
Total No. of Questions—8] [Total No. of Printed Pages—6
Seat No. [5352]-561
S.E. (Computer) (First Semester) EXAMINATION, 2018
DISCRETE MATHEMATICS
(2015 PATTERN)
Time : Two Hours Maximum Marks : 50
N.B. :— (i) Neat diagrams must be drawn wherever necessary.
(<i>ii</i>) Figures to the right indicate full marks.(<i>iii</i>) Assume suitable data, if necessary.
1. (a) Prove : [4] $1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$.
(b) Prove that the set of rational numbers is countably infinite. [4]
(c) Let A = {1, 2, 3} and f_1 and f_2 are functions from A to B given by : [4] $f_1 = \{(1, 2), (2, 3), (3, 1)\}$ and $f_2 = \{(1, 2), (2, 1), (3, 3)\}$ Compute $f_1 \circ f_2$ and $f_2 \circ f_1$
Compute $f_1 \circ f_2$ and $f_2 \circ f_1$ P.T.O.

- Write an algorithm for generating permutation of {1, 2, 3. (*a*) *n*. Apply it for n = 3 case. [4]
 - Solve the following (b)
 - How many different car number plates are possible with (i)2 letters followed by 3 digits. [4]
 - (ii)How many of these number plates begin with 'MH'.
 - Consider a graph G(V, E) where $V = \{v_1, v_2, v_3\}$ & deg $(v_2) = 4: [4]$ (*c*) (i)• Does such simples graph exists ? If not, why ? Does such a multigraph exists ? If yes, give example. (ii)

- Explain the following in brief : 4. [4](a)
 - (i)Subgraphs and spanning subgraph
 - Isomorphic graph (ii)
 - Bipartite graph (*iii*)
 - Adjacency matrix and incidence matrix of undirected graph. (iv)
 - (b)Apply Dijkastra's Algorithm to find the shortest path from vertex [4] v_1 to v_5 in the graph show below in Fig. 4.(b).

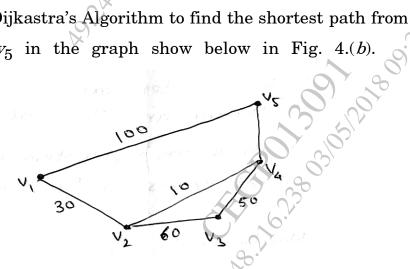


Fig. 4(b). Weighted Graph

[5352]-561

- In how many ways can a cricket team of eleven players (*c*) be chosen out of a batch of 14 players. How many of them [4] will :
 - Include a particular player. (i)
 - Exclude a particular player. (ii)

5.

Determine the maximum flow in the transport network shown (*a*) in Fig. 5. (a) using Labelling procedure. Determine the corresponding min. cut. [7]

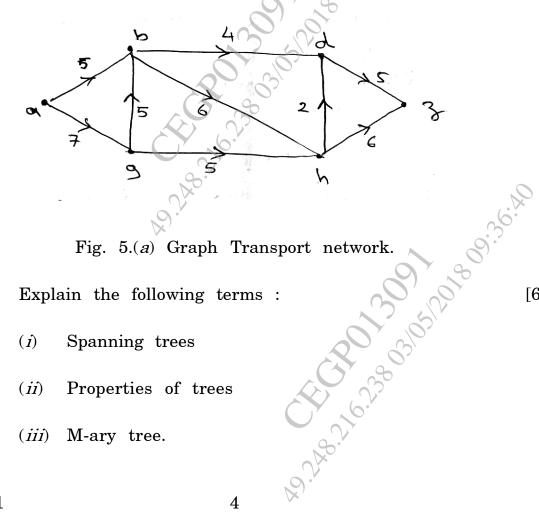
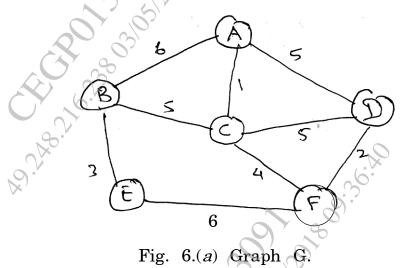


Fig. 5.(a) Graph Transport network.

[6]


- Explain the following terms : (b)
 - Spanning trees (i)
 - (ii)Properties of trees
 - M-ary tree. (*iii*)

[5352]-561

4

Give the stepwise construction of minimum spanning tree using 6. (*a*) Prim's Algorithm for the following graph shown in Fig. 6(a)Obtain the total cost of minimum spanning tree. [7]

Or

- Explain the following (*b*)

[6]

- (i)Game tree
- Kruskal's Algorithm. (ii)
- 7. Let $R = \{0, 60, 120, 180, 240, 300\}$ and * = binary operation (*a*) so that for a and b in \mathbb{R} , a * b is overall angular mples : 570 rotation corresponding to successive rotation by a and by b. Show $(\mathbf{R}, *)$ is a group. [7]
 - Explain the following terms with examples [6] (b)
 - (i)Ring
 - Integral Domain (ii)
 - Field. (*iii*)

[5352]-561

P.T.O.

Or Show that (I, \oplus, \odot) is a commutative ring with identity where 8. (*a*) and \odot are defined as : [7] \oplus $a \oplus b = a + b - 1$ and $a \odot b = a + b$ Explain the following terms : (*b*) [6] other and and the solution of Monoids (\hat{n}) Sub-group (ii)Group codes. (*iii*) 6 [5352]-561