Discrete Mathematics: Unit 4

Unit IV: Graph Theory 07 Hours
Graphs and Graph Models, Graph Terminology and Special Types of Graphs, Representing
Graphs and Graph Isomorphism, Connectivity, Euler and Hamilton Paths, Single source
shortest path-Dikjtra‘s Algorithm, Planar Graphs, Graph Colouring. Case Study- Web Graph,
Google map.

s INTRODUCTION

» Graphs are discrete structures consisting of vertices and edges that connect these
vertices.

» There are different kinds of graphs, depending on whether edges have directions,
whether multiple edges can connect the same pair of vertices, and whether loops are
allowed.

¢ Definition

» A graph G = (V, E) consists of V, a nonempty set of vertices (or nodes) and E, a set
of edges. Each edge has either one or two vertices associated with it, called its
endpoints. An edge is said to connect its endpoints.

» Example 1: Let us consider, a Graph is G = (V, E) where V = {a, b, ¢, d} and E =

{{a, b}, {a, ¢}, {b, ¢}, {c,d}}

a C
i e

d

» Even and Odd Vertex — If the degree of a vertex is even, the vertex is called an even
vertex and if the degree of a vertex is odd, the vertex is called an odd vertex.

» Degree of a Vertex — The degree of a vertex V of a graph G (denoted by deg (V)) is
the number of edges incident with the vertex V.

» The Handshaking Lemma— In a graph, the sum of all the degrees of vertices is equal

to twice the number of edges.

2 = E degi(v).

ve
Vertex | Degree | Even/ Odd
a 2 even
b 2 even
c 3 odd
d 1 odd
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+ Types of Graphs

Null Graph

A null graph has no edges. The null
graph of n vertices is denoted by Nn

-

Simple Graph

A graph is called simple graph/strict
graph if the graph is undirected and
does not contain any loops or
multiple edges.
In a simple
connects two different vertices and

graph each edge

no two edges connect the same pair
of vertices.

Multi-Graph

If in a graph multiple edges between
the same set of vertices are allowed,
it is called Multigraph.

When m different edges connect the
vertices u and v, we say that {u,v} is
an edge of multiplicity m.

unordered vertex pair.

Directed A graph G = (V, E) is called a (e C
Graph directed graph if the edge set is
made of ordered vertex pair.
b
) A graph G = (V, E) is called a
Undirected i : .
undirected if the edge set is made of
Graph

Mixed Graph

A graph with both directed and
undirected edges is called a mixed
graph.

A graph is connected if any two

o

o

Connected vertices of the graph are connected
Graph
by a path
\b d_.\
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A graph is disconnected if at least
two vertices of the graph are not
connected by a path.

Disconnected If a graph G is unconnected, then \ O\
Graph .
every maximal connected subgraph
of G is called a connected 4 d
component of the graph G.
A graph is regular if all the vertices 2 c
Regular of the graph have the same degree.
Graph In a regular graph G of degree r, the
degree of each vertex of G isr.
A graph is called complete graph if
Complete every two vertices pair are joined by y =
Graph exactly one edge. The complete
graph with n vertices is denoted by
Kn b
If a graph consists of a single cycle, = =
Cycle Graph it is called cycle graph. The cycle
graph with n vertices is denoted by
Cn
b
A graph with an infinite vertex set or
Infinite graph | an infinite number of edges is called
an infinite graph
Finite graph A graph with a finite vertex set and a
finite edge set is called a finite graph
Weighted A graph having a weight, or number,
Graph associated with each edge.
An edge that connects a vertex to
Loop ) .
itself is called a loop. @
A pseudograph may include loops,
Pseudograph

as well as multiple edges connecting
the same pair of vertices.

pseudograph
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+¢ Graph Terminology

>

>

Adjacent Vertex

Two vertices u and v in an undirected graph G are called adjacent (or neighbors) in G
if u and v are endpoints of an edge ¢ of G. Such an edge e is called incident with the
vertices # and v and e is said to connect u and v.

Neighborhood

The set of all neighbors of a vertex v of G = (V, E), denoted by N(v), is called the
neighborhood of v. If A is a subset of V, we denote by N(A) the set of all vertices in G
that are adjacent to at least one vertex in A.

Degree of a Vertex

The degree of a vertex in an undirected graph is the number of edges incident with it,
except that a loop at a vertex contributes twice to the degree of that vertex. The degree
of the vertex v is denoted by deg(v).

Isolated and Pendent

A vertex of degree zero is called isolated. It follows that an isolated vertex is not
adjacent to any vertex. Vertex g in graph G in Example 1 is isolated. A vertex is
pendant if and only if it has degree one. Consequently, a pendant vertex is adjacent
to exactly one other vertex. Vertex d in graph G in Example 1 is pendant.

Initial and Terminal Vertex

When (u,v) is an edge of the graph G with directed edges, u is said to be adjacent to v
and v is said to be adjacent from u. The vertex u is called the initial vertex of (u,v),
and v is called the terminal or end vertex of (u,v). The initial vertex and terminal
vertex of a loop are the same.

In-degree and Out-degree

In a graph with directed edges the in-degree of a vertex v, denoted by deg (v), is the
number of edges with v as their terminal vertex. The out-degree of v, denoted by
deg+(v), is the number of edges with v as their initial vertex. (Note that a loop at a

vertex contributes 1 to both the in-degree and the out-degree of this vertex.).

Theorem 1: The Handshaking Theorem
Let G =(V, E) be an undirected graph with m edges. Then

(Note that this applies even if multiple edges and loops are present.)

Theorem 2: An undirected graph has an even number of vertices of odd degree.
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Proof: Let V; and V; be the set of vertices of even degree and the set of vertices of

odd degree, respectively, in an undirected graph G = (V , E) with m edges. Then

2m = Ed&g{v‘.l = Zd&ghﬁ + E deg(v).

e ¥ =R ve by
+¢ Theorem 3: Let G =(V, E) be a graph with directed edges. Then

Zd&g_{u} = Zd&g"‘{v} = |E|].

e ¥ e

» Example 1: What are the degrees and what are the neighborhoods of the vertices in
the graphs G and H displayed in figure below.

b e r;l' i b i
: K |
L [ ]
a f £ ¢ ¢ i
Solution:

In Graph G, In Graph H,
deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(a) = 4, deg(b) = deg(e) =6,
deg(d ) =1, deg(e) = 3, and deg(g) = 0. deg(c) =1, and deg(d ) = 5.
The neighborhoods of these vertices are The neighborhoods of these
N(a)={b, f}, vertices are
N(b)={a, c, e, f}, N(a)={b, d, e},
N(c)={b, d, e, {}, N(b)={a, b, ¢, d, e},
N(d)={c}, N(©)={b},
N(e)={b, c, 1}, N(d)={a, b, ¢}, and
N(f)={a, b, ¢, e}, and N(g)=0@. N(e)={a, b, d}.

» Example 2: Find the in-degree and out-degree of each vertex in the graph G with

directed edges shown in figure below.

Solution: The in-degrees in G are deg (a) = 2, deg (b) = 2, deg (¢) = 3, deg (d) = 2,
deg (e) =3, and deg (f)=0.
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The out-degrees are deg'(a) = 4, deg’(b) = 1, deg'(c) = 2,deg’(d) = 2, deg’(e) = 3, and
deg "(f)=0.

» Example 3: Find the number of vertices, the number of edges, and the degree of each

vertex in the given undirected graph. Identify all isolated and pendant vertices.

1 ] i3 b [y
o
I & |
2 @ Fe)
= [ H
- el
i

Solution:

1. There are 6 vertices here, and 6 edges. The degree of each vertex is the number of
edges incident to it. Thus deg(a) = 2, deg(b) = 4, deg(c) = 1 (and hence ¢ is
pendant), deg(d) = 0 (and hence d is isolated), deg(e) = 2, and deg(!)= 3. Note that
the sum of the degrees is 2 + 4 + 1+0 + 2 + 3 = 12, which is twice the number of
edges.

2. There are 5 vertices and 13 edges. Thus deg(a) = 6, deg(b) = 6, deg(c) = 6, deg(d)
=5 and deg(e) = 3. The sum of the degreesis 5 +6 +5 + 5 + 3=26.

3. There are 9 vertices here, and 12 edges. The degree of each vertex is the number
of edges incident to it. Thus deg(a) = 3, deg(b) = 2, deg(c) = 4, deg(d) = 0 (and
hence dis isolated), deg(e) = 6, deg(f) = 0 (and hence f is isolated), deg(g) = 4,
deg(h) = 2, and deg(i) = 3. Note that the sum of the degreesis3 +2+4+0+ 6+

0 +4 + 2+ 3 =24, which is twice the number of edges.

» Example 4: Determine the number of vertices and edges and find the in-degree and
out-degree of each vertex for the given directed multi-graph. Also determine sum of

the in-degrees of the vertices and the sum of the out-degrees of the vertices directly.
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Solution:

1. This directed graph has 4 vertices and 7 edges.
The in-degree of vertex a is deg’(a) = 3 and out-degree is deg'(a) = 1
Similarly for deg’(b) = 1, deg'(b) = 2, deg(c) = 2, deg'(c) = 1, deg'(d) = 1, and
deg'(d)=3.
The sum of the in-degrees and the sum of the out-degrees are equal i.e. 7

2. This directed graph has 4 vertices and 8 edges.
The in-degree of vertex a is deg’(a) = 2 and out-degree is deg'(a) = 2.
Similarly we have deg’(b) = 3, deg’(b) = 4, deg'(c) = 2, deg'(c) = 1, deg'(d) = 1,
deg’(d) =1,
The sum of the in-degrees and the sum of the out-degrees are both equal to the
number of edges (8)

3. This directed multigraph has 5 vertices and 13 edges.
The in-degree of vertex a is deg’'(a) = 6 and out-degree is deg'(a) = 1.
Similarly we have deg-(b) = 1, deg’(b) = 5, deg'(c) = 2, deg'(c) = 5, deg’(d) = 4,
deg’(d) =2, deg'e) = 0, and deg’(e) = 0 (vertex e is isolated).
The sum of the in-degrees and the sum of the out-degrees are both equal to the

number of edges (13).

» Example 5: How many edges are there in a graph with 10 vertices each of degree six?
Solution: Because the sum of the degrees of the vertices is 6 * 10 = 60, it follows that

2m = 60 where m is the number of edges. Therefore, m=30.

» Example 6: How many vertices does a regular graph of degree four with 10 edges
have?
Solution: If a graph is regular of degree 4 and has n vertices, then by the handshaking
theorem it has 4n/2 = 2n edges. Since we are told that there are 10 edges, we just
need to solve 2n = 10. Thus the graph has 5 vertices. The complete graph Ks is one
such graph.
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+ Representation of Graphs
A. Adjacency List
B. Adjacency Matrix
C. Incidence Matrix
A. Adjacency List
» One way to represent a graph without multiple edges is to list all the edges of this
graph. Another way to represent a graph with no multiple edges is to use adjacency
lists, which specify the vertices that are adjacent to each vertex of the graph.

» Example 7: Use adjacency lists to describe the simple graph given in Figure 1.

TABLE 1 AnAdjacency List

b
/ for a Simple Graph.
a : Vertex Adjacent Vertices
e

X

a b,c, e
b a

Fad a, d, e
d d c.e

e a,c.d

FIGURE 1 A Simple Graph.

» Example 8: Represent the directed graph shown in Figure 2 by listing all the vertices

that are the terminal vertices of edges starting at each vertex of the graph.

TABLE 2 An Adjacency List for a
Directed Graph.
Initial Vertex Terminal Vertices
i b c,d, e
il b, d
¢ a, ¢, 8
& a
——— . & boo.d
FIGUEE 2 A Directed Graph.

» Drawback of Adjacency List: Carrying out graph algorithms using the
representation of graphs by lists of edges, or by adjacency lists, can be bulky if there

are many edges in the graph.

B. Adjacency Matrices
» Suppose that G = (V, E) is a simple graph where |V | = n. Suppose that the vertices of
G are listed arbitrarily as vl , v2, ..., vn. The adjacency matrix A (or Ag) of G, with
respect to this listing of the vertices, is the n x n zero—one matrix with 1 as its (i, j )"
entry when v; and vjare adjacent, and 0 as its (i, )" entry when they are not adjacent.

» In other words, if its adjacency matrix is A = [a;; |, then
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. 1 if {vi,v;} is an edge of G,
710 otherwise,

» Example 9: Use an adjacency matrix to represent the graph shown in Figure 3.

Solution: We order the vertices as a, b, ¢, d. The matrix representing this graph is

0 1 1 1
1 0 1 0
= pr 1 1 0 0
1 0 0 0

» Example 10: Draw a graph with the adjacency matrix with respect to the ordering of

vertices a, b, ¢, d.

e b
0o 1 1 0
1 0 0 1
- - 1 0 0 1
0o 1 1 0

FIGURE 4

A Graph with the
Given Adjacency
Matrix.

» Example 11: Use an adjacency matrix to represent the pseudograph shown in Figure.

Sofution: The adjacency matrix using the ordering of verlices a, b, ¢, d is
0 3 0 2
301 1
o 1 1 2
21 2 0

» Important Note:

v" An adjacency matrix of a graph is based on the ordering chosen for the vertices.
Hence, there may be as many as n! different adjacency matrices for a graph with n
vertices, because there are n! different orderings of n vertices.

v The adjacency matrix of a simple graph is symmetric, that is, aij = aji , because
both of these entries are 1 when vi and vj are adjacent, and both are 0 otherwise.
Furthermore, because a simple graph has no loops, each entry aii,i=1,2,3, ...,
n, is 0.

v Adjacency matrices can also be used to represent undirected graphs with loops
and with multiple edges. A loop at the vertex vi is represented by a 1 at the (i, i)™
position of the adjacency matrix. When multiple edges connecting the same pair
of vertices vi and vj , or multiple loops at the same vertex, are present, the

adjacency matrix is no longer a zero—one matrix, because the (i, j)™ entry of this
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matrix equals the number of edges that are associated to {vi, vj}. All undirected
graphs, including multigraphs and pseudographs, have symmetric adjacency

matrices.

C. Incidence Matrices
» Let G =(V, E) be an undirected graph. Suppose that v1, v2, . .., vn are the vertices
and el ,e2, ..., emare the edges of G. Then the incidence matrix with respect to this

ordering of V and E is the n x m matrix M = [mij ], where

1 when edge e; is incident with v;,

P .
&£ 0 otherwise.

» Incidence matrices can also be used to represent multiple edges and loops. Multiple
edges are represented in the incidence matrix using columns with identical entries,
because these edges are incident with the same pair of vertices. Loops are represented
using a column with exactly one entry equal to 1, corresponding to the vertex that is
incident with this loop.

» Example 12: Represent the graph shown in below with an incidence matrix.

Solution: The incidence matrix 18

€1 €2 &3 &4 &5 &

vill 1 0O O 0O 0
vyl 0 0 1 1 0 1
vy |0 0 0 0 1 1
vel1 0 1 0 0 0
vs|0 1 0 1 1 0

» Example 13: Represent the pseudograph shown below using an incidence matrix.

1'! 1 ¥y 2y . 3 - . . P P P
@ = n Solution: The incidence matrix for this graph is

. €] €1 €3 €4 €5 € €7 &g
Y

vi|l 1 1 0 0 O O O

va|0 1 1 1 0 1 1 0O
FIGURE?7 vi| 0O O O 1 1 0 0 O
A Pseudograph. vl 0O O O O 0 O T 1

vs 0O 0 0 0 1 1 0 0]

» Example 14: Represent each of these graphs with an adjacency matrix.

a) K4 b) K]74 C) K273
d) C4 e) W4 f) Q3
Solution:
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+ Some Special Simple Graphs
» Cycles: A cycle C,, n>3, consists of n vertices vi,v,...,vn and edges {vi,v2},

{v2,V3},.ee{Vi-1,Vn}, and {vn,v1}. The cycles Cs, Cy4, Cs, and Cg is shown below:
A

I Y

/ { \P / )

» Complete Graphs: A complete graph on n vertices, denoted by K,, is a simple graph

that contains exactly one edge between each pair of distinct vertices.
A simple graph for which there is at least one pair of distinct vertex not connected by

an edge is called noncomplete.

» Wheels: We obtain a wheel W,, when we add an additional vertex to a cycle C,, for

N

#,f

- }O{x

n>3, and connect this new vertex to each of then vertices in C,, by new edges. The

wheels W3, W4, Ws, and Wy are displayed in Figure below.

» N-Cubes: An n-dimensional hypercube, or n-cube, denoted by Q,, is a graph that has

vertices representing the 2" bit strings of length n. Two vertices are adjacent if and
only if the bit strings that they represent differ in exactly one bit position. Q;, Q,, and
Q; in Figure.

11 111

10 11 1030 1011

- ] 011

0 0l 000 001
¢ Bipartite Graphs

» A simple graph G is called bipartite if its vertex set V can be partitioned into two

disjoint sets V; andV, such that every edge in the graph connects a vertex in V; and a

vertex in V; (so that no edge in G connects either two vertices in V; or two vertices in

Prof. S. B. Shinde [MES College of Engineering, Pune] Page 11



Discrete Mathematics: Unit 4

V3). When this condition holds, we call the pair (V, V;) a bipartition of the vertex set
Vof G.

» Cg is bipartite, as shown in Figure above, because its vertex set can be partitioned into
the two sets V= {vl, v3, v5} and V,= {v2, v4, v6}, and every edge of C¢ connects a
vertex in V; and a vertex in V,.

» Kj is not bipartite. To verify this, note that if we divide the vertex set of K; into two
disjoint sets, one of the two sets must contain two vertices. If the graph were bipartite,
these two vertices could not be connected by an edge, but in K3 each vertex is
connected to every other vertex by an edge.

» Example 15: Are the graphs G and H displayed in Figure below bipartite?

a i

_'_,_:—" H\.
r P ™~
r #’__,f" £
N ey g
= -|.|l

Solution: Graph G is bipartite because its vertex set is the union of two disjoint
sets,{a, b, d} and{c, e, f, g}, and each edge connects a vertex in one of these subsets
to a vertex in the other subset. (Note: For G to be bipartite it is not necessary that
every vertex in {a, b, d}be adjacent to every vertex in{c, ¢, f, g}. For instance, band g
are not adjacent.) Graph H is not bipartite because its vertex set cannot be partitioned
into two subsets so that edges do not connect two vertices from the same subset.

» Theorem 4: A simple graph is bipartite if and only if it is possible to assign one of
two different colors to each vertex of the graph so that no two adjacent vertices are
assigned the same color.

Proof:

v" First, suppose that G = (V, E) is a bipartite simple graph. Then V = V; U V,,
where V; and V, are disjoint sets and every edge in E connects a vertex in V; and
a vertex in V,.

v" If we assign one color to each vertex in V; and a second color to each vertex in

V,, then no two adjacent vertices are assigned the same color.
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» Algorithm to find out whether a given graph is Bipartite

1. Assign RED color to the source vertex (putting into set V).

2. Color all the neighbors with BLUE color (putting into set V5).

3. Color all neighbor’s neighbor with RED color (putting into set V).

4. This way, assign color to all vertices such that it satisfies all the constraints of m
way coloring problem where m = 2.

5. While assigning colors, if we find a neighbor which is colored with same color as
current vertex, then the graph cannot be colored with 2 vertices (or graph is not
Bipartite).

» Example 16: Are the following graphs bipartite. If Yes Justify answer.

» - ™ ®
] [ ]

[ ]
. ® [ ]

[ ] L -
L ]

™ L] L]
o ®

[ . . ®

» Example 17: Determine whether the graph is bipartite.

>< Sl S

(a) ®) ©

h
]

#ﬂ"'

£ .II
(d) (e)
Solution: Bipartite: a), b) & d)

\

+«» Complete Bipartite Graphs
» A complete bipartite graph Ky, is a graph that has its vertex set partitioned into two
subsets of m and »n vertices, respectively with an edge between two vertices if and
only if one vertex is in the first subset and the other vertex is in the second subset.

» 1.e. each vertex of Vi is joined to every vertex of Vj by an unique edge.
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Kis Ky

» Example 18: For which values of n are these graphs bipartite?
a) Ky b) G, ¢) Wy d) Qn
Solution:
a) K, is bipartite if and only if n =2
b) C, is bipartite if and only if n is even.
¢) W, is not bipartite for any n.

d) Q, is bipartite for all n> 2.

+* New Graphs from Old

» A subgraph of a graph G = (V, E) is a graph H = (W, F), where W € V and F € E.
A subgraph H of G is a proper subgraph of G if H # G.
Given a set of vertices of a graph, we can form a subgraph of this graph with these
vertices and the edges of the graph that connect them.

» Let G=(V, E) be a simple graph. The subgraph induced by a subset W of the vertex
set V is the graph (W, F), where the edge set F contains an edge in E if and only if
both endpoints of this edge are in W.

» Example 19: The graph G shown in Figure is a subgraph of Ks. If we add the edge

connecting ¢ and e to G, we obtain the subgraph induced by W= {a, b, c, e}.

i

NN :/2\\»
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N

Gy =Gz, G =G but Gz € Ga.

» Removing or Adding Edges of a Graph
Given a graph G = (V, E) and an edge ¢ € E, we can produce a subgraph of G by
removing the edge e. The resulting subgraph, denoted by G — e, has the same vertex
set Vas G. Itsedge setisE —e. Hence, G-e=(V,E —{e})

Add an edge e to a graph to produce a new larger graph when this edge connects two
vertices already in G. We denote by G + e the new graph produced by adding a new
edge e, connecting two previously non incident vertices, to the graph G. Hence,

G+e=(V,EU {¢})

The vertex set of G + ¢ is the same as the vertex set of G and the edge set is the union
of the edge set of G and the set {e}.

» Removing Vertices from a Graph
When we remove a vertex v and all edges incident to it from G = (V, E), we produce a
subgraph, denoted by G — v. Observe that G —v = (V — v, E’), where E’ is the set of
edges of G not incident to v.

Similarly, if V’ is a subset of V, then the graph G — V’ is the subgraph (V — V’, E),
where E’ is the set of edges of G not incident to a vertex in V.

+ Operations on Graphs

» Union: The union of two simple graphs G; = (Vy, E) and G, = (V,, E,) is the simple
graph with vertex set V3 =V, U V; and edge set E; = E; U E,. The union of G; and G,
is denoted by G3= G; U G,.

> Intersection: The intersection of two graphs G and G, denoted by G (1 G, is a graph
G4 consisting only of those vertices and edges that are in both G, and G,.

» Ring: The ring sum of two graphs G; and G,, denoted by G; & G;; is a graph
consisting of the vertex set V; U V; and of edges that are either in G; or G;; but not in
both.

» Example 20: Find the union of the graphs G; and G, shown in Figure.

- 5 p a b c a b <
d e d I Fi | e f
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» Example 21:

Gy

3 ¢

;NG

Gy B

» Example 22: Find the union of the graphs shown in Figure below.

()

a
r b fvb ' b
F Fa e c

d d d
a b a “F. b

p——% e @b
[ - e (=]
- & = c d

c o o ¥ o g

a b a €
c d f g

+¢ Isomorphism of Graphs

» We often need to know whether it is possible to draw two graphs in the same way.

That is, do the graphs have the same structure when we ignore the identities of their

vertices?

» The simple graphs G; = (V4, E;) and G, = (V,, E,) are isomorphic if there exists a

one-to-one and onto function f from V; to V, with the property that a and b are
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adjacent in G if and only if f (a) and f (b) are adjacent in G,, for all a and b in V.
Such a function f is called an isomorphism.

Two simple graphs that are not isomorphic are called nonisomorphic.

In other words, when two simple graphs are isomorphic, there is a one-to-one
correspondence between vertices of the two graphs that preserves the adjacency

relationship.

+¢ Determining whether two Simple Graphs are Isomorphic

>
>

Note:

>

It is often difficult to determine whether two simple graphs are isomorphic.
There are n! possible one-to-one correspondences between the vertex sets of two
simple graphs with n vertices.
Testing each such correspondence to see whether it preserves adjacency and non-
adjacency is impractical if n is at all large.
It is not hard to show that two graphs are not isomorphic. In particular, we can show
that two graphs are not isomorphic if we can find a property only one of the two
graphs has, but that is preserved by isomorphism.
A property preserved by isomorphism of graphs is called a graph invariant.
Isomorphic simple graphs must have the same number of vertices, because there is a
one-to-one correspondence between the sets of vertices of the graphs.
Isomorphic simple graphs also must have the same number of edges, because the
one-to-one correspondence between vertices establishes a one-to-one correspondence
between edges.
Isomorphic simple graphs also must have the same degrees of the vertices. That is, a
vertex v of degree d in G must correspond to a vertex f (v) of degree d in H, because a
vertex w in G is adjacent to v if and only if f (v) and f (w) are adjacent in H.
If two graphs are isomorphic, they must have:

*  Must have same number of vertices

»  Must have same number of edges

»  Must have equal number of vertices with same degree.

»  Must have equal number of loops

»  Must have equal number of pendent

* (G and G, must have equal number of pendent edges.

» [f uand v are adjacent in G; then the corresponding vertices in G, are also

adjacent.

In general, it is easier to prove two graphs are not isomorphic by proving that one of

the above properties fails.
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» Example 23: Determine whether the graphs G and H displayed are isomorphic.

1y iy vy vy

lig

Hy Vs

iy iy Ej I:.'_l_
Solution: Both G and H have six vertices and seven edges. Both have four vertices of
degree two and two vertices of degree three. It is also easy to see that the subgraphs of
G and H consisting of all vertices of degree two and the edges connecting them are
isomorphic.

» Example 24: Determine whether the graphs shown in figure a and b are isomorphic.

b b

(a) (b)
a) Both G and H have five vertices and six edges. However, H has a vertex of degree
one, namely, €, whereas G has no vertices of degree one. It shows that G and H are
not isomorphic.
b) The graphs G and H both have eight vertices and 10 edges. They also both have
four vertices of degree two and four of degree three. Because these invariants all
agree, it is still conceivable that these graphs are isomorphic.
However, G and H are not isomorphic. To see this, note that because deg(a) =2 in G,
a must correspond to either t, u, x, or y in H , because these are the vertices of degree
two in H. However, each of these four vertices in H is adjacent to another vertex of
degree two in H, which is not true for a in G.

» Example 25: Determine whether the following graphs are isomorphic.

Va

Ity G : I{(& &

Iy Iig

Isomorphic
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Ity Iz l-?l
uj @ uz
ity ity A vy
Non- isomorphic
Ity Iy 1
Ve L
I i
¥a
"
g Iy "
g Vs V4 .
Isomorphic
iy Iy

4 \

o5 Iy i3

» Example 26: Are the simple graphs with the following adjacency matrices

isomorphic?

0 0 1 0 1 1
D0 1 1 0 0

(1 1 0 1 0 0

0 1 0 1] o 1 1 1]
1 0 0 1 1 0 0 1
0o 0o o0 1]t o 0 1

11 1 0o [1 1 1 0]

0 1 1 o]l [o 1 0o 1]
1 0 0 1 1 0 0 0
1 0 0 1 00 0 1

0o 1 1 o] [1 0 1 0]

Solution:

a. Both graphs consist of 2 sides of a triangle; they are clearly isomorphic.
b. The graphs are not isomorphic, since the first has 4 edges and the second has 5 edges.

c. The graphs are not isomorphic, since the first has 4 edges and the second has 3 edges.

Prof. S. B. Shinde [MES College of Engineering, Pune] Page 19



Discrete Mathematics: Unit 4

» Example 27: Define isomorphism of directed graphs.

I Hj? :| | Va
{f; {f4 _I- | ]
Iy iy 4 !
[ X { A Y
L = ]
L 5 iy V3 Vy
Hl 1"1
‘ — i —ai
.M'l H_; Vo 1‘3
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+» Connectivity - Paths
» A path is a sequence of edges that begins at a vertex of a graph and travels from
vertex to vertex along edges of the graph.
» As the path travels along its edges, it visits the vertices along this path, that is, the

endpoints of these edges.

» The path is a circuit if it begins and ends at the same vertex, that is, if u = v, and has
length greater than zero.

» A path or circuit is simple if it does not contain the same edge more than once.

» A circuit in a graph is also called as cycle in a graph.

» A walk is an alternating sequence of vertices and edges of a graph.

» A path is a walk that does not include any vertex twice, except that its first vertex

might be the same as its last.

» A trail is a walk that does not pass over the same edge twice. A trail might visit the
same vertex twice, but only if it comes and goes from a different edge each time.

» Example 28: In the simple graph shown below a, d, ¢, f, e is a simple path of length
4, because {a, d},{d, c},{c, f}, and {f, e} are all edges. However d, ¢, ¢, a is not a
path, because{e, c} is not an edge. Note that b, ¢, f, e, b is a circuit of length 4 because
{b, ¢}, {c, 1}, {f, e}, and {e, b}are edges, and this path begins and ends at b. The path
a, b, e, d a, b, which is of length 5, is not simple because it contains the edge{a, b}

twice.

» Example 29: Does each of these lists of vertices form a path in the following graph?
Which paths are simple? Which are circuits? What are the lengths of those that are
paths?
i)a,e,b,c,b i)a,e,a,d, b,c,a ii)e,b,a,d, b, e iv)c,b,d,a, e, ¢

a b i

d €

Solution: 1) This is a path of length 4, but it is not simple, since edge {b, ¢} is used
twice. It is not a circuit, since it ends at a different vertex from the one at which it

began.
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i1) This is not a path, since there is no edge fromc to a.
i11) This is not a path, since there is no edge from b to a.
iv) This is a path of length 5 (it has 5 edges in it). It is simple, since no edge is
repeated. It is a circuit since it ends at the same vertex at which it began.

» Example 30: Does each of these lists of vertices form a path in the following graph?
Which paths are simple? Which are circuits? What are the lengths of those that are
paths?

i)a,b,ec,b i)a,d,a, d,a iii)a,d,b,e,a 1iv)a,b,e,c,b,d,a

+¢ Connectedness in Undirected Graphs
» An undirected graph is called connected if there is a path between every pair of
distinct vertices of the graph.
» An undirected graph that is not connected is called disconnected. We disconnect a
graph when we remove vertices or edges, or both, to produce a disconnected

subgraph.

i b

N | f

PAY
ﬁ ]

¥
i e d )

» The graph G; in Figure above is connected, because for every pair of distinct vertices

there is a path between them.However, the graph G, is not connected.
+ Connectedness in Directed Graphs

» A directed graph is strongly connected if there is a path from @ to b and from b to a
whenever a and b are vertices in the graph.

» A directed graph is weakly connected if there is a path between every two vertices in
the underlying undirected graph.

» That is, a directed graph is weakly connected if and only if there is always a path
between two vertices when the directions of the edges are disregarded. Clearly, any

strongly connected directed graph is also weakly connected.
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i) ot T Fe]

» Graph G is strongly connected because there is a path between any two vertices in this
directed graph.Hence,G is also weakly connected.

» The graph H is not strongly connected. There is no directed path from a to b in this
graph. However, H is weakly connected, because there is a path between any two
vertices in the underlying undirected graph of H.

» Example 31: Determine whether each of these graphs is strongly connected and if

not, whether it is weakly connected.

a b C

(a) (b) ()

Solution: a) Notice that there is no path from a to any other vertex, because both
edges involving a are directed toward a. Therefore the graph is not strongly
connected. However, the underlying undirected graph is clearly connected, so this
graph is weakly connected.

b) Notice that there is no path from ¢ to any other vertex, because both edges
involving c¢ are directed toward c¢. Therefore the graph is not strongly connected.
However, the underlying undirected graph is clearly connected, so this graph is
weakly connected.

¢) The underlying undirected graph is clearly not connected (one component has

vertices b, f, and e), so this graph is neither strongly nor weakly connected.

¢ Euler Paths and Circuits
» An Euler path is a path that uses every edge of a graph exactly once. An Euler path
starts and ends at different vertices.
» Ifa graph G has an Euler path, then it must have exactly two odd vertices.
OR
» If the number of odd vertices in G is anything other than 2, then G cannot have an

Euler path.
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» An Euler circuit is a circuit that uses every edge of a graph exactly once. An Euler
circuit starts and ends at the same vertex.

» Ifa graph G has an Euler circuit, then all of its vertices must be even vertices.
OR

» If the number of odd vertices in G is anything other than 0, then G cannot have an
Euler circuit.

» In Euler paths and Euler circuits, the game was to find paths or circuits that

include every edge of the graph once (and only once).

# Odd Vertices | Euler Path? | Euler Circuit?
0 No Yes*
2 Yes* No
4,0,8,.... No No
1,3,5,..... No such graphs exist

( * Provided the graph is connected )
» Bridges - Removing a single edge from a connected graph can make it disconnected.
Such an edge is called a bridge.
» Loops cannot be bridges, because removing a loop from a graph cannot make it
disconnected.
» If two or more edges share both endpoints, then removing any one of them cannot
make the graph disconnected. Therefore, none of those edges is a bridge.
» Example 32: Find Euler path and circuit for given graph.
(f N

B )

G 1

\ B 4 B

\:.\ A
N e ‘( B

Euler Circuit: CDCBBADEBC Euler Circuit: CDEBBADC
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» Euler path & Euler circuit for directed graphs
For a directed graph to have Euler path, on each node, number of incoming edges
should be equal to number of outgoing nodes except start node where out degree is
one more than in degree and end node where incoming is one more than outgoing.
To have Euler circuit, all nodes should have in degree equal to out degree.
We have to keep in mind that for both directed and undirected graphs, above
conditions hold when all nodes with non-zero degree are part of strongly connected
component of graph.

» Example 33: Which of the undirected and directed graphs in Figure shown have an

Euler circuit? Of those that do not, which have an Euler path.

3 y :. \_\\ ! | f .\\ j’l
d d T d /:-\3- a . b

E I||l

Solution:The graph G; has an Euler circuit, for example, a, e, ¢, d, e, b, a. Neither of
the graphs G; or Gj has an Euler circuit. G, and G, does not have an Euler path. Gj
has an Euler path, namely,a, ¢, d, e, b, d, a, b.

The graph H, has an Euler circuit, for example,a, g, ¢, b, g, €, d, f, a. Neither H; nor
H; has an Euler circuit. H; has an Euler path, namely, c, a, b, ¢, d, b,but H; does not.

» Example 34: Finding Euler Circuits and Paths

B

E

Solution: Euler Path: FEACBDCFDBA
+ Hamilton Paths and Circuits
» A Hamilton path in a graph is a path that includes each vertex of the graph once and
only once.
» A Hamilton circuit is a circuit that includes each vertex of the graph once and only
once.
» In Hamilton paths and Hamilton circuits, the game is to find paths and circuits that

include every vertex of the graph once and only once.
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+» Hamilton versus Euler

From Figure (a) F
» If a graph has a Hamilton circuit, then it automatically has a A B
Hamilton path-(the Hamilton circuit can always be truncated
into a Hamilton path by dropping the last vertex of the circuit.) D c
» Contrast this with the mutually exclusive relationship between G
Euler circuits and paths: If a graph has an Euler circuit it cannot (a)
have an Euler path and vice versa. A B
» Hamilton circuitis A,F,B,C,G,D,E, A & E
» Hamilton pathis A, F, B, C, G, D, E.
From Fig (b)

» Has no Euler circuits but does have Euler paths (for example C,
D,E,B,A,D)&

» Has no Hamilton circuits (sooner or later you have to go to C,
and then you are stuck) but does have Hamilton paths (for

example, A, B, E, D, C).

» This illustrates that a graph can have a Hamilton path but no
Hamilton circuit!. A B

From Fig (¢)

» Has neither Euler circuits nor paths (it has four odd vertices)

» Has Hamilton circuits (for example A, B, C, D, E, A — there are D C
plenty more) and consequently has Hamilton paths (for example,
A, B,C,D,E). )

From Fig (d) F

» Has no Euler circuits but has Euler paths (F and G are the two
odd vertices) and

» Has neither Hamilton circuits nor Hamilton paths.

From Fig (e)

» Has neither Euler circuits nor Euler paths (too many odd

vertices) and

» Has neither Hamilton circuits nor Hamilton paths. (e)
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» How Many Hamilton Circuits when a graph have ?

v Consider Complete graph K,, One of the key properties of K,, is that every vertex
has degree n— 1.

v" This implies that the sum of the degrees of all the vertices is n(n— 1), and it
follows from Euler’s sum of degrees theorem that the number of edges in K, is
n(n—1)/2.

v" For a graph with n vertices and no multiple edges or loops, n(n— 1)/2 is the
maximum number of edges possible, and this maximum can only occur when the
graph is K.

v Because K, has a complete set of edges (every vertex is connected to every other
vertex), it also has a complete set of Hamilton circuits —you can travel the vertices
in any sequence you choose and you will not get stuck. !

v Number of distinct hamilton circuits for K, graph is (n-1)!.

» Example 35: Find Hamilton Circuits in K4

~ The Six Hamilton Circuits in K,

Reference Reference Reference Reference
point is A point is B pointis C point is D

1 A B,C, DA B,C,D,A,B C,D,A,B,C D,A,B,C,D
2 A,B,D,CA B,D,C,A,B GABD,C D,C,A,B,D
3 AC B,DA B,D,A,C,B G B,D,A,C D,AC B,D
B ACD,BA B,A,C,D,B C,D,B,A,C D,B,AC,D

5 A,D,B,CA B,C,A,D,B CAD B, C D,B,C,A,D

6 AD,C BA B,A,D,C, B C,B,A,D,C D,C,B,A,D

» Example 36: Find Hamilton Circuits in K5
Solution: For simplicity, we will write each circuit just once, using a common
reference point — say A. (As long as we are consistent, it doesn’t really matter which
reference point we pick.)
Each of the Hamilton circuits will be described by a sequence that starts and ends

with A, with the letters B, C, D, and E sandwiched in between in some order.
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There are 4 x3 x2 x1 = 24 different ways to shuffle the letters B, C, D, and E, each

producing a different Hamilton circuit.

The 24 Hamilton Circuits in K5
1 ABCDEA | 13 A E D,C,B,A

2 ABCEDA 14 AD,E,C B,A
3 AB,D,CEA 15 A ECD,B,A
4 ABDECA 16 A,CED,B,A
5 ABECDA 17 A,D,C E B,A
6 ABEDCA 18 A,C,D,E B, A
7 ACBD,EA 19 A E,D,B,CA
8 ACBEDA | 2 A,DEB,CA
9 ACD,BEA | 21 AE B D,CA
10 A,CEB,DA 22 A,D,B,E,CA

11 A,D,B,C,E,A 23 AECB,D,A

12 A,D,C,B,E,A 24 A E,B,CD,A

. >

Number of Distinct Hamilton Circuits in K

N (N = 1)! N (N - 1)!

3 2 12 39,916,800

4 6 13 479,001,600

5 24 14 6,227,020,800

6 120 15 87,178,291,200

7 720 16 1,307,674.,368,000

8 5040 17 20,922,789,888,000

9 40,320 18 355,687,428,096,000

10 362,880 19 6,402,373,705,728,000
11 3,628,800 20 121,645,100,408,832,000 |
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Example 37: Determine whether the given graph has a Hamilton circuit and path. If it

does, find such a circuit and path .

such circuit and path exists.

ol

o

i

i

d

)

If it does not, give an argument to show why no

b

a

b

® s

~ e

~e

» Travelling Salesman Problem(TSP)

>

The traveling salesman problem consists of a salesman and a set of cities. The
salesman has to visit each one of the cities starting from a certain one (e.g. the
hometown) and returning to the same city.
The challenge of the problem is that the traveling salesman wants to minimize the
total length of the trip.
The goal in solving a TSP is to find the minimum cost tour, the optimal tour.
A tour of the vertices of a graph which visits each vertex (repeating no edge) once and
only once is known as a Hamiltonian circuit.
Thus, one can think of solving a TSP as finding a minimum cost Hamiltonian circuit
in a complete graph with weights on the edges.
For the general complete graph with n vertices, the number of different TSP routes
would be:

(n-1)!

However for a large value of n, this is highly inefficient algorithm.
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» Brute Froce Algorithm:
Optimal but inefficient algorithm when n is large. (n is number of vertices)
A tour of the vertices of a graph which visits each vertex (repeating no edge) once.
» Nearest-Neighour Method
Not-Optimal(sometime not give best answer) but efficient algorithm.
The nearest neighbour algorithm was one of the first algorithms used to determine a
solution to the travelling salesman problem.
In it, the salesman starts at a random city and repeatedly visits the nearest city until all
have been visited.
It quickly yields a short tour, but usually not the optimal one.
Step of Nearest Neighbour algorithm
1. Start on an arbitrary vertex as current vertex.
2. Find out the shortest edge connecting current vertex and an unvisited vertex V.
3. Set current vertex to V.
4. Mark V as visited.
5. If all the vertices in domain are visited, then terminate.
6. Go to step 2.
The sequence of the visited vertices is the output of the algorithm.
The nearest neighbour algorithm is easy to implement and executes quickly, but it can
sometimes miss shorter routes which are easily noticed with human insight, due to its
"greedy" nature.

» Example 38:

Using Brute Force Algorithm Using Nearest-Neighour Method
ABCDA=4+13+13+1=26 ADCBA =26
ABDCA=4+9+8+2=23 BADCB =26
ACBDA=2+13+9+1=25 CADBC =25

DACBA =25
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» Example 39: Solve the traveling salesperson problem for this graph by finding the

total weight of all Hamilton circuits and determining a circuit with minimum total

weight.
ia 3 B
2 G
o T C
Figa Fig b

Solution a: The following table shows the three different Hamilton circuits and their

weights for fig a:

Circuit Weight

a-b-c-d-a 3+6+7+2=18
a-b-d-c-a 3+4+7+5=19
a-c-b-d-a S+6+4+2=17

Thus we see that the circuit a-c-b-d-a (or the same circuit starting at some other point
but traversing the vertices in the same or exactly opposite order) is the one with

minimu total weight.

¢ Shortest Path Problem

» In graph theory, the shortest path problem is the problem of finding a path between
two vertices (or nodes) in a graph such that the sum of the weights of its constituent
edges is minimized.

» The problem of finding the shortest path between two intersections on a road map (the
graph's vertices correspond to intersections and the edges correspond to road
segments, each weighted by the length of its road segment) may be modeled by a
special case of the shortest path problem in graphs.

» There are several different algorithms that find a shortest path between two vertices in
a weighted graph.

¢ Dijkstra's Algorithm

» Dijkstra’s algorithm is an algorithm for finding the shortest paths between nodes in a
graph, which may represent, for example, road networks. It was conceived by
computer scientist Edsger W. Dijkstra in 1956 and published three years later.

¢ Algorithm Step:

» Dijkshtra’s algorithm to find the shortest path from vertex a to z of a graph G. Let

G(V.E) be a simple graph and a,z € V.
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» Suppose L(x) is the label of the vertex which represents the length of the shortest path
from vertex a.W;=Weight of an edge e;=(v;,v;).
» Consider following Steps:
1. Let P be the set of those vertices which have permanent labels and T be set of all
vertices of G.
Set L(a)=0,L(x)=0 VYxE€ETandx#a
P=@andT=v.
2. Select the vertx v in T which has smallest label. This label is called the permanent
label of v. Also set Pas P U {v} and T - {v}
If v =z then L(z) is the length of the shortest path from the vertex a to z and stop
the procedure.
3. Ifv # z, then revise the labels of the vertices of T. i.e. The vertices which do not
have permanent labels.
The new label of x in T is given by
L(x) = min{old L(x), L(v) + w(v,x)}
Where w(v,x) is the weight of the edge joining v and x. If there is no edge joining
v and x then take w(v,x)= co.
4. Repeat the step 2 and 3 until z gets permanent label.
» Example 40: Use Dijkstra’s algorithm to find a shortest path between a and z

Solution:

Step1: P=0@and T = {a,b,c.d,e,z}
L{a}=0 L {x}=w

Step 2: v = athe permanent label ofa =0 P={a} T={b,c.d,e,z}
L(b) = min{old L(b), L(a) + w(a,b)} =min{c, 0 +2} =2
L(c) = min{old L(c), L(a) + w(a,c)} = min{cw, 0 + 3} =3
L(d) = min{old L(d), L(a) + w(a,d)} = min{c, 0 + 00} =0
L(e) = min{old L(e), L(a) + w(a,e)} = min{ow, 0 + 0} =0
L(z) = min{old L(z), L(a) + w(a,z)} = min{ow, 0 + 0} =0

Therefore L(b) =2 is minimum label.

Step 3: v = b the permanent label of b =2 P={ab} T={cdez}
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L(c) =min{old L(c), L(b) + w(b,c)} = min{3, 2 + w0} =3
L(d) = min{old L(d), L(b) + w(b,d)} = min{oo, 2 + 5} =7
L(e) = min{old L(e), L(b) + w(b,e)} = min{w, 2 +2} =4
L(z) = min{old L(z), L(b) + w(b,z)} = min{ow, 2 + 0} =0
Therefore L(¢) = 3 is minimum label.
Step 4: v = c the permanent label of ¢ =3 P={abe} T={dez}
L(d) = min{old L(d), L(¢) + w(c,d)} =min{7, 3 +w0} =7
L(e) = min{old L(e), L(c) + w(c,e)} =min{4, 3 +5} =4
L(z) = min{old L(z), L(¢) + w(c,z)} = min{ow, 3 + 0} =0
No labels are changed. Then e is put into P.
Therefore L(e) = 4 is minimum label.
Step 5: v = ¢ the permanent label of e = 4 P={abce} T={dz}
L(d) = min{old L(d), L(e) + w(e,d)} =min{7,4 +1} =5
L(z) = min{old L(z), L(e) + w(e,z)} =min{w, 4 +4} =8
Therefore L(d) = 5 is minimum label.
Step 6: v = d the permanent label ofd =5 P={abced} T={z}
L(z) = min{old L(z), L(d) + w(d,z)} = min{8, 5+ 2} =7
Therefore L(z) = 7 is minimum label.
Step 7: v = z, the permanemt label of z is 7
Therefore a shortest path is a, b, e, d, z, with length 7.
» Example 41: Use Dijkstra’s algorithm to find a shortest path between a and z

Solution: We follow the same procedure for the graph in Example 40. A shortest path
isa,c,d,e, g, z, with length 16.

» Example 42: Use Dijkstra’s algorithm to find the length of a shortest path between
the vertices a and z in the weighted graph displayed in Figure.
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Solution:
b 4(a) d @ b (e d 10(a o)
4 5 [ 4 5 6
la z® | 0(a) 1 ) z® | 0(a) 1 8 2 z ™
2 10 3 2 10 3
¢ 2{a) £m .."1:} 2 (a) e 12{a o)
(a) (k) ic)
) 3ia c) (a, ¢, B) B 3ia e (@Eiae b
(&) d 8 i i (d) 2 ;
4 5 6
0(@) 0(a) 1 8 9 7 l4{a,c, b, 4
2 10 3
I:BI 2 {ax) 12{a, ) fEJ 2 (a) e 10 (a, ¢, b, d)
{d) (e)
@ 3(a,c) (@8 c b (B 3@ (@8ach
4 5 6
0(@) z 13(a.c b de) 0(a) 1 8 2 (D13 (a.c.b.d ¢
2 0 3
c) 2a) (e) 104a.c, b, & © 2 {(€) 10 (a. ¢, b, d)
f) (&

» Example 43: Use Dijkstra’s algorithm to find a shortest path between for following

graphs.
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+«¢ Planar Graphs

» A graph is called planar if it can be drawn in the plane without any edges crossing
(where a crossing of edges is the intersection of the lines or arcs representing them at
a point other than their common endpoint). Such a drawing is called a planar
representation of the graph.

» A graph may be planar even if it is usually drawn with crossings, because it may be
possible to draw it in a different way without crossings.

» We can show that a graph is planar by displaying a planar representation. It is harder
to show that a graph is nonplanar.

» Example 44: Is K, and Q; (shown in Figure a and ¢) planar?

Solution: K4 and Q; are planar because it can be drawn without crossings, as shown in

{/

Figure b and d.

a) The Graph K, b) K, Drawn with No ¢) The Graph Qs d) A Planar
Crossings Representation of Q;
» Example 45: Is K33 Planar?

Vy Vy Vg (a) {b)

Solution: Any attempt to draw Kj 3 in the plane with no edges crossing is doomed. We
now show why. In any planar representation of Kj 3, the vertices v; and v, must be
connected to both v4 and vs .These four edges form a closed curve that splits the plane
into two regions, R; and R, as shown in Fig (a). The vertex v; is in either R; or R,.
When v; is in Ry, the inside of the closed curve, the edges between v; and v4 and
between v; and vs separate R, into two sub regions, Ry and Ry,, as shown in Fig (b).
Next, note that there is no way to place the final vertex v without forcing a crossing.
For if v is in Ry, then the edge between vy and v; cannot be drawn without a crossing.
If v is in Ry1, then the edge between v, and vy cannot be drawn without a crossing. If
Ve 1s In Ry, then the edge between v; and vg cannot be drawn without a crossing.

A similar argument can be used when vs is in R;. It follows that Kj ; is not planar.
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¢ Euler’s Formula

» Euler showed that all planar representations of a graph split the plane into the same
number of regions. He accomplished this by finding a relationship among the number
of regions, the number of vertices, and the number of edges of a planar graph.

» Let G be a connected planar simple graph with e edges and v vertices. Let r be the
number of regions in a planar representation of G. Thenr=e¢ —v + 2.

» Example 46: Suppose that a connected planar graph has 20 vertices, each of degree 3.
Into how many regions does a representation of this planar graph split the plane?
Solution: This graph has 20 vertices, each of degree 3, so v =20.

Because the sum of the degrees of the vertices, 3v =3 * 20 = 60.
By Handshaking Lemma In a graph, the sum of all the degrees of vertices is equal to
twice the number of edges. Therefore we have 2e = 60, or e = 30.

From Euler’s formula, the number of regionsis r=e—-v+2=30—-20+2=12.

» Corollary 1: If G is a connected planar simple graph with e edges and v vertices,
where v> 3, thene <3v — 6.

» Corollary 2: If G is a connected planar simple graph, then G has a vertex of degree
not exceeding five.

» Corollary 3: If a connected planar simple graph has e edges and v vertices with v > 3

and no circuits of length three, then e <2v — 4.

» Example 47: Show that K5 is nonplanar using Corollary 1.
Solution: The graph K5 has 5 vertices and 10 edges. However, the inequality ¢ <3v —
6 is not satisfied for this graph because ¢ = 10 and 3v — 6 = 9. Therefore, K5 is not

planar.

It was previously shown thatK; ; is not planar. Note, however, that this graph has six
vertices and nine edges. This means that the inequality =9 <12 = 3*6 — 6 is satistied.
Consequently, the fact that the inequality e < 3v—6 is satisfied does not imply that a

graph is planar. However, the corollary 3 can be used to show that K3 3 is nonplanar.

» Example 48: Use Corollary 3 to show that Kj 3 is nonplanar.
Solution: Because Kj 3 has no circuits of length three (this is easy to see because it is
bipartite), Corollary 3 can be used. Kj 3 has six vertices and nine edges. Because e = 9

and 2v — 4 = 8, Corollary 3 shows that K3 3 is nonplanar.
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+¢» Kuratowski’s Theorem

>

We have seen that K;3 and Ks are not planar. Clearly, a graph is not planar if it
contains either of these two graphs as a subgraph. Surprisingly, all nonplanar graphs
must contain a subgraph that can be obtained from Kj;; or K5 using certain permitted
operations.

If a graph is planar, so will be any graph obtained by removing an edge {u, v} and
adding a new vertex w together with edges {u, w} and {w, v}.

Such an operation is called an elementary subdivision.

The graphs G| = (Vy, Ey) and G, = (V,, E,) are called homeomorphic if they can be
obtained from the same graph by a sequence of elementary subdivisions.

Theorem: A graph is nonplanar if and only if it contains a subgraph homeomorphic
to K;3 or K.

Example 49: Show that the graphs G;, G, and G; displayed in Figure below are all

homeomorphic.

c d e
Solution: These three graphs are homeomorphic because all three can be obtained
from G; by elementary subdivisions. G; can be obtained from itself by an empty
sequence of elementary subdivisions.

To obtain G, from G; we can use this sequence of elementary subdivisions:

(1) remove the edge {a, ¢}, add the vertex f, and add the edges {a, '} and {f, c};

(i1) remove the edge {b, c}, add the vertex g, and add the edges {b, g} and {g, c}; and
(ii1) remove the edge {b, g}, add the vertex h, and add the edges {g, h} and {b, h}.
Similarly for to obtain G; from G,. Repeat the above steps.

+¢ Graph Coloring

>

>

A coloring of a simple graph is the assignment of a color to each vertex of the graph
so that no two adjacent vertices are assigned the same color.

The chromatic number of a graph is the least number of colors needed for a
coloring of this graph. The chromatic number of a graph G is denoted by %(G).

The Four Color Theorem: The chromatic number of a planar graph is no greater
than four.

Example 50: What are the chromatic numbers of the graphs G and H in Figure?
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Solution: As show in figure below Coloring of Graph G has chromatic number equal

to 3 and Graph H has a chromatic number equal to 4.

b Blue e Green b Blue Green e

a d % Red g Red a d)% Red g
Red Red Brown

¢ Green fBlue ¢ Green fBlue

» Example 51: What is the chromatic number of K,,?
Solution: A coloring of K, can be constructed using n colors by assigning a different
color to each vertex. The chromatic number of K,, is n. That is, ¢ (K,) = n.

» Example 52: What is the chromatic number of the complete bipartite graph K.,
where m and n are positive integers?
Solution: The number of colors needed may seem to depend on m and n. K, is a
bipartite graph. The chromatic number of Ky, ,1s 2. That is (K ) = 2.

» Example 53: What is the chromatic number of the graph C, where n > 3?
Solution: In general, the chromatic number of C, is 2 when n is even, and the

chromatic number of C,, is 3 when n is odd and n> 1.

aRed b Red ¢ Red

a Red b Blue
Brown ¢ ¢ Green
d Blue ¢ Blue fBlue ¢ Blue
d Yellow -
Coloring of K5 Coloring of K; 4

Colorings of Cs and Cq
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