
Second Year of Computer Engineering (2019 Course)

(210241): Discrete Mathematics

Modern Education Society’s
College of Engineering, Pune

19, Late Prin. V. K. Joag Path, Wadia College Campus, Pune-411001
Accredited by NBA and NAAC by “A” Grade

Affiliated to Savitribai Phule Pune University & Approved by AICTE, New Delhi.

Teaching Scheme Credit Scheme Examination Scheme and Marks

Lecture: 03

Hours/Week

03 Mid_Semester (TH): 30 Marks

End_Semester (TH): 70 Marks

Marks weightage per unit for examination

Unit Number I II III IV V VI

Mid_Semester 15 15 - - - -

End_Semester - - 18 17 18 17

Prerequisites: Basic Mathematics

Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Course Objectives

To introduce several Discrete Mathematical Structures found to be serving

as tools even today in the development of theoretical computer science.

1. To introduce students to understand, explain, and apply the foundational

mathematical concepts at the core of computer science.

2. To understand use of set, function and relation models to understand practical

examples, and interpret the associated operations and terminologies in context.

3. To acquire knowledge of logic and proof techniques to expand mathematical

maturity.

4. To learn the fundamental counting principle, permutations, and combinations.

5. To study how to model problem using graph and tree.

6. To learn how abstract algebra is used in coding theory.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Course Outcomes
On completion of the course, learner will be able to –

CO1: Formulate problems precisely, solve the problems, apply formal proof techniques, and

explain the reasoning clearly.

CO2: Apply appropriate mathematical concepts and skills to solve problems in both familiar

and unfamiliar situations including those in real-life contexts.

CO3: Design and analyze real world engineering problems by applying set theory,

propositional logic and to construct proofs using mathematical induction.

CO4: Specify, manipulate and apply equivalence relations; construct and use functions and apply

these concepts to solve new problems.

CO5: Calculate numbers of possible outcomes using permutations and combinations; to model

and analyze computational processes using combinatorics.

CO6: Model and solve computing problem using tree and graph and solve problems using

appropriate algorithms.

CO7: Analyze the properties of binary operations, apply abstract algebra in coding theory and

evaluate the algebraic structures.
Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Learning Resources

 Text Books:
1. C. L. Liu, “Elements of Discrete Mathematics”‖, TMH, ISBN 10:0-07-066913-

9.2.

2. N. Biggs, “Discrete Mathematics”, 3rd Ed, Oxford University Press, ISBN 0 –19-

850717–8.

 Reference Books:
1. Kenneth H. Rosen, “Discrete Mathematics and its Applications”‖, Tata McGraw-

Hill, ISBN 978-0-07-288008-3

2. Bernard Kolman, Robert C. Busby and Sharon Ross, “Discrete Mathematical

Structures”‖, Prentice-Hall of India /Pearson, ISBN: 0132078457,

9780132078450.

3. Narsingh Deo, “Graph with application to Engineering and Computer Science”,
Prentice Hall of India, 1990, 0 –87692 –145 –4.

4. Eric Gossett, “Discrete Mathematical Structures with Proofs”, Wiley India Ltd,

ISBN:978-81-265-2758-8.

5. Sriram P.and Steven S., “Computational Discrete Mathematics”, Cambridge

University Press, ISBN 13: 978-0-521-73311-3.
Mr. S. B. Shinde Asst Professor, MESCOE Pune

Mr. S. B. Shinde
Asst Professor, MESCOE Pune

Unit V

Trees

Duration: (07 Hours)

Mapping of Course Outcomes: CO1,CO2,CO6

 Unit-IV: Contents

 Introduction, properties of trees,

 Binary Search Tree, Tree Traversal, Decision Tree,

 Prefix codes and Huffman coding, cut sets,

 Spanning Trees and Minimum Spanning Tree, Kruskal‟s and Prim„s

algorithms,

 The Max flow- Min Cut Theorem (Transport network).

 Exemplar/ Case Studies: Algebraic Expression Tree, Tic-Tac-Toe Game

Tree.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Introduction

 A Tree is a connected undirected graph with no simple circuits.

 Because a tree cannot have a simple circuit, a tree cannot contain multiple

edges or loops. Therefore any tree must be a simple graph.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Theorem 1: An undirected graph is a tree if and only if there is a unique

simple path between any two of its vertices.

 Theorem 2: Every tree with n vertices has exactly n - 1 edges.

Introduction

 Example 1: Which of the graphs shown in Figure are trees?

Solution: G1 and G2 are trees, because both are connected graphs with no

simple circuits.

G3 is not a tree because e, b, a, d, e is a simple circuit in this graph.

Finally, G4 is not a tree because it is not connected.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Introduction

 Any connected graph that contains no simple circuits is a tree.

 What about graphs containing no simple circuits that are not

necessarily connected?.

 These graphs are called forests and have the property that each of their

connected components is a tree.

 A forest is composed of one tree or some disconnected trees. A forest is a

disjoint union of trees.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Introduction

 Example 2: Are the following graphs trees?

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Solution: Graph (a) and (d) are not tree while (b) & (c) tree

Rooted Trees

 A rooted tree is a tree in which one vertex has been designated as the root

and every edge is directed away from the root.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Terminology for rooted trees

 If v is a vertex in T other than the root, the parent of v is the unique vertex

u such that there is a directed edge from u to v .

 If u is the parent of v , v is called a child of u.

 Two Vertices with the same parent are called siblings.

 A vertex of a tree is called a leaf if it has no children.

 A terminating vertex (or a leaf) in a tree is a vertex of degree 1.

 Vertices that have children are called internal vertices. An internal vertex

(or a branch vertex) in a tree is a vertex of degree greater than 1.

 Vertices are sometimes referred to as nodes, particularly when dealing with

graph trees.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Terminology for rooted trees

 The ancestors of a vertex other than the root are the

vertices in the path from the root to this vertex,

excluding the vertex itself and including the root

(i.e., its parent, its parent‟s parent, and so on, until

the root is reached).

 The descendants of a vertex v are those vertices that

have v as an ancestor.

 If a is a vertex in a tree, the subtree with a as its root

is the subgraph of the tree consisting of a and its

descendants and all edges incident to these

descendants.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Terminology for rooted trees

 Example 3: In the rooted tree T(with root a) shown in Figure , find the parent of

c, the children of g, the siblings of h, all ancestors of e, all descendants of b, all

internal vertices, and all leaves. What is the subtree rooted at g?

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Solution: The parent of c is b.

The children of g are h, i, and j.

The siblings of h are i and j.

The ancestors of e are c, b, & a.

The descendants of b are c, d, & e.

The internal vertices are a, b, c, g, h, & j. The leaves are d, e, f, i, k, l, and m.

The subtree rooted at g is shown in Figure.

Terminology for rooted trees

 Example 4: Answer these questions about the rooted tree illustrated in Figure.

a) Which vertex is the root?

b) Which vertices are internal?

c) Which vertices are children of j?

d) Which vertex is the parent of h?

e) Which vertices are siblings of o?

f) Which vertices are ancestors of m?

g) Which vertices are descendants of b?

h) Which vertices are leaves?

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Vertex a

 p

 f, b, and a

a, b, c, d, f, h , j , q, & t.

e, g, i, k, l, m, n, o, p, r, s, & u.

q and r

c

e, f, l, m, and n

Terminology for rooted trees

 Example 5: What is the level/length of each vertex of the rooted tree in Figure ?

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Solution: We can easily determine the

levels from the drawing.

The root a is at level 0.

The vertices in the row below a are at level

1, namely b, c, and d.

The vertices below that, namely e through

k (in alphabetical order), are at level 2.

Similarly l through r are at level 3, s and t

are at level 4, and u is at level 5.

M-ary tree

 A rooted tree is called an m-ary tree if every internal vertex has no more than m children.

The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-

ary tree with m = 2 is called a binary tree.

 Example 6: Are the rooted trees in Figure 8 full m-ary trees for some positive integer m?

Solution: T1 is a full binary tree because each of its internal vertices has two children. T2

is a full 3-ary tree because each of its internal vertices has three children. In T3 each

internal vertex has five children, so T3 is a full 5-ary tree. T4 is not a full m-ary tree for

any m because some of its internal vertices have two children and others have three

children.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Properties of M-ary Trees

 A full m-ary tree with i internal vertices contains n = mi + 1 vertices.

Proof: Every vertex, except the root, is the child of an internal vertex. Because each of the

i internal vertices has m children, there are mi vertices in the tree other than the root.

Therefore, the tree contains n = mi + 1 vertices.

 A full m-ary tree with ::

(i) n vertices has i = (n −1)/m internal vertices and l = [(m −1) n + 1] / m leaves,

(ii) i internal vertices has n = mi + 1 vertices and l = (m − 1)i + 1 leaves,

(iii) l leaves has n = (ml −1)/(m −1) vertices & i = (l − 1)/(m − 1) internal vertices.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prefix Code

 Consider the problem of using bit strings to encode the letters of the English alphabet

(where no distinction is made between lowercase and uppercase letters). We can represent

each letter with a bit string of length five, because there are only 26 letters and there are 32

bit strings of length five. The total number of bits used to encode data is five times the

number of characters in the text when each character is encoded with five bits.

 Consider using bit strings of different lengths to encode letters. Letters that occur more

frequently should be encoded using short bit strings, and longer bit strings should be used

to encode rarely occurring letters. When letters are encoded using varying numbers of bits,

some method must be used to determine where the bits for each character start and end.

 For instance, if e were encoded with 0,a with 1, and t with 01, then the bit string 0101

could correspond to eat, tea, eaea, or tt.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prefix Code

 One way to ensure that no bit string corresponds to more than one sequence of letters is to

encode letters so that the bit string for a letter never occurs as the first part of the bit string

for another letter. Codes with this property are called prefix codes.

 For instance, the encoding of e as 0, a as 10, and t as 11 is a prefix code.

 A set of sequence is said to be prefix code if no sequence in the set is prefix of another.

OR

 A code is called a prefix (free) code if no codeword is a prefix of another one.

 A word can be recovered from the unique bit string that encodes its letters. For example,

the string 10110 is the encoding of ate.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prefix Code

 To see this, note that the initial 1 does not represent a character, but 10 does represent a

(and could not be the first part of the bit string of another letter). Then, the next 1 does not

represent a character, but 11 does represent t. The final bit, 0 represents e.

i. e. the string 10110 is the encoding of ate

 For Example: The set {01,10,11,000} is a prefix code. The set {1,00,01,000,0001} is not

prefix code because the sequence 00 is prefix of the sequence 000 and 0001.

 A prefix code can be represented using a binary tree, where the characters are the labels of

the leaves in the tree. The edges of the tree are labeled so that an edge leading to a left

child is assigned a 0 and an edge leading to a right child is assigned a 1.

 The bit string used to encode a character is the sequence of labels of the edges in the

unique path from the root to the leaf that has this character as its label.

 Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prefix Code

 In figure the encoding is represents as:

e by 0, a by 10, t by 110, n by 1110, and

s by 1111.

 Bit string 11111011100 using the code in

figure encode the message the

" sane "

Mr. S. B. Shinde Asst Professor, MESCOE Pune

1111 10 1110 0

s a n e

Prefix Code

 In figure the encoding is represents as:

a by 0, b by 111, r by 110, c by 1011, d by

1010 and ! by 100.

 The bit string

 0111110010110101001111100100

encodes the message

 " abracadabra! "

Mr. S. B. Shinde Asst Professor, MESCOE Pune

0 111 110 0 1011 0 1010 0 111 110 0 100

a b r a c a d a b r a !

Prefix Code

 Example 7:Which of these codes are prefix codes?

 i) a: 11, e: 00, t: 10, s:01

 This is a prefix code, since no code is the first part of another.

 ii) a:0, e:1, t: 01, s: 001

 This is not a prefix code, since, for instance, the code for a is the first part of

the code for t.

 iii) a: 101, e: 11, t: 001, s: 011, n: 010

 This is a prefix code, since no code is the first part of another.

 iv) a: 010, e: 11, t: 011, s: 1011, n: 1001, i: 10101

 This is a prefix code, since no code is the first part of another.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prefix Code

 Example 8: What are the codes for a, e,

i, k, o, p, and u if the coding scheme is

represented by this tree?

Solution:

a : 000 ;

e : 001;

i: 01;

k : 1100;

o : 1101;

p : 11110 and

u : 11111.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prefix Code-Homework

 Example 9: Construct the binary tree with prefix codes representing these

coding schemes.

a) a: 11,e:0,t: 101,s: 100

b) a:1,e: 01,t: 001,s: 0001,n: 00001

c) a: 1010,e:0,t: 11,s: 1011,n: 1001,i: 10001

 Example 10: Given the coding scheme a:001, b:0001, e:1, r:0000, s:0100,

t:011, x: 01010, find the word represented by

a) 01110100011. b)0001110000.

c) 0100101010. d)01100101010.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Optimal Tree

 Let T be any full binary tree and w1,w2,w3,….wt be the weights of the

terminal vertices. Then the weight W of a binary tree is given by:

 W(T) =

Where li is the length of the leaf i from the root of the tree. The fully binary

tree is called optimal if its weight is minimum.

 Optimal tree are used to construct variable length codes, where the letters

of alphabets are represented by binary digit.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Optimal Tree

 Example 11: Figure show two fully binary tree T1 and T2, with the

weights of the leaves as 3,4 and 5. Show which tree is optimal tree.

Solution:

 W(T1) = 3*2 + 4*2 + 5*1 = 6 + 8 + 5 = 19

 W(T2) = 3*1 + 4*2 + 5*2 = 2 + 8 + 10 = 21

 Here W(T1) < W(T2), Thus T1 is optimal tree for weights 3,4, and 5.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Optimal Prefix Code-Huffman Algorithm

 A binary prefix code obtained from optimal tree is called optimal prefix code.

 Huffman Algorithm to find optimal tree::

 A Huffman code is a particular type of optimal prefix code that is commonly used for

lossless data compression.

 Given: A set of symbols and their weights (usually proportional to probabilities).

 Find: A prefix-free binary code (a set of codewords) with minimum expected codeword

length (equivalently, a tree with minimum weighted path length from the root).

 Let W1,W2,W3,….,Wt be the weights of the leaves and it is required to construct an

optimal binary tree.

 Step 1: Arrange the weights of a tree in increasing order.

 Step 2: Consider two leaves with minimum weights W1 and W2. Replace two leaves and their parent

by the leaf. Assign weight W1 + W2 to this new leaf.

 Step 3: Repeat step 2 for the weights W1,W2,W3,….,Wt until no weight remains.

 Step 4: The tree obtained in this method is an optimal tree for given weights and stop the procedure.

Optimal Prefix Code-Huffman Algorithm

 Example 12: Construct Huffman code for the data: 45, 13, 12, 16, 9, 5.

05 09 12 13 16 45

14

05 09

12 13 16 45 14

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 1:

Step 2:

Step 3:

05 09 12 13

16 45 14 25

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 4:

05 09

12 13 16

45

14

25 30

Step 5:

05 09

12 13 16

45

14

25 30

55

Optimal Prefix Code-Huffman Algorithm

Step 6:

05 09

12 13 16

45

14

25 30

55

Mr. S. B. Shinde Asst Professor, MESCOE Pune

100

0

0

0 0

0

1

1

1

1

1

05=1100

09=1101

12=100

13=101

16=111

45=0

Optimal Prefix Code-Huffman Algorithm

 Example 13: A secondary storage media contains information in files with

different formats. The frequency of different types of files is as follows. Exe (20),

bin(75), bat(20), jpeg(85), dat(51), doc(32), sys(26), c(19), cpp(25), bmp(30),

avi(24), prj(29), 1st(35), zip(37). Construct the Huffman code of this.

Solution: Step 1:

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 2:

19 20 20 24 25 26 29 30 32 35 37 51 75 85

19 20 20 24 25 26 29 30 32 35 37 51 75 85

39

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 3:

20 24 25 26 29 30 32 35 37 51 75 85

19 20

39

Step 4:

25 26 29 30 32 35 37 51 75 85

19 20

39

20 24

44

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 5:

Step 6:

29 30 32 35 37 51 75 85

19 20

39

20 24

44

25 26

51

32 35 37 51 75 85

19 20

39

20 24

44

25 26

51

29 30

59

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 7:

Step 8:

37 51 75 85

19 20

39

20 24

44

25 26

51

29 30

59

32 35

67

51 75 85

20 24

44

25 26

51

29 30

59

32 35

67

37

19 20

39

76

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 9:

Step 10:

75 85

29 30

59

32 35

67

37

19 20

39

76 51

25 26

51

20 24

44

95 75 85

32 35

67

37

19 20

39

76

29 30

59

110

51

25 26

51

20 24

44

95

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 11:

Step 12:

85

37

19 20

39

76

75

32 35

67

142

25 26

51

20 24

44

95

29 30

59

110

51

75

32 35

67

142

25 26

51

20 24

44

95

29 30

59

110

51

85

37

19 20

39

76

161

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 13:

75

32 35

67

142

85

37

19 20

39

76

161

25 26

51

20 24

44

95

29 30

59

110

51

205

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 14:

25 26

51

20 24

44

95

29 30

59

110

51

205

75

32 35

67

142

85

37

19 20

39

76

161

303

Optimal Prefix Code-Huffman Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Step 15:

25 26

51

20 24

44

95

29 30

59

110

51

205

75

32 35

67

142

85

37

19 20

39

76

161

303

508

0

0

0

0
0

0

0

0
0

0

0

0

0

1

1 1

1

1

1

1

1

1

1 1

1

1

Optimal Prefix Code-Huffman Algorithm

 Example 14: Construct Huffman code for the data: A: 0.08, B:0.10, C: 0.12, D:

0.15, E: 0.20, F: 0.35. What is the average number of bits used to encode a

character?

Solution: (Draw tree):

The average number of bits used to encode a symbol using this encoding is

3*0.08 + 3*0.10 + 3*0.12 + 3*0.15 + 2*0.20 + 2*0.35 =2.45

 Spanning Tree

 Let G be a simple graph. A spanning tree of G is a subgraph of G that is a

tree containing every vertex of G.

 In general, a graph may have several spanning trees, but a graph that is not

connected will not contain a spanning tree

 A simple graph with a spanning tree must be connected, because there is a

path in the spanning tree between any two vertices.

 The converse is also true; that is, every connected simple graph has a

spanning tree.

 Theorem: A simple graph is connected if and only if it has a spanning

tree.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Spanning Tree

 Example 17: Find a spanning tree of the simple graph G shown in Figure.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Solution: Fig c below is spanning tree T.

 Spanning Tree

 Example 17: Find a spanning tree of the simple graph G shown in Figure.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Solution:

 Spanning Tree

 Example 18: How many edges must be removed from a connected graph

with v vertices and e edges to produce a spanning tree?

Solution:

The graph has e edges. The spanning tree has v - 1 edges.

Therefore we need to remove : e - (v - 1) edges.

Hence Graph has : e – v + 1 edges

 Example 19: Find a spanning tree for each of these graphs.

 a) K5 b)K4,4 c) K1,6 d)Q3 e) C5 f) W5

Mr. S. B. Shinde Asst Professor, MESCOE Pune

 Spanning Tree

 Example 20: Find a spanning tree for each simple graph G shown in Fig:

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Minimum Spanning Tree

 A minimum spanning tree in a connected weighted graph is a spanning tree

that has the smallest possible sum of weights of its edges.

 A minimum spanning tree (MST) or minimum weight spanning tree is then

a spanning tree with weight less than or equal to the weight of every other

spanning tree.

 There are two algorithm to find minimum spanning tree.

 Prim‟s Algorithm

 Krushal‟s Algorithm

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prim’s Algorithm

 Prim's algorithm is a greedy algorithm that finds a minimum spanning tree

for a connected weighted undirected graph.

 It finds a subset of the edges that forms a tree that includes every vertex,

where the total weight of all the edges in the tree is minimized.

 This algorithm is directly based on the MST property.

 The algorithm may informally be described as performing the following

steps:

1. Initialize a tree with a single vertex, chosen arbitrarily from the graph.

2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet in the

tree, find the minimum-weight edge, and transfer it to the tree.

3. Repeat step 2 (until all vertices are in the tree).

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prim’s Algorithm

 Following are details step of implementation of Prim‟s algorithm:

 Let G(V,E) be connected weighted graph

 Step 1: Select any vertex V0 in graph. Set T={ V0, ∅}

 Step 2: Find edge ei= (V0, Vi) in E such that its one vertex is V0 ∈ T

and its weight is minimum. Therefore New Set T={{ V0, V1},{ei}}

 Step 3: Choose next edge ek = (Vk, Vj) in such a way that it‟s one

vertex Vk ∈ T and other vertex Vj ∉ T and weight of ek is as small as

possible. Again join vetex Vj and edge ek to T.

 Step 4: Repeat step 3 until T contain all vertices of graph G. The result

wil be MST of graph G.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prim’s Algorithm

 Example 21: Using Prim‟s Algorithm Find MST for given graph.

Solution:

 Step 1: Select Vertex 0 as a starting vertex. Therefore T = {{0},∅}

 Step 2: Vertex 0 is adjacent to vertex 1, 2 and 3.

Edge (0, 1) = 3, edge (0, 2) = 1 and edge (0, 3) = 6.

Select edge with minimum weight.

i.e. say edge e1 = (0,2) = 1 Therefore T = {{0, 2}, e1}.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prim’s Algorithm

 Step 3: Now Vertex 0 is adjacent to vertex 1, and 3. Edge (0, 1) = 3 and edge (0, 3) = 6.

Vertex 2 is adjacent to 1, 3, 4, and 5

Edge (2, 1) = 5, edge (2, 3) = 5, edge (2, 4) = 6 and edge (2, 5) = 4

Select edge with minimum weight. i.e. say edge e2 = (0, 1) = 3.

Therefore T = {{0, 2, 1}, e1, e2}.

 Step 4: Now Vertex 0 is adjacent to vertex 3. Edge (0, 3) = 6.

Vertex 2 is adjacent to 3, 4, and 5

Edge (2, 3) = 5 ,edge (2, 4) = 6 and edge (2, 5) = 4

Vertex 1 is adjacent to vertex 4. Edge (1, 4) = 3.

Select edge with minimum weight. i.e. say edge e3 = (1, 4) = 3.

Therefore T = {{0, 2, 1, 4}, e1, e2, e3}.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Prim’s Algorithm

 Step 5: Now Vertex 0 is adjacent to vertex 3 Edge (0, 3) = 6.

Vertex 2 is adjacent to 3, and 5 Edge (2, 3) = 5 and edge (2, 5) = 4.

Vertex 4 is adjacent to 5 Edge (4, 5) = 6.

 Select edge with minimum weight. i.e. say edge e4 = (2, 5) = 4

Therefore T = {{0, 2, 1, 4, 5}, e1, e2, e3, e4}.

 Step 6: Now Vertex 0 is adjacent to vertex 3. Edge (0, 3) = 6.

Vertex 2 is adjacent to 3. Edge (2, 3) = 5

Vertex 5 is adjacent to 3. Edge (5, 3) = 2

Select edge with minimum weight. i.e. say edge e5 = (5, 3) = 2

Therefore T = {{0, 2, 1, 4, 5, 3}, e1, e2, e3, e4, e5}.

 Step 7: All vertex are include in spanning tree, and graph obtained is the minimum

spanning tree. Minimum Cost = 1 + 2 + 3 + 3 + 4 = 13.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Krushal’s Algorithm

 Kruskal's algorithm is a minimum-spanning-tree algorithm which finds an

edge of the least possible weight that connects any two trees in the forest.

 It is a greedy algorithm in graph theory as it finds a minimum spanning tree

for a connected weighted graph adding increasing cost arcs at each step.

 This means it finds a subset of the edges that forms a tree that includes

every vertex, where the total weight of all the edges in the tree is

minimized.

 If the graph is not connected, then it finds a minimum spanning forest.
Mr. S. B. Shinde Asst Professor, MESCOE Pune

Krushal’s Algorithm

 Following are details step of implementation of Krushal‟s algorithm.

 Let G(V,E) be weighted connected graph.

 Step 1: Pick up the ei of the Graph G such that its weights W(e,i) is

minimum.(If there are more edges of the minimum weight then select all

those edges which do not form circuit)

 Step 2: If edges e1,e2,e3,…..en have been chosen then pick an edge en+1

such that:

i. en+1 ≠ ei for i=1,2,3,…,n

ii. The edges e1,e2,e3,…..en en+1 do not form circuit.

iii.W(en+1) is as small as possible subject to condition (ii).

 Step 3: Stop procedure when step two cannot be implemented further.
Mr. S. B. Shinde Asst Professor, MESCOE Pune

Krushal’s Algorithm

 Example 22: Using Krushal algorithm Find MST for given graph.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

BD DT AC CD CB BT AB SA SC

2 2 3 3 4 5 6 7 8

Step 1: Now we start adding edges which has the

least weight. The least cost is 2 and edges involved

are B,D and D,T. We add them. Adding them does

not violate spanning tree properties, so we continue

to our next edge selection.

Solution: Arrange all edges in their increasing order

of weight.

Step 2: Next cost is 3, and associated edges

are A,C and C,D. We add them again.

Krushal’s Algorithm

 Example 22: Using Krushal algorithm Find MST for given graph.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

BD DT AC CD CB BT AB SA SC

2 2 3 3 4 5 6 7 8

Step 3: Next cost in the table is 4, and we observe that adding it will create a circuit in the

graph. We ignore it. In the process we shall ignore/avoid all edges that create a circuit. We

observe that edges with cost 5 and 6 also create circuits. We ignore them and move on.

Solution: Arrange all edges in their increasing order

of weight.

Step 4: Now we are left with only one node to be added.

Between the two least cost edges available 7 and 8, we shall add

the edge with cost 7.

By adding edge S, A we have included all the nodes of the graph

and we now have minimum cost spanning tree.

Minimum Cost Spanning Tree = 2 + 2 + 3 + 3 + 7 = 17.

MST Example-Prim’s algorithm
 Use Prim‟s algorithm to find a minimum spanning tree in the graph shown in Figure.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Choice Edge Weight

1 b, e 1

2 a, b 2

3 f, j 2

4 a, e 3

5 i, j 3

6 f, g 3

7 c, g 2

8 c, d 1

9 g, h 3

10 h, l 3

11 k, l 1

Total 24

MST Example- Krushal’s algorithm

 Use Krushal‟s algorithm to find a minimum spanning tree in the graph shown in Figure.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Choice Edge Weight

1 c, d 1

2 k, l 1

3 b, f 1

4 c, g 2

5 a, b 2

6 f, j 2

7 b, c 3

8 j, k 3

9 g, h 3

10 i, j 3

11 a, e 3

Total 24

Fundamental Circuit

 For a Graph G and its associated spanning tree T, the fundamental circuit of a chord „e‟ of

T is given by the circuit formed due to addition of „e‟ in T.

 In other words Let G be connected graph and Let T be spanning tree of G. Consider a

chord of T i.e. an edge of G which is not in T. Then „T + e‟ contain a unique circuit called

as fundamental circuit.

 For different spanning tree of graph G, the fundamental circuit will be different.

 The number of fundamental circuit in any spanning tree is equal to the numbers of chords

of that spanning tree.

 Hence if the connected graph G has v number of vertices and e number of edges then

spanning tree T has (v-1) branches and (e - v + 1) numbers of chords.

 Thus there will be (e - v + 1) number of fundamental circuit in G with respect to the

spanning tree T.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Fundamental Circuit

 Example 23: Find the fundamental circuit for the graph show in figure

below w.r.t the spanning tree T.

Solution:

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Chord Fundamental Circuit

e1 { e1, e4, e6, e8 }

e2 { e2, e3, e6, e8 }

e5 { e5, e4, e6 }

e7 {e7, e3, e6 }

Fundamental Cut-sets

 Let T be the spanning tree of the connected graph G.

 The removal of any branch from a spanning tree, breaks the spanning tree into two trees i.e

there is division of the vertices in the graph into two subsets corresponding to the vertices

in the two trees.

 It follows that for every branch in a spanning tree there is a corresponding cut set called

fundamental cut set.

 The fundamental cut set of the graph G with respect to the spanning tree T is called

fundamental system of cut set.

 The number of fundamental cut sets is equal to the number of branches in the spanning

tree.

 If the connected graph G has v number of vertices and e number of edges, then spanning

tree has (v-1) branches which is the same as the number of fundamental circuit.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Fundamental Cut-sets

 Example 24: Find the fundamental circuit for the graph show in figure

below w.r.t the spanning tree T.

Solution:

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Branch Fundamental cutset

e4 { e1, e5, e4 }

e3 { e2, e7, e3 }

e6 { e1, e5, e6, e7, e2 }

e8 {e1, e8, e2 }

Fundamental Cut-sets

Example 35: Find the fundamental system of cutset for the graph show in

figure below w.r.t the spanning tree T.

Solution: The spanning tree T has 7 branches {e2,e4,e5,e7,e10,e12,e13}.

Therefore its has 7 fundamental cutset.

Mr. S. B. Shinde Asst Professor, MESCOE Pune

Branch Fundamental

cutset

e2 {e1,e2,e3}

e4 {e1,e4,e6}

e5 {e3,e5,e8}

e7 {e6,e7,e8}

e10 {e6,e9,e10,e11}

e12 {e9,e12}

e13 {e11,e13}

