bound of A

• An element x that is an upper bound on a 
subset A and is less than all other upper 
bounds on A is called the least upper bound 
on A.  We abbreviate it as lub.



• Definition: Let (S, ≤) be a poset and let A⊆S.  
If l is an element of S such that l ≤ a for all 
a∈A then l is an lower bound of A

• An element x that is a lower bound on a 
subset A and is greater than all other lower 
bounds on A is called the greatest lower 
bound on A.  We abbreviate it glb.



Give lower/upper bounds & glb/lub 
of the sets: 

{d,e,f}, {a,c} and {b,d}



{d,e,f}

• Lower bounds: ∅,  thus no glb
• Upper bounds: ∅,  thus no lub

{a,c}
• Lower bounds: ∅,  thus no glb
• Upper bounds: {h},  lub: h

{b,d}
• Lower bounds: {b}, glb: b
• Upper bounds: {d,g},  lub: d because d ≤ g



•  Find all upper and lower bounds of the 
following subset of A:  B1={a, b}; B2={c, d, e};



Find the LUB and GLB of B={6,7,10} for the 
following Hasse diagram.

• 1

• 2
• 3 • 4

• 5 • 6 • 7 • 8

• 10• 9

• 11



Lattices

• A lattice is a partially ordered set in which 
every pair of elements has both 
– a least upper bound and
– a greatest lower bound 
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