Unit I: Set Theory and Logic (07 Hours)

- **Introduction** and Significance of Discrete Mathematics
- **Sets–Naïve Set Theory (Cantorian Set Theory), Axiomatic Set Theory, Set Operations,** Cardinality of set, Principle of inclusion and exclusion.
- **Types of Sets**–Bounded and Unbounded Sets, Diagonalization argument, Countable and Uncountable Sets, Finite and Infinite Sets, Countably Infinite and Uncountably Infinite Sets, Power set,
- **Propositional Logic-** Logic, Propositional Equivalences, Application of Propositional Logic-Translating English Sentences,
- **Proof by Mathematical Induction and Strong Mathematical Induction**
- **Exemplar/ Case Studies:** Know about the great philosophers- Georg Cantor, Richard Dedekind and Aristotle.

INTRODUCTION:

- Mathematics can be broadly classified into two categories −
- **Continuous Mathematics** − It is based upon continuous number line or the real numbers. It is characterized by the fact that between any two numbers, there are almost always an infinite set of numbers. For example, a function in continuous mathematics can be plotted in a smooth curve without breaks.
- **Discrete Mathematics** − It involves distinct values; i.e. between any two points, there are a countable number of points. For example, if we have a finite set of objects, the function can be defined as a list of ordered pairs having these objects, and can be presented as a complete list of those pairs.
- **Discrete Mathematics** is a branch of mathematics involving discrete elements that uses algebra and arithmetic. OR
- **Discrete math =** study of the discrete structures used to represent discrete objects.
- **Discrete objects** are those which are separated from (distinct from) each other.
- **Example:** Integers (aka whole numbers), rational numbers (ones that can be expressed as the quotient of two integers), automobiles, houses, people etc. are all discrete objects.
- \triangleright On the other hand real numbers which include irrational as well as rational numbers are not discrete.
- \triangleright As you know between any two different real numbers there is another real number different from either of them. So they are packed without any gaps and cannot be separated from their immediate neighbors.

SET:

Definition

- \triangleright A set is an unordered collection of different elements. A set can be written explicitly by listing its elements using set bracket. If the order of the elements is changed or any element of a set is repeated, it does not make any changes in the set.
- \triangleright Sets are used to group objects together. Often, but not always, the objects in a set have similar properties.
- We write **a** ∈ **A** to denote that a is an element of the set A. The notation **a** ∉ **A** denotes that a is not an element of the set A.
- \triangleright It is common for sets to be denoted using uppercase letters. Lowercase letters are usually used to denote elements of sets.
- \triangleright Example of Sets:
	- 1. A set of all positive integers
	- 2. A set of all the planets in the solar system
	- 3. A set of all the states in India
	- 4. A set of all the lowercase letters of the alphabet

Basic Properties of Sets

- \triangleright The change in order of writing the elements does not make any changes in the set.
- \triangleright If one or many elements of a set are repeated, the set remains the same.

Representation of a Set

- > Sets can be represented in two different ways
	- 1. Roster or Tabular Form
	- 2. Set Builder Notation

1. Roster or Tabular Form

- \triangleright The set is represented by listing all the elements comprising it. The elements are enclosed within braces and separated by commas.
- Example 1 Set of vowels in English alphabet, $A = \{a.e.i.o.u\}$
- Example 2 Set of odd numbers less than 10, B = $\{1,3,5,7,9\}$

2. Set Builder Notation

- \triangleright The set is defined by specifying a property that elements of the set have in common.
- \triangleright The set is described as A={x:p(x)}

 \triangleright Example 1 − The set {a,e,i,o,u} is written as −

 $A = \{x:x \text{ is a vowel in English alphabet}\}$

- \triangleright Example 2 − The set {1,3,5,7,9} is written as − B={x:1≤x<10 and (x%2)≠0}
- Example $3 O = \{x \mid x \text{ is an odd positive integer less than } 10\},\$ or, specifying the universe as the set of positive integers, as O = $\{x \in Z + | x \text{ is odd and } x \leq 10\}.$

Some Important Sets:

- \triangleright **N** − the set of all natural numbers = {1, 2, 3, 4,.....}
- \triangleright **Z** − the set of all integers = {...., -3, -2, -1, 0, 1, 2, 3,.....}
- **Z +** − the set of all positive integers.
- **Q** − the set of all rational numbers.
- \triangleright **R** − the set of all real numbers.
- **R +** − the set of positive real numbers.
- \triangleright **W** − the set of all whole numbers.
- **C** − the set of complex numbers.

Cardinality of a Set

- \triangleright Cardinality of a set S, denoted by $|S|$, is the number of elements of the set. The number is also referred as the cardinal number. If a set has an infinite number of elements, its cardinality is ∞.
- \triangleright Example − $|\{1,4,3,5\}| = 4, |\{1,2,3,4,5,...\}| = \infty$

Cardinal Properties of Sets

- \triangleright If A and B are finite sets, then $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- \triangleright If A \cap B = ϕ , then $n(A \cup B) = n(A) + n(B)$
- \triangleright n(A \cap B) = n(A) + n(B) n(A \cup B)
- \triangleright n(A B) = n(A) n(A \cap B)
- \triangleright n(B A) = n(B) n(A \cap B)

Type of Set

- **1. Finite Set**
	- \triangleright A set which contains a definite number of elements is called a finite set. Empty set is also called a finite set.
- \triangleright For Example:
	- \checkmark S={x | x \in N and 70 > x > 50}
	- \checkmark The set of all colors in the rainbow.
	- \checkmark N = {x : x \in N, x < 7}
	- \checkmark P = {2, 3, 5, 7, 11, 13, 17, 97}

2. Infinite Set

- \triangleright A set which contains infinite number of elements is called an infinite set.
- \triangleright i.e set containing never-ending elements is called an infinite set.
- \triangleright For example:
	- \checkmark A = {x : x \in N, x > 1}
	- \checkmark B = {x : x \in W, x = 2n}
	- \checkmark S = {x | x \in N and x >10}
	- \checkmark Set of all points in a plane
	- \checkmark Set of all prime numbers

3. Subset

- A set X is a subset of set Y (Written as $X \subseteq Y$) if every element of X is an element of set Y.
- Every set is a subset of itself, i.e., $A \subset A$, $B \subset B$.
- \triangleright Empty set is a subset of every set.
- Example 1 Let, Y = {1, 2, 3, 4, 5, 6} and X = {1, 2}. Here set X is a subset of set Y as all the elements of set X is in set Y. Hence, we can write $X \subseteq Y$.
- Example 2 Let, $X = \{1, 2, 3\}$ and $Y = \{1, 2, 3\}$. Here set Y is a subset (Not a proper subset) of set X as all the elements of set Y is in set X. Hence, we can write Y⊆X.

4. Proper Subset

- \triangleright The term "proper subset" can be defined as "subset of but not equal to". A Set X is a proper subset of set Y (Written as $X \subset Y$) if every element of X is an element of set Y and $|X| \le |Y|$.
- \triangleright No set is a proper subset of itself.
- \triangleright Null set or Ø is a proper subset of every set.
- Example Let, $X = \{1,2,3,4,5,6\}$ and $Y = \{1,2\}$. Here set $Y \subset X$ since all elements in Y are contained in X too and X has at least one element is more than set Y.

5. Super Set

 \triangleright Whenever a set X is a subset of set Y, we say the Y is a superset of X and written as $Y \supseteq Y$.

- For Example $X = \{a, e, i, o, u\}$ and $Y = \{a, b, c, \dots, z\}$
- \triangleright Here $X \subseteq Y$ i.e., X is a subset of Y but $Y \supseteq X$ i.e., Y is a super set of X.

6. Universal Set

- \triangleright It is a collection of all elements in a particular context or application. All the sets in that context or application are essentially subsets of this universal set. Universal sets are represented as U.
- \triangleright Example-
	- \checkmark We may define U as the set of all animals on earth. In this case, set of all mammals is a subset of U, set of all fishes is a subset of U, set of all insects is a subset of U, and so on.
	- $I = \{1, 2, 3\}$ B = {2, 3, 4} C = {3, 5, 7} then U = {1, 2, 3, 4, 5, 7} [Here $A \subseteq U$, $B \subseteq U$, $C \subseteq U$ and $U \supseteq A$, $U \supseteq B$, $U \supseteq C$]
	- \checkmark If P is a set of all whole numbers and Q is a set of all negative numbers then the universal set is a set of all integers.
	- If $A = \{a, b, c\}$, $B = \{d, e\}$ and $C = \{f, g, h, i\}$ then $U = \{a, b, c, d, e, f, g, h, i\}$ can be taken as universal set.

7. Empty Set or Null Set

- \triangleright A set which does not contain any element is called an empty set, or the null set or the void set and it is denoted by \emptyset and is read as phi.
- \triangleright In roster form, \emptyset is denoted by { }.
- \triangleright An empty set is a finite set, since the number of elements in an empty set is finite, i.e., 0.
- Example S = {x | x \in N and 7 < x < 8} = Ø

8. Singleton Set or Unit Set

- \triangleright Singleton set or unit set contains only one element. A singleton set is denoted by $\{S\}.$
- \triangleright Example-
	- \checkmark S = { x | x \ \ N, 7 \ \ x \ 9 } = {8}
	- \checkmark Let A = {x : x \in N and x^2 = 4}

Here A is a singleton set because there is only one element 2 whose square is 4.

 \checkmark Let B = {x : x is a even prime number}

Here B is a singleton set because there is only one prime number which is even, i.e., 2.

9. Equal Set

- \triangleright If two sets contain the same elements they are said to be equal.
- \triangleright Example -
	- If A={1,2,6} and B={6,1,2}, they are equal as every element of set A is an element of set B and every element of set B is an element of set A.

10. Equivalent Set

- \triangleright If the cardinalities of two sets are same, they are called equivalent sets.
- \triangleright The symbol for denoting an equivalent set is ' \leftrightarrow '.
- Example If A= $\{1,2,6\}$ and B= $\{16,17,22\}$ they are equivalent as cardinality of A is equal to the cardinality of B. i.e. $|A| = |B| = 3$. Therefore $A \leftrightarrow B$.

11. Disjoint Set

- Two sets A and B are said to be disjoint, if they do not have any element in common. OR
- \triangleright Two sets are called disjoint if their intersection is the empty set.
- \triangleright Disjoint sets have the following properties:
	- \checkmark n(A∩B) = Ø
	- \checkmark n(A∪B) = n(A) + n(B)
- \triangleright Example -
	- $A = \{1,2,6\}$ and B= $\{7,9,14\}$, A = $\{x : x \text{ is a prime number}\}\$ and B = $\{x : x \text{ is a$ composite number}. Here A and B do not have any element in common and are disjoint sets.
	- \checkmark Let A = {1, 3, 5, 7, 9} and B = {2, 4, 6, 8, 10}. Because A ∩ B = \varnothing , A and B are disjoint.

12. Overlapping sets

- \triangleright Two sets A and B are said to be overlapping if they contain at least one element in common.
- \triangleright Example -
	- \checkmark A = {a, b, c, d} and B = {a, e, i, o, u}, Here common element 'a'.
	- \checkmark Let, A = {1, 2, 6} and B = {6, 12, 42}. There is a common element '6'; hence these sets are overlapping sets.
	- \checkmark X = {x : x \in N, x \checkmark 4} and Y = {x : x \in I, -1 \checkmark x \checkmark 4}. Here, the two sets contain three elements in common, i.e., (1, 2, 3).

Venn Diagrams

 \triangleright Venn diagram, invented in 1880 by John Venn, is a schematic diagram that shows all possible logical relations between different mathematical sets.

- A Venn diagram (also called **primary diagram, set diagram or logic diagram**) is a diagram that shows all possible logical relations between a finite collections of different sets.
- \triangleright These diagrams depict elements as points in the plane, and sets as regions inside closed curves.
- \triangleright A Venn diagram consists of multiple overlapping closed curves, usually circles, each representing a set.
- \triangleright The points inside a curve labelled S represent elements of the set S, while points outside the boundary represent elements not in the set S.
	- \triangleright Venn diagrams are used to illustrate various operations like union, intersection and difference.

Set Operation

1. Union

- Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the set that contains those elements that are either in A or in B, or in both.
- \triangleright An element x belongs to the union of the sets A and B if and only if x belongs to A or x belongs to B.

$$
A \cup B = \{x \mid x \in A \lor x \in B\}
$$

- Example If A= $\{10, 11, 12, 13\}$ and B = $\{13, 14, 15\}$, then A∪B={10,11,12,13,14,15}.
- Example –The union of the sets $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{1, 2, 3, 5\}$; that is, {1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}.

FIGURE 1 Venn Diagram of the Union of A and B.

FIGURE 2 Venn Diagram of the Intersection of A and B.

2. Interaction

- \triangleright Let A and B be sets. The intersection of the sets A and B, denoted by A \cap B, is the set containing those elements in both A and B.
- \triangleright An element x belongs to the intersection of the sets A and B if and only if x belongs to A and x belongs to B.

 $A \cap B = \{x \mid x \in A \land x \in B\}.$

- \triangleright If A={11,12,13} and B={13,14,15}, then A∩B={13}.
- \triangleright The intersection of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 3}; that is, {1, 3, 5} \bigcap {1, 2, 3} = {1, 3}.

3. Difference of Sets (Relative Complement)

- \triangleright Let A and B be sets. The difference of A and B, denoted by A B, is the set containing those elements that are in A but not in B.
- \triangleright The difference of A and B is also called the complement of B with respect to A.
- \triangleright The difference of sets A and B is sometimes denoted by A\B.
- An element x belongs to the difference of A and B if and only if $x \in A$ and $x \notin B$.

$$
A - B = \{x \mid x \in A \land x \notin B\}.
$$

Example - The difference of $\{1, 3, 5\}$ and $\{1, 2, 3\}$ is the set $\{5\}$; that is, $\{1, 3, 5\}$ − {1, 2, 3} = {5}. This is different from the difference of {1, 2, 3} and {1, 3, 5}, which is the set $\{2\}$.

FIGURE 3 Venn Diagram for the Difference of A and B .

FIGURE 4 Venn Diagram for the Complement of the Set A.

4. Complement of a Set

- \triangleright Let U be the universal set. The complement of the set A, denoted by \bar{A} , is the complement of A with respect to U. Therefore, the complement of the set A is U − A.
- An element belongs to \bar{A} if and only if $x \notin A$. This tells us that

Ā = {x ∈ **U | x** ∉ **A}**

Exercise A = {a, e, i, o, u} (where the universal set is the set of letters of the English alphabet). Then $A = \{b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z\}.$

 \triangleright Let A be the set of positive integers greater than 10 (with universal set the set of all positive integers). Then $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

5. Symmetric Difference

- \triangleright Let A and B are two sets. The symmetric difference of two sets A and B is the set $(A - B) \cup (B - A)$ and is denoted by $A \triangle B$.
- \triangleright Thus, $A \triangle B = (A B) \cup (B A) = \{x : x \notin A \cap B\}$
- \triangleright or, $A \triangle B = \{x : [x \in A \text{ and } x \notin B] \text{ or } [x \in B \text{ and } x \notin A] \}.$
- \triangleright A \triangle B = {x | x \in A –B \vee B-A}

- Example If A = {1, 2, 3, 4, 5, 6, 7, 8} and B = {1, 3, 5, 6, 7, 8, 9}, then A B = {2, 4, $B - A = \{9\}$ and $A \triangle B = \{2, 4, 9\}.$
- Example If P = {a, c, f, m, n} and Q = {b, c, m, n, j, k} then P Δ Q = {a, b, f, j, k}

Cartesian Products

- \triangleright The order of elements in a collection is often important. Because sets are unordered, a different structure is needed to represent ordered collections. This is provided by ordered n-tuples.
- \triangleright The **ordered n-tuple** (a₁, a₂... a_n) is the ordered collection that has a₁ as its first element, a_2 as its second element, ..., and an as its nth element.
- \triangleright Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$. Hence,

$A \times B = \{(a, b) \mid a \in A \land b \in B\}.$

Example - What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

 $B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}\$

Note that the Cartesian products A×B and B×A are not equal, unless $A = \emptyset$ or $B = \emptyset$.

Cardinality of the Cartesian product:

Let A and B be sets. The **Cardinality** of the Cartesian product of A and B, denoted by $|A \times B| = |A| * |B|.$

Set Identities

Power Sets

- \triangleright Given a set S, the power set of S is the set of all subsets of the set S, including the empty set and S itself. The power set of S is denoted by P (S).
- \triangleright If a set has n elements, then its power set has 2^n elements.

 \triangleright If S is the set {x, y, z}, then the subsets of S are

{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}

and hence the power set of S is $\{\{\}, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}.$

Example - What is the power set of the set $\{0, 1, 2\}$?

Solution: The power set $P({0, 1, 2})$ is the set of all subsets of ${0, 1, 2}$. Hence,

 $P({0, 1, 2}) = {\emptyset, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.$

 \triangleright Example - What is the power set of the empty set? And

What is the power set of the set $\{\emptyset\}$?

Solution: The empty set has exactly one subset, namely, itself. Consequently,

$$
P(\emptyset) = \{\emptyset\}.
$$

The set $\{\emptyset\}$ has exactly two subsets, namely, \emptyset and the set $\{\emptyset\}$ itself. Therefore,

$$
P(\{\emptyset\})=\{\emptyset,\{\emptyset\}\}.
$$

Principle of Inclusion and Exclusion

 \triangleright The inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as

$$
| A \cup B | = | A | + | B | - | A \cap B |
$$

 \triangleright The principle is more clearly seen in the case of three sets, which for the sets A, B and C is given by

| A ∪ **B** ∪ **C | = | A | + | B | + | C | − | A ∩ B | − | A ∩ C | − | B ∩ C | + | A ∩ B ∩ C |**

- \triangleright This formula can be verified by counting how many times each region in the Venn diagram figure is included.
- \triangleright In this case, when removing the contributions of over-counted elements, the number of elements in the mutual intersection of the three sets has been subtracted too often, so must be added back in to get the correct total.
- \triangleright Generalizing the results of these examples gives the principle of inclusion–exclusion.
- \triangleright To find the cardinality of the union of n sets:
	- \checkmark Include the cardinalities of the sets.
	- \checkmark Exclude the cardinalities of the pairwise intersections.
	- \checkmark Include the cardinalities of the triple-wise intersections.
	- \checkmark Exclude the cardinalities of the quadruple-wise intersections.
	- \checkmark Include the cardinalities of the quintuple-wise intersections.
- \checkmark Continue, until the cardinality of the n-tuple-wise intersection is included (if n is odd) or excluded (n even).
- \triangleright In its general form, the principle of inclusion–exclusion states that for finite sets A1, ..., An, one has the identity:

$$
\left|\bigcup_{i=1}^n A_i\right| = \sum_{i=1}^n |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \cdots + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \cdots + (-1)^{n-1} |A_1 \cap \cdots \cap A_n|.
$$

Example:

1. Let A and B be two finite sets such that $n(A) = 20$, $n(B) = 28$ and $n(A \cup B) = 36$, find $n(A \cap B)$.

Solution: Using the formula $n(A \cup B) = n(A) + n(B) - n(A \cap B)$.

then $n(A \cap B) = n(A) + n(B) - n(A \cup B)$

$$
= 20 + 28 - 36
$$

$$
= 48 - 36
$$

$$
= 12
$$

2. If $n(A - B) = 18$, $n(A \cup B) = 70$ and $n(A \cap B) = 25$, then find $n(B)$.

Solution: Using the formula $n(A \cup B) = n(A - B) + n(A \cap B) + n(B - A)$

$$
70 = 18 + 25 + n(B - A)
$$

$$
70 = 43 + n(B - A)
$$

$$
n(B - A) = 70 - 43
$$

$$
n(B - A) = 27
$$

Now $n(B) = n(A \cap B) + n(B - A) = 25 + 27 = 52$

3. In a group of 60 people, 27 like cold drinks and 42 like hot drinks and each person likes at least one of the two drinks. How many like both coffee and tea? Solution: Let $A = Set$ of people who like cold drinks.

 $B = Set of people who like hot drinks.$

Given: $(A \cup B) = 60$ n(A) = 27 n(B) = 42 then; $n(A \cap B) = n(A) + n(B) - n(A \cup B)$ $= 27 + 42 - 60$ $= 69 - 60 = 9$

Therefore, 9 people like both tea and coffee.

- **4.** In a class of 40 students, 15 like to play cricket and football and 20 like to play cricket. How many like to play football only but not cricket? Solution: Let $C =$ Students who like cricket And $F =$ Students who like football $C \cap F$ = Students who like cricket and football both $C - F =$ Students who like cricket only $F - C =$ Students who like football only. $n(C) = 20$ $n(C \cap F) = 15$ $n(C \cup F) = 40$ $n(F) = ?$ $n(C \cup F) = n(C) + n(F) - n(C \cap F)$ $40 = 20 + n(F) - 15$ $40 = 5 + n(F)$ $40 - 5 = n(F)$ Therefore, $n(F) = 35$ Therefore, $n(F - C) = n(F) - n(C \cap F) = 35 - 15 = 20$ Therefore, Number of students who like football only but not cricket $= 20$
- **5.** In a survey of university students, 64 had taken mathematics course, 94 had taken chemistry course, 58 had taken physics course, 28 had taken mathematics and physics, 26 had taken mathematics and chemistry, 22 had taken chemistry and physics course, and 14 had taken all the three courses. Find how many had taken one course only.

Solution:

Step 1 :Let M, C, P represent sets of students who had taken mathematics, chemistry and physics respectively

Step 2 : From the given information, we have

n(M) = 64 , n(C) = 94, n(P) = 58, n(M∩P) = 28, n(M∩C) = 26, n(C∩P) = 22, n(M∩C∩P) = 14

Step 3 :No. of students who had taken only Math

$$
= n(M) - [n(M \cap P) + n(M \cap C) - n(M \cap C \cap P)]
$$

= 64 - [28+26-14]
= 64 - 40
= 24

Step 4 :No. of students who had taken only Chemistry

$$
= n(C) - [n(M \cap C) + n(C \cap P) - n(M \cap C \cap P)]
$$

= 94 - [26+22-14]
= 94 - 34

 $= 60$

Step 5 : No. of students who had taken only Physics

$$
= n(P) - [n(M \cap P) + n(C \cap P) - n(M \cap C \cap P)]
$$

= 58 - [28+22-14]
= 58 - 36
= 22

Step 6 : Total no. of students who had taken only one course

$$
= 24 + 60 + 22
$$

$$
= 106
$$

Hence, the total number of students who had taken only one course is 106

Alternative Method (Using venn diagram)

Step 1 : Venn diagram related to the information given in the question:

Step 2 : From the venn diagram above, we have

No. of students who had taken only math $= 24$

No. of students who had taken only chemistry $= 60$

No. of students who had taken only physics $= 22$

Step 3 : Total no. of students who had taken only one course

$$
= 24 + 60 + 22
$$

$$
= 106
$$

Hence, the total number of students who had taken only one course is 106

6. In a group of students, 65 play foot ball, 45 play hockey, 42 play cricket, 20 play foot ball and hockey, 25 play foot ball and cricket, 15 play hockey and cricket and 8 play all the three games. Find the total number of students in the group. (Assume that each student in the group plays at least one game.) Solution :

Step 1 :Let F, H and C represent the set of students who play foot ball, hockey and cricket respectively.

Step 2 :From the given information, we have

$$
n(F) = 65
$$
, $n(H) = 45$, $n(C) = 42$,
\n $n(F \cap H) = 20$, $n(F \cap C) = 25$, $n(H \cap C) = 15$, $n(F \cap H \cap C) = 8$

Step 3 :Total number of students in the group = n(F∪H∪C)

$$
= n(F) + n(H) + n(C) - n(F \cap H) - n(F \cap C) - n(H \cap C) + n(F \cap H \cap C)
$$

= 65 + 45 + 42 - 20 - 25 - 15 + 8
= 100

Hence, the total number of students in the group is 100

Alternative Method (Using venn diagram)

Step 1 :Venn diagram related to the information given in the question:

Step 2 :Total number of students in the group

 $= 28 + 12 + 18 + 7 + 10 + 17 + 8 = 100$

Hence, the total number of students in the group is 100

7. There is a group of 80 persons who can drive scooter or car or both. Out of these, 35 can drive scooter and 60 can drive car. Find how many can drive both scooter and car? How many can drive scooter only? How many can drive car only? Solution:

Let $S = {Persons who drive scooter}$

 $C = {Persons who drive car}$

Given, $n(S \cup C) = 80$ $n(S) = 35$ $n(C) = 60$

Therefore,
$$
n(S \cup C) = n(S) + n(C) - n(S \cap C)
$$

 $80 = 35 + 60 - n(S \cap C)$

 $= 35 - 15 = 20$

 $80 = 95 - n(S \cap C)$

Therefore, $n(S \cap C) = 95 - 80 = 15$

Therefore, 15 persons drive both scooter and car.

Therefore, the number of persons who drive a scooter only = $n(S)$ - $n(S \cap C)$

Also, the number of persons who drive car only = $n(C)$ - $n(S \cap C)$ $= 60 - 15 = 45$

8. It was found that out of 45 girls, 10 joined singing but not dancing and 24 joined singing. How many joined dancing but not singing? How many joined both? Solution:

Let $S = \{Girls who joined sing\}$

 $D = \{Girls who joined dencing\}$

Number of girls who joined dancing but not singing = Total number of girls - Number of girls who joined singing

$$
= 45 - 24
$$

= 45 - 24
= 21
Therefore, n(S - D) = n(S) - n(S ∩ D)

$$
\Rightarrow n(S ∩ D) = n(S) - n(S - D)
$$

$$
= 24 - 10
$$

$$
= 14
$$

Therefore, number of girls who joined both singing and dancing is 14

9. If P and Q are two sets such that P ∪ Q has 40 elements, P has 22 elements and Q has 28 elements, how many elements does $P \cap Q$ have? Solution:

> Given $n(P \cup Q) = 40$, $n(P) = 18$, $n(Q) = 22$ We know that $n(P U Q) = n(P) + n(Q) - n(P \cap Q)$ So, $40 = 22 + 28 - n(P \cap Q)$ $40 = 50 - n(P \cap Q)$ Therefore, $n(P \cap Q) = 50 - 40 = 10$

10. How many integers from 1 to 100 are multiples of 2 or 3? Solution:

Let A be the set of integers from 1 to 100 that are multiples of 2, then $|A| = 50$.

Let B be the set of integers from 1 to 100 that are multiples of 3, then $|B| = 33$.

Now, A∩B is the set of integers from 1 to 100 that are multiples of both 2 and 3, and hence are multiples of 6, implying |A∩B|=16.

Hence, by PIE,

$$
|\text{A} \cup \text{B}| = |\text{A}| + |\text{B}| - |\text{A} \cap \text{B}| = 50 + 33 - 16 = 67.
$$

11. If $A = \{1, 3, 5\}$, $B = \{3, 5, 6\}$ and $C = \{1, 3, 7\}$ (i) Verify that A ∪ (B \cap C) = (A ∪ B) \cap (A ∪ C) (ii) Verify A \cap (B ∪ C) = (A \cap B) ∪ (A \cap C) Solution: (i) A ∪ (B \cap C) = (A ∪ B) \cap (A ∪ C) L.H.S. = A ∪ (B \cap C) $B \cap C = \{3\}$ A ∪ (B ∩ C) = {1, 3, 5} ∪ {3} = {1, 3, 5} ……………….. (1) $R.H.S. = (A \cup B) \cap (A \cup C)$ A ∪ B = $\{1, 3, 5, 6\}$ A ∪ C = $\{1, 3, 5, 7\}$ (A ∪ B) ∩ (A ∪ C) = {1, 3, 5, 6} ∩ {1, 3, 5, 7} = {1, 3, 5} ……………….. (2) From (1) and (2) , we conclude that; $A \cup (B \cap C) = A \cup B \cap (A \cup C)$ (ii) A \cap (B ∪ C) = (A \cap B) ∪ (A \cap C) L.H.S. = $A \cap (B \cup C)$ $B \cup C = \{1, 3, 5, 6, 7\}$ A ∩ (B ∪ C) = {1, 3, 5} ∩ {1, 3, 5, 6, 7} = {1, 3, 5} ……………….. (1) $R.H.S. = (A \cap B) \cup (A \cap C)$ $A \cap B = \{3, 5\}$ $A \cap C = \{1, 3\}$ (A ∩ B) ∪ (A ∩ C) = {3, 5} ∪ {1, 3} = {1, 3, 5} ……………….. (2) Fro (1) and (2) , we conclude that; $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

12. Prove that $(A \cup B)' = A' \cap B'$ (De Morgan's law of union)

Solution:

Let $P = (A \cup B)'$ and $Q = A' \cap B'$

Let x be an arbitrary element of P then $x \in P \Rightarrow x \in (A \cup B)'$ \Rightarrow x \notin (A U B) \Rightarrow x \notin A and x \notin B \Rightarrow x \in A' and x \in B' \Rightarrow x \in A' \cap B' \Rightarrow x \in Q Therefore, $P \subset Q$ ……………... (i) Again, let y be an arbitrary element of Q then $y \in Q \Rightarrow y \in A' \cap B'$ \Rightarrow y \in A' and y \in B' \Rightarrow y \notin A and y \notin B \Rightarrow y \notin (A U B) \Rightarrow y \in (A U B)' \Rightarrow y \in P Therefore, $Q \subset P$ …………….. (ii) Now combine (i) and (ii) we get; $P = Q$ i.e. $(A \cup B)' = A' \cap B'$

13. Prove that $(A \cap B)' = A' U B'$ (De Morgan's law of intersection)

Solution: Let $M = (A \cap B)'$ and $N = A' \cup B'$ Let x be an arbitrary element of M then $x \in M \Rightarrow x \in (A \cap B)'$ \Rightarrow x \notin (A \cap B) \Rightarrow x \notin A or $x \not\in B$ \Rightarrow x \in A' or $x \in B'$ \Rightarrow x \in A' U B' \Rightarrow x \in N Therefore, $M \subset N$ ……………... (i) Again, let y be an arbitrary element of N then $y \in N \Rightarrow y \in A' \cup B'$ \Rightarrow y \in A' or y \in B' \Rightarrow y \notin A or y \notin B \Rightarrow y \notin (A \cap B) \Rightarrow y \in $(A \cap B)'$ \Rightarrow y $\in M$ Therefore, $N \subset M$ ……………... (ii) Now combine (i) and (ii) we get; $M = N$ i.e. $(A \cap B)' = A' U B'$

14. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, $P = \{4, 5, 6\}$ and $Q = \{5, 6, 8\}$. Show that $(P \cup Q)' = P'$ $\cap Q'$. Solution: We know, $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ $P = \{4, 5, 6\}$ & $Q = \{5, 6, 8\}$ $P \cup Q = \{4, 5, 6\} \cup \{5, 6, 8\}$ $= \{4, 5, 6, 8\}$ Therefore, (P ∪ Q)' = {1, 2, 3, 7} ……………….. (i) Now $P = \{4, 5, 6\}$ so, $P' = \{1, 2, 3, 7, 8\}$ and $Q = \{5, 6, 8\}$ so, $Q' = \{1, 2, 3, 4, 7\}$ $P' \cap Q' = \{1, 2, 3, 7, 8\} \cap \{1, 2, 3, 4, 7\}$ Therefore, P' ∩ Q' = {1, 2, 3, 7} ……………….. (ii) Combining (i)and (ii) we get; (P ∪ Q)' = P' ∩ Q'. ……………………………………………Hence Proved

Bounded Sets

- **Definition 1:** A set S ⊂ R of real numbers is bounded from above if there exists a real number M \in R, called an upper bound of S, such that $x \leq M$ for every $x \in S$. Similarly, S is bounded from below if there exists $M \in R$, called a lower bound of S, such that x $>$ M for every $x \in S$.
- \triangleright A set is bounded if it is bounded both from above and below.
- \triangleright The supremum of a set is its least upper bound and the infimum is its greatestupper bound.
- **Definition 2:** Suppose that S ⊂ R is a set of real numbers. If M ∈ R is an upper bound of S such that $M \leq M'$ for every upper bound M'of S, then M is called the supremum of S, denoted M= sup S. If M \in R is a lower bound of S such that M \geq M' for every lower bound M'of S, then M is called the infimum of S, denoted M= inf A.
- \triangleright If S is not bounded from above, then we write sup S=∞, and if S is not bounded from below, we write inf $S=-\infty$.
- If S=∅ is the empty set, then every real number is both an upper and a lower bound of S, and we write $\sup \phi = -\infty$, inf $\phi = \infty$.

We will only say the supremum or infimum of a set exists if it is a finite real number.

- \triangleright Remarks:
	- \checkmark S is bounded iff, $S \subset [1, u]$ for some intervel [l,u] of finite length.
	- \checkmark S is bounded, iff, there is a positive interger K such that $|x| \le K$ for all $x \in S$. Such a number K is called a bound of the set S.
- \checkmark Empty set is bounded
- \checkmark An upper bound, a lower bound and a bound of a set are not unique.
- Example:
	- Consider the finite set B = $\{2,12,0,5,-7,-2\}$ here 12 is upper bounded and -7 is lower bounded. Hence B is bounded.
	- \checkmark The set N of natural number is bounded below but not bounded above.
	- \checkmark The interval [0,1] is bounded.
	- Consider set $S = \{1, 1/2, 1/3, 1/4, \ldots \}$. This set consist all numbers of the form $1/n$ where $n \in N$. We observe that all the number in set S are less than equal to 1 and also observe that no number in set S is less then 0.Thus we say 1 is uppper and 0 is lower bounded respectively for set S.

Unbounded Set

- \triangleright A set S is unbounded if either it is not bounded above and/or bounded below.
- \triangleright We know that number u is upper bound of S if the relation $x \le u$ holds for all $x \in S$. Hence u will not be upper bound of S if there exist some member of S say $y \in S$ such that $y > u$.
- \triangleright Remark: If a set is bounded above, it has infinitely many upper bounds and similarly if it is bounded below, it has infinitely many lower bounds.
- Example:
	- ← Consider sets C= $\{4,6,8,10,$ ……} and D= $\{0,-1,-2,-3,$ ……}.
	- \checkmark Each element of C is greater than or equal 4. Hence 4 is lower bound of C and thus C is bounded below. From the nature of the element of C, we note that for any number u, however large, there are always elements of C greater than u. Therefore, u cannot be upper bound of C. Thus C has no upper bound.
	- \checkmark Similarly, it can be seen that the set D is not bounded below although it is bounded above.Hence both the sets C and D are unbounded sets.

Cantor Diagonalization Argument

- \triangleright A set S is called Countably infinite if there is a bijection between S and N. That is, you can label the elements of S 1, 2, . . . so that each positive integer is used exactly once as a label.
- \triangleright Why "Countably infinite"? Such a set is countable because you can count it (via the labeling just mentioned).
- \triangleright Unlike a finite set, you never stop counting. But at least the elements can be put in correspondence with N.
- On the other hand, **not all infinite sets are countably infinite. In fact, there are infinitely many sizes of infinite sets.**
- \triangleright Georg Cantor proved this astonishing fact in 1895 by showing that the the set of real numbers is not countable. That is, it is impossible to construct a bijection between N and R. In fact, it's impossible to construct a bijection between N and the interval [0, 1] (whose cardinality is the same as that of R).

Proof :

Suppose that $f: N \rightarrow [0, 1]$ is any function. Make a table of values of f, where the 1st row contains the decimal expansion of $f(1)$, the $2nd$ row contains the decimal expansion of $f(2)$, ... the nth row contains the decimal expansion of $f(n)$, ... Perhaps $f(1) = \pi/10$, $f(2) = 37/99$, $f(3) = 1/7$, $f(4) = \sqrt{2}/2$, $f(5) = 3/8$.

Can f possibly be onto? That is, can every number in [0, 1] appear somewhere in the table?

In fact, the answer is no — there are lots and lots of numbers that can't possibly appear! For example, let's highlight the digits in the main diagonal of the table.

n	f(n)											
												$\begin{bmatrix} 0 & 3 & 1 & 4 & 1 & 5 & 9 & 2 & 6 & 5 & 3 & \dots \end{bmatrix}$
2												$0~~.~~3~~7~~3~~7~~3~~7~~3~~7~~3~~7~~\ldots$
3												
$\overline{4}$												$\begin{bmatrix} 0 & . & 7 & 0 & 7 & 1 & 0 & 6 & 7 & 8 & 1 & 1 & \dots \end{bmatrix}$
5												0.37500000000

The highlighed digits are **0.37210** Suppose that we add 1 to each of these digits, to get the number **0.48321**

Now, this number can't be in the table. Why not? Because

- \checkmark it differs from $f(1)$ in its first digit;
- \checkmark it differs from $f(2)$ in its second digit;
- \checkmark ...
- \checkmark it differs from $f(n)$ in its nth digit;
- \checkmark ...

Suppose that we subtract 1 to each of these digits, to get the number **0.26109** Consequently, we can say that the list above is not an exhaustive listing of the set pf all real number 0 and 1, a contradiction to our assumption. Hence the set of real number between 0 and 1 is uncountable.

Countably Infinite and Uncountably Infinite Sets

- A set is **countably infinite** if its elements can be put in one-to-one correspondence with the set of natural numbers. In other words, one can count off all elements in the set in such a way that, even though the counting will take forever, you will get to any particular element in a finite amount of time.
- \triangleright Example: The integers Z form a countable set.
- A set is **uncountable** if it contains so many elements that they cannot be put in oneto-one correspondence with the set of natural numbers. In other words, there is no way that one can count off all elements in the set in such a way that, even though the counting will take forever, you will get to any particular element in a finite amount of time. **OR**
- In mathematics, an **uncountable set** (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.
- \triangleright Example of an uncountable set is the set R of all real numbers;

Multiset or bags

- \triangleright A generalization of the concept of set in which elements may appear multiple times: an unordered sequence of elements. **OR**
- A multiset (**mset**, for short) is an unordered collection of objects (called the elements) in which, unlike a standard (Cantorian) set, elements are allowed to repeat. **OR**
- \triangleright In other words, an mset is a set to which elements may belong more than once, and hence it is a non-Cantorian set.
- \triangleright The number of copies of an element appearing in an mset is called its multiplicity.
- \triangleright The number of distinct elements in an mset M (which need not be Finite) and their multiplicities jointly determine its cardinality, denoted by C(M).
- \triangleright In other words, the cardinality of an mset is the sum of multiplicities of all its elements.
- \triangleright An mset M is called Finite if the number of distinct elements in M and their multiplicities are both Finite, it is infinite otherwise.
- Example: The multisets $\{a,a,b\}$, $\{a,b,a\}$ and $\{b,a,a\}$ are the same but not equal to either $\{a,b,b\}$ or to $\{a,b\}$.
- \triangleright Two important Characteristics is of Msets:
	- \checkmark There may be repeated occurrences of elements.
	- \checkmark There is no particular order or arrangement of the elements.
- \triangleright In fact we can characterize a multiset as a pair of (A, μ) , where A is generic set and μ is the multiplicity function defined as

$$
\mu: A \to \{1, 2, 3, \dots\}
$$

so that $\mu(a) = k$, where k is number of times the element a occur in the mset.

For Example: if [a, b, c, c, a, c] is the mset, $\mu(a)=2$, $\mu(b)=1$, and $\mu(c)=3$.

1. Equality of Multiset

- \triangleright If the number of occurrences of each element is the same in both the msets, then the msets are equal.
- Example: $[a,b,a,a] = [a,a,b,a]$ and $[a,b,a] \neq [a,b]$

2. Multisubset or Msubset

- \triangleright A multiset A is said to be a multisubset of B if multiplicity of each element in A is less or equal to its multiplicity in B.
- Example: $[1,2,2,3] \subseteq [1,1,1,2,2,3]$

3. Union and Intersection of Msets

- \triangleright Let A and B be Msets, and *m* and *n* be the number of times *x* occurs in A and B respectively. Put the larger of *m* and *n* occurrences of *x* in A U B. Put the smaller of *m* and *n* occurrences of *x* in $A \cap B$.
- For Example 1: A = $\{2, 2, 3\}$ and B = $\{2, 3, 3, 4\}$ A U B = [2, 2, 3] U [2, 3, 3, 4] = [2, 2, 3, 3, 4] $A \cap B = [2, 2, 3] \cap [2, 3, 3, 4] = [2,3].$

Mathematical Induction

- \triangleright Mathematical Induction is a mathematical technique which is used to prove a statement, a formula or a theorem is true for every natural number.
- \triangleright The technique involves two steps to prove a statement, as stated below
	- \checkmark **Step 1 (Base step)**: It proves that a statement is true for the initial value. (i. e. $n=n₀$)
	- **Step 2 (Inductive step)** It proves that if the statement is true for the nth iteration (or number n), then it is also true for $(n+1)^{th}$ iteration (or number n+1).
	- \checkmark (i.e. Statement is true for n=k+1, assuming that it is true for n=k, (k≥n₀)
- **How to Do It:**
- **Step 1−** Consider an initial value for which the statement is true. It is to be shown that the statement is true for $n = initial value$.
- **Step 2−** Assume the statement is true for any value of n = k. Then prove the statement is true for $n = k+1$. We actually break $n = k+1$ into two parts, one part is $n = k$ (which is already proved) and try to prove the other part.
- \triangleright Above two step are divided into four Step of math induction which is as follows:

The four steps of math induction:

Example 1:

Prove

Example 2:

Prove

$$
P(n): 1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}
$$

1 Show
$$
P(1)
$$
 is true:
\n
$$
\begin{array}{|l|l|}\n\hline\n\text{Stick a } I \text{ in for all the } n's \\
\text{and show it works.} \\
P(1): I^2 = \frac{1(1+1)(2(1)+1)}{6} = \frac{1 \cdot 2 \cdot 3}{6} = \frac{6}{6} = 1 \\
\text{So, } P(1) \text{ is true.}\n\end{array}
$$

$$
= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^{2}}{6}
$$
\n
$$
= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}
$$
\n
$$
= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}
$$
\n
$$
= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}
$$
\n
$$
= \frac{(k+1)[2k^{2} + k + 6k + 6]}{6}
$$
\n
$$
= \frac{(k+1)(2k^{2} + 7k + 6)}{6}
$$
\n
$$
= \frac{(k+1)(2k^{2} + 7k + 6)}{6}
$$
\n
$$
= \frac{(k+1)(k+2)(2k+3)}{6}
$$
\n
$$
= \frac{(k+1)(k+2)(2k+3)}{6}
$$
\n
$$
= \frac{(k+1)[k+1) + 1][2k + 2 + 1]}{6}
$$
\n
$$
= \frac{(k+1)[k+1) + 1][2k + 2 + 1]}{6}
$$
\n
$$
= \frac{(k+1)[k+1) + 1][2(k+1) + 1]}{6}
$$

So, IJ,

$$
(4) \text{ Thus, } P(n) \text{ is true.} \blacksquare
$$

Example 3:

Prove
$$
P(n): \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}
$$

$$
\frac{1}{\sqrt{1}} \text{ show } P(1) \text{ is true:}
$$
\n
$$
P(1): \left(\frac{a}{b}\right)' = \frac{a}{b} = \frac{a}{b}
$$

A picky but important note is that you can't skip this middle step. If you do, then you'd be using the rule you are trying to prove... which is circular reasoning.

 $\frac{a^1}{b^1}$

So,
$$
P(1)
$$
 is true.

 Ω Assume $P(K)$ is true:

$$
P(k): \left(\frac{a}{b}\right)^k = \frac{a^k}{b^k}
$$
 is true

 $\overline{4}$ Thus, $P(n)$ is true.

Example 4:

 $3^n - 1$ is a multiple of 2 for n = 1, 2, ...

Solution

Step 1 – For $n = 1, 3^1 - 1 = 3 - 1 = 2$ which is a multiple of 2

Step 2 – Let us assume $3^n - 1$ is true for $n = k$, Hence, $3^k - 1$ is true (It is an assumption)

We have to prove that $3^{k+1} - 1$ is also a multiple of 2

 $3^{k+1} - 1 = 3 \times 3^k - 1 = (2 \times 3^k) + (3^k - 1)$

The first part $(2 \times 3k)$ is certain to be a multiple of 2 and the second part $(3k-1)$ is also true as our previous assumption.

Hence, $3^{k+1}-1$ is a multiple of 2.

So, it is proved that 3^n-1 is a multiple of 2.

Example 5:

Prove that $(ab)^n = a^n b^n$ is true for every natural number n

Solution

Step 1 – For $n = 1$, $(ab)^1 = a^1b^1 = ab$, Hence, step 1 is satisfied.

Step 2 – Let us assume the statement is true for $n = k$, Hence, $(ab)^k = a^k b^k$ is true (It is an assumption).

We have to prove that $(ab)^{k+1} = a^{k+1}b^{k+1}$ also hold

Given, $(ab)^k = a^k b^k$

 $(ab)^k(ab) = (a^k b^k)(ab)$ [Multiplying both side by 'ab'] Or.

Or,
$$
(ab)^{k+1} = (aa^k)(bb^k)
$$

Or,
$$
(ab)^{k+1} = (a^{k+1}b^{k+1})
$$

Hence, step 2 is proved.

 $(ab)^n = a^n b^n$ is true for every natural number n. So,

Example 6:

 $1+3+5+\ldots+(2n-1)=n^2$ for $n=1,2,\ldots$

Solution

Step 1 – For $n = 1, 1 = 1^2$, Hence, step 1 is satisfied.

Step 2 – Let us assume the statement is true for $n = k$.

Hence, $1+3+5+\cdots+(2k-1)=k^2$ is true (It is an assumption)

We have to prove that $1 + 3 + 5 + ... + (2(k + 1) - 1) = (k + 1)^2$ also holds

$$
1+3+5+\cdots+(2(k+1)-1)
$$

= 1+3+5+\cdots+(2k+2-1)
= 1+3+5+\cdots+(2k+1)
= 1+3+5+\cdots+(2k-1)+(2k+1)
= k² + (2k+1)
= (k+1)²

So, $1 + 3 + 5 + \cdots + (2(k + 1) - 1) = (k + 1)^2$ hold which satisfies the step $2.$

Hence, $1+3+5+\cdots+(2n-1)=n^2$ is proved.

PROPOSITIONAL LOGIC

Introduction

- \triangleright A statement can be defined as a declarative sentence, or part of a sentence, that is capable of having a truth-value, such as being true or false.
- \triangleright A propositional consists of propositional variables and connectives. The propositional variables are denoted by capital letters (A, B, etc) and connectives connect the propositional variables.
- \triangleright All the following declarative sentences are propositions:
	- 1. The sun rises in the East and sets in the West.
	- 2. Narendra Modi is the $14th$ Prime Minister of India.
	- 3. Mumbai is the capital of India.
	- 4. $1 + 1 = 2$.
	- 5. $2 + 2 = 3$.
- Propositions 1,2 and 4 are true, whereas 3 and 5 are false.
- \triangleright Now Consider the following sentences:
	- 1. What time is it?
	- 2. Read this carefully
	- 3. $x + 1 = 2$.
	- 4. $x + y = z$.
- \triangleright Sentences 1 and 2 are not propositions because they are not declarative sentences. Sentences 3 and 4 are not propositions because they are neither true nor false. Note that each of sentences 3 and 4 can be turned into a proposition if we assign values to the variables.
- \triangleright Sometimes, a statement can contain one or more other statements as parts.
- \triangleright When two statements are joined together with "and", the complex statement formed by them is true if and only if both the component statements are true. Because of this, an argument of the following form is logically valid:
	- \checkmark Paris is the capital of France and Paris has a population of over two million.
- In propositional logic generally we use five connectives which are −
	- \checkmark Negation/ NOT (\neg)
	- \checkmark OR (\checkmark) (Disjunction)
	- \checkmark AND (\land) (Conjunction)
	- \checkmark Exclusive OR (⊕)
	- \checkmark Implication / if-then (\to) (Conditional or Implication)
	- If and only if (\Leftrightarrow) (Bi-conditional or Double Implication)

Tautologies:

- \triangleright A Tautology is a formula which is always true for every value of its propositional variables.
- Example: Prove [(*A*→*B*) ∧ *A*]→*B* is a tautology
- \triangleright The truth table is as follows:

Contradictions:

- \triangleright A Contradiction is a formula which is always false for every value of its propositional variables.
- Example: Prove (*A*∨*B*) ∧ [(¬*A*) ∧ (¬*B*)] is a contradiction

Contingency:

- \triangleright A Contingency is a formula which has both some true and some false values for every value of its propositional variables.
- Example: Prove (A∨B) ∧ (¬A) a contingency
- \triangleright The truth table is as follows:

Propositional Equivalences:

 \triangleright Two statements X and Y are logically equivalent if any of the following two conditions hold:

- \checkmark The truth tables of each statement have the same truth values.
- The bi-conditional statement *X*⇔*Y* is a tautology.
- \triangleright Example: Prove ¬ (AVB) and [(¬A) \land (¬B)] are equivalent

Festing by 1st method (Matching truth table):

 \triangleright Here, we can see the truth values of ¬ (AVB) and $[(\neg A) \land (\neg B)]$ are same, hence the statements are equivalent.

As $\lceil \neg (A \lor B) \rceil \Leftrightarrow \lceil (\neg A) \land (\neg B) \rceil$ is a tautology, the statements are equivalent.

Inverse, Converse, and Contra-positive

- Implication / if-then (→) is also called a conditional statement. It has two parts −
- \checkmark Hypothesis, P
- \checkmark Conclusion, Q
- \triangleright As mentioned earlier, it is denoted as P \rightarrow Q.
- **Example of Conditional Statement "If you do your homework, you will not be** punished." Here, "you do your homework" is the hypothesis, P, and "you will not be punished" is the conclusion, Q.

Inverse

 \triangleright An inverse of the conditional statement is the negation of both the hypothesis and the conclusion. If the statement is "If P, then Q ", the inverse will be "If not P, then not O ".

Thus the inverse of $P \rightarrow O$ is $\neg P \rightarrow \neg O$.

Example – The inverse of "If you do your homework, you will not be punished" is "If you do not do your homework, you will be punished."

Converse

 \triangleright The converse of the conditional statement is computed by interchanging the hypothesis and the conclusion. If the statement is "If P, then Q ", the converse will be "If O , then P ".

The converse of $P \rightarrow Q$ is $Q \rightarrow P$.

 Example − The converse of "If you do your homework, you will not be punished" is "If you will not be punished, you do your homework".

Contra-positive

- \triangleright The contra-positive of the conditional is computed by interchanging the hypothesis and the conclusion of the inverse statement. If the statement is "If P, then Q ", the contra-positive will be "If not Q , then not P ". The contra-positive of $P \rightarrow Q$ is $\neg Q \rightarrow \neg P$.
- **Example** − The Contra-positive of "If you do your homework, you will not be punished" is "If you are punished, you did not do your homework".

Logical Equivalences

Example:

1. Prove that $P \vee \neg P$ is a Tautology

2. Prove that $P \land \neg P$ is a Contradiction

-P	$P \wedge \neg P$

3. Construct the truth table for $(P \to Q) \land (\neg P \Leftrightarrow Q)$

- 4. Determine whether each of the following is a Tautology, a Contradiction or Neither:
- a) $[P \land (P \rightarrow Q)] \rightarrow Q$
- b) $(P \to Q) \leftrightarrow (\neg Q \to \neg P)$
- c) (¬ P ∧ Q) ∧ (P ∨ ¬Q)
- d) $(P \rightarrow \neg Q) \lor (\neg R \rightarrow P)$
- e) $(P \rightarrow Q) \land (\neg P \lor Q)$
- f) $(P \rightarrow Q) \rightarrow (P \land Q)$

Solution:

a)
$$
[P \land (P \rightarrow Q)] \rightarrow Q
$$

b)
$$
(P \rightarrow Q) \leftrightarrow (\neg Q \rightarrow \neg P)
$$

c) $(\neg P \land Q) \land (P \lor \neg Q)$

d) $(P \rightarrow \neg Q) \vee (\neg R \rightarrow P)$

e) $(P \rightarrow Q) \land (\neg P \lor Q)$

$$
f) \quad (P \to Q) \to (P \land Q)
$$

- 5. Given the tree propositions P, Q and R, construct truth tables for:
	- a) $(P \land Q) \rightarrow \neg R$
	- b) $P \wedge (\neg Q \vee R)$
	- c) $P \rightarrow (\neg Q \lor \neg R)$
- 6. What are the contrapositive, the converse, & the inverse of the conditional statement? "The home team wins whenever it is raining?"

Solution: Because "q whenever p " is one of the ways to express the conditional statement p→q, the original statement can be rewritten as:

"If it is raining, then the home team wins."

Consequently, the contrapositive of this conditional statement is "If the home team does not win, then it is not raining."

The converse is "If the home team wins, then it is raining."

The inverse is "If it is not raining, then the home team does not win."

Only the contrapositive is equivalent to the original statement.

7. If P \rightarrow Q is false, determine the value of (\neg (P \land Q)) \rightarrow Q

8. If P & Q are false, find truth values of $(P \vee Q) \wedge (\neg P \vee \neg Q)$

9. If P \rightarrow O is true, Can we determine the value $\neg P \vee (P \rightarrow O)$

Applications of Propositional Logic

- \triangleright Logic has many important applications to mathematics, computer science, and numerous other disciplines.
- \triangleright Statements in mathematics and the sciences in natural language often are imprecise or ambiguous.
- \triangleright To make such statements precise, they can be translated into the language of logic. For example, logic is used in the specification of software and hardware, because these specifications need to be precise before development begins.
- \triangleright Furthermore, propositional logic and its rules can be used to design computer circuits, to construct computer programs, to verify the correctness of programs, and to build expert systems.
- \triangleright Logic can be used to analyze and solve many familiar puzzles. Software systems based on the rules of logic have been developed for constructing some, but not all, types of proofs automatically.

Translating English Sentences

- \triangleright There are many reasons to translate English sentences into expressions involving propositional variables and logical connectives.
- \triangleright In particular, English (and every other human language) is often ambiguous.
- \triangleright Translating sentences into compound statements removes the ambiguity.
- \triangleright Basic three steps for translation are:
	- \checkmark Step 1: Find logical connectives.
	- \checkmark Step 2: Break the sentence into elementary propositions.
	- \checkmark Step 3: Rewrite the sentence in propositional logic.

Example:

1. You can have free coffee if you are senior citizen and it is a Tuesday Solution:

Step 1: Find logical connectives.

You can have free coffee **if** you are senior citizen **and** it is a Tuesday

Step 2: Break the sentence into elementary propositions.

A: You can have free coffee

B: You are senior citizen

C: It is a Tuesday

Step 3: Rewrite the sentence in propositional logic.

 $(B \wedge C) \rightarrow A$

2. Assume two elementary statements:

P: you drive over 65 mph; Q: you get a speeding ticket.

Translate each of these sentences to logic

- \checkmark You do not drive over 65 mph. $(\neg P)$.
- \checkmark You drive over 65 mph, but you don't get a speeding ticket. (P $\land \neg Q$).
- \checkmark You will get a speeding ticket if you drive over 65 mph. (P \rightarrow Q).
- \checkmark If you do not drive over 65 mph then you will not get a speeding ticket. $(\neg P \rightarrow \neg Q)$.
- \checkmark Driving over 65 mph is sufficient for getting a speeding ticket. (P $\rightarrow Q$)
- \checkmark You get a speeding ticket, but you do not drive over 65 mph. (Q $\land \neg P$).
- 3. If you are older than 15 or you are with your parents then you can play roll coaster. Solution:

Step 1: Find logical connectives.

If you are older than 15 **or** you are with your parents then you can play roll coaster.

Step 2: Break the sentence into elementary propositions.

A= you are older than 15

B= you are with your parents

C= you can play roll coaster

Step 3: Rewrite the sentence in propositional logic.

 $(A \vee B) \rightarrow C$

4. Express the specification "The automated reply cannot be sent when the file system is full" using logical connectives.

Solution: Let P denote "The automated reply can be sent" and Q denote "The file system is full." $Q \rightarrow \neg P$

5. Translate the following sentence into propositional logic: "You can access the Internet from campus only if you are a computer science major or you are not a freshman."

Solution: Let A, C, and F represent respectively "You can access the internet from campus," "You are a computer science major," and "You are a freshman."

 $A \rightarrow (C \vee \neg F)$

- 6. Let P and Q be the propositions: "The election is decided" and "the votes have been counted" respectively. Express each of the propositions as English sentences:
	- a) $\neg P$
	- b) P ∨ Q
	- c) $\neg P \wedge Q$
	- d) $Q \rightarrow P$
	- e) $\neg P \rightarrow \neg Q$
	- f) $P \Leftrightarrow Q$
	- g) \neg Q V (\neg P ∧ Q)

Solution:

- a) The election is not (yet) decided.
- b) The election is decided or the votes have been counted.
- c) The votes have been counted but the election is not (yet) decided.
- d) If the votes have been counted then the election is decided.
- e) The election is not decided unless the votes have been counted.
- f) The election is decided if and only if the votes been counted.
- g) The votes have not been counted, or they have been counted by the election is not (yet) decided.