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Unit II: Relation & Function                07 Hours 

 Relations and their Properties, n-ary relations and their applications, Representing 

relations, Closures of  relations,  Equivalence  relations,  Partial  orderings,  Partitions,  

Hasse  diagram,  Lattices,  Chains  and Anti-Chains, Transitive closure and Warshall„s 

algorithm. 

 Functions-Surjective, Injective and Bijective functions, Identity function, Partial 

function, Invertible function, Constant function, Inverse functions and Compositions of 

functions, The Pigeonhole Principle. 

 #Exemplar/Case Studies: Know about the great philosophers-Dirichlet. 

 

 Relation-Introduction  

 Relationships between elements of sets are represented using the structure called a 

relation, which is just a subset of the Cartesian product of the sets.  

 Every day we deal with relationships such as those between a business and its telephone 

number, an employee and his or her salary, a person and a relative, and so on. 

 Relations can be used to solve problems such as determining which pairs of cities are 

linked by airline flights in a network, finding a viable order for the different phases of a 

complicated project, or producing a useful way to store information in computer 

databases. 

 A relation is any association or link between elements of one set, called the domain or 

(less formally) the set of inputs, and another set, called the range or set of outputs. 

 A common notion of relation is a type of association that exists between two or more 

objects. 

 Example 1: “Is the mother of” is a relation between the set of all females and the set of 

all people. It consists of all the pairs (person 1, person 2) where person 1 is the mother of 

person 2. 

 Also Consider following Example: 

 x is the father of y. 

 The number x is greater than the number y. 

 From above example it‟s clear that order of object is very important. 

 

 Binary Relation 

 A relation is an association between two or more things, when it exists between two 

elements then it is called Binary relation. 

 A (binary) relation R between the sets A & B  (written as R: A ↔ B)  is a subset of the 

Cartesian product A × B.i.e. R ⊆ A × B 
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 If (x, y) ∈ R, we say x is related to y. We denote this by xRy.  

 The set A is called the domain of the relation and the set B the codomain.  

 Domain = Set of first elements in the Cartesian product. 

 Range = Set of second elements in the Cartesian product. 

 If there are two sets A and B and Relation from A to B is R(a,b), then domain is defined 

as the set { a | (a,b) ∈ R for some b in B} and Range is defined as the set {b | (a,b) ∈ R for 

some a in A}. 

 Example 2: Let A= {a, b, c} and B= {1, 2, 3}.  

R= {(a, 1), (b, 2), (c, 3)} is an example of a relation from A to B. 

 Example 3: Let A = {1, 2, 3, 4}. Which ordered pairs are in the relation?        

 R = {(a, b) | a < b}? 

 R = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}. Domain= {1, 2, 3}  & Range=  {2, 3, 4} 

 

 Types of Relation 

 The Empty Relation between sets A and B, or on E, is the empty set ∅ 

 Example: If set A = {1, 2, 3} then, one of the void relations can be R = {x, y} where, 

|x – y| = 8. Here R = ∅ ⊆ A × A 

 

 The Full Relation between sets A and B is the set A × B. 

 

 The Identity Relation on set A is the set {(x, x) | x ∈ A} 

 Example: Let A={1,2,3} then IA={(1,1),(2,2),(3,3)} 

 Example: Let A = (1, 2, 3, 4, 5) and R = {(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,4), 

(3,3), (4,4), (5,5)}. Then IA = {(1,1),(2,2),(3,3),(4,4),(5,5)} 

 

 The Relation R in set A is said to Universe Relation if R= A x A 

 Example: A={a,b,c} then R =A × A={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b),(c,c)} 

 Example: Let A = (1, 2, 3, 4, 5) and R = {(1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,4), 

(3,3), (4,4), (5,5)}. 

 U = {(1,1), (1,2), (1,3), (1,4), (1,5), (2,1), (2,2), (2,3), (2,4), (2,5), (3,1), (3,2), (3,3), 

(3,4), (3,5), (4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5)} 

 

 The Inverse Relation R' (Converse Relation RC) of a relation R is defined as – R' or RC 

= {(b, a) | (a, b) ∈ R}. Let R be a relation from set A to set B, then inverse relation R' is 

from set B to set A.  

 Example: Let R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 4), (3, 3), (4, 4), (5, 5)} 



   Discrete Mathematics: Unit 2 

Prof. S. B. Shinde [MES College of Engineering, Pune] Page 3 
 

 R' ={(1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (2, 2), (4, 2), (3, 3), (4, 4), (5, 5)} 

 

 The Complement of a relation R is defined as Ȓ ={(a, b) | (a,b) ∉ R}. i.e. a Ȓ  b iff a 

b. 

 Ȓ  = ( A x B ) – R  

 Note: Ȓ  is the universe of discourse is U = A × B; thus the name complement. 

 Example: Let A = (1, 2, 3, 4, 5) and R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 

4), (3, 3), (4, 4), (5, 5)} 

 Ȓ  = {(2, 1), (2, 3), (2, 5), (3, 1), (3, 2), (3, 4), (3, 5),(4, 1), (4, 2), (4, 3), (4, 5), (5, 1), 

(5, 2), (5, 3), (5, 4)} 

 

 The Composite Relation: Let R1 be a binary relation from a set A to a set B, R2 a binary 

relation from B to a set C. Then the composite relation from A to C denoted by R1.R2. 

R1. R2 = {(a,c) | aR1b, bR2c ; for a ∈ A, c ∈ C} 

 

 Example: A = {1, 2, 3}, B = {a, b, c, d}, C = {x, y, z}. 

          R : A ↔ B,   R = {(1, a), (1, b), (2, b), (2, c)}. 

          S : B ↔ C,    S = {(a, x), (a, y), (b, y), (d, z)}. 

          R.S = {(1, x), (1, y), (2, y)}. 

 

 Combining Relations: Since relations from A to B are subsets of A x B, two relations 

from A to B can be combined through set operations. 

 

 Powers of a Relation: Let R be a relation on the set A. The powers Rn, n = 1, 2, 3, . . . , 

are defined recursively by R1 = R and Rn+1 = Rn ◦ R. 

 The definition shows that R2 = R ◦ R, R3 = R2 ◦ R = (R ◦ R) ◦ R, and so on. 

 

 Example 4: Let A = {1, 2, 3} & B = {1, 2, 3, 4}. The relations R1 = {(1, 1), (2, 2), (3, 3)} 

and R2 = {(1, 1), (1, 2), (1, 3), (1, 4)} can be combined to obtain 

R1 ∪ R2 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)}, 

R1 ∩ R2 = {(1, 1)}, 

R1 − R2 = {(2, 2), (3, 3)}, 
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R2 − R1 = {(1, 2), (1, 3), (1, 4)}. 

 

 Example 5: Let A be the set of students at your school and B the set of books in the 

school library. Let R1 and R2 be the relations consisting of all ordered pairs (a, b), where 

student a is required to read book b in a course, and where student a has read book b, 

respectively. Describe the ordered pairs in each of these relations. 

a) R1 ∪ R2        b) R1 ∩ R2        c) R1 ⊕ R2      d) R1 − R2        e) R2 − R1 

Solution: the set of pairs (a, b) where  

a) a is required to read b in a course or has read b. 

b) a is required to read b in a course and has read b. 

c) a is required to read b in a course or has read b, but not both; equivalently, the set of 

pairs (a, b) where a is required to read b in a course but has not done so, or has read b 

although not required to do so in a course. 

d) a is required to read b in a course but has not done so. 

e) a has read b although not required to do so in a course. 

 

 Example 6 a): Let A = {1,2,3}, B = {0,1,2} and C = {a,b}.  

R = {(1,0), (1,2), (3,1),(3,2)}   and     S = {(0,b), (1,a) ,(2,b)} 

R.S = {(1,b),(3,a),(3,b)} 

 

 Example 6 b): Let R be the relation {(1, 2), (1, 3), (2, 3), (2, 4), (3, 1)}, and let S be the 

relation {(2, 1), (3, 1), (3, 2), (4, 2)}. Find R.S 

Solution: R.S = {(1,1), (1,2), (2,1) (2, 2)} 

 

 Example 7: Let A = (1,2,3,4), Let R1 = {(x,y)| x + y = 5} and R2 = {(x,y)| y - x = 1}. 

Verify (R1.R2)C = R2C. R1C. 

Solution:  R1 = {(1,4),(2,3),(3,2),(4,1)}  &   R2 = {(1,2),(2,3),(3,4)} 

(R1.R2) = {(2,4),(3,3),(4,2)} 

(R1.R2)C = {(4,2),(3,3),(2,4)} ---------------- (A) 

R1C = {(4,1),(3,2),(2,3),(1,4)} 

R2C= {(2,1),(3,2),(4,3)} 

R2C. R1C = {(2,4),(3,3),(4,2)}  ---------------(B) 

 Therefore from (A) & (B) we get,      (R1.R2)C = R2C. R1C. 

 

 Example 8: Let R = {(1, 1), (2, 1), (3, 2), (4, 3)}. Find the powers Rn, n = 2, 3,4,…… 

Solution: We have  
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R = {(1, 1), (2, 1), (3, 2), (4, 3)}. 

R2 = R◦R = [{(1, 1), (2, 1), (3, 2), (4, 3)}] [{(1, 1), (2, 1), (3, 2), (4, 3)}] 

R2 = {(1, 1), (2, 1), (3, 1), (4, 2)}.  

R3 = R2 ◦R = [{(1, 1), (2, 1), (3, 1), (4, 2)}]  [{(1, 1), (2, 1), (3, 2), (4, 3)}] 

R3 = {(1, 1), (2, 1), (3, 1), (4, 1)}.  

R4 = R3 ◦R  = [{(1, 1), (2, 1), (3, 1), (4, 1)}] [{(1, 1), (2, 1), (3, 2), (4, 3)}] 

R4 = {(1, 1), (2, 1), (3, 1), (4, 1)} 

 

 Example 9: R = {(1,2),(2,3),(2,4), (3,3)} is a relation on A = {1,2,3,4}. 

Solution: R1 = {(1,2),(2,3),(2,4), (3,3)} 

          R2 = {(1,3), (1,4), (2,3), (3,3)} 

          R3 = {(1,3), (2,3), (3,3)} 

          R4 = {(1,3), (2,3), (3,3)} 

 

 Example 10: Let R be the relation on the set {1, 2, 3, 4, 5} containing the ordered pairs 

(1, 1), (1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 4), (3, 5), (4, 2), (4, 5), (5, 1), (5, 2), and (5, 4). 

Find a) R2.  b) R3.   c) R4.   d) R5. 

Solution: R1 =  

          R2 =  

          R3 =  

          R4 =  

          R5 =  

 

 Representation of Relations: 

i. Ordered Pair 

 The first elements in the ordered pairs (the x-values), form the domain.  The second 

elements in the ordered pairs (the y-values), form the range. Only the elements "used" by 

the relation constitute the range. 

 Example 11: Let set A = (1,2,3,4,8) and  set B = (1,4,6,9). R={(x,y)| y is divisible by x}. 

Solution: The relation R consists of the ordered pairs: 

R={(1,1),(1,4),(1,6),(1,9),(2,4),(2,6),(3,6),(3,9),(4,4)} 



   Discrete Mathematics: Unit 2 

Prof. S. B. Shinde [MES College of Engineering, Pune] Page 6 
 

 

ii. Tabular Representation  

 Tabular Representation for R={(1,1),(1,4),(1,6),(1,9),(2,4),(2,6),(3,6),(3,9),(4,4)} 

 1 4 6 9 

1 * * * * 

2  * *  

3   * * 

4  *   

8     

 
iii. Matric Representation 

 A relation between finite sets can be represented using a zero–one matrix.  

 Suppose that R is a relation from A = {a1, a2 , . . . , am } to B = {b1 , b2 , . . . , bn }. 

(Here the elements of the sets A and B have been listed in a particular, but arbitrary, 

order. Furthermore, when A = B we use the same ordering for A and B.)  

 The relation R can be represented by the matrix MR = [mij ], where 

 

 i.e. the zero–one matrix representing R has 1 as its (i,j) entry when ai is related to bj, and 0 

in this position if ai is not related to bj . (Such a representation depends on the orderings 

used for A and B.) 

 Matrix Representation for R={(1,1),(1,4),(1,6),(1,9),(2,4),(2,6),(3,6),(3,9),(4,4)} is:  

MR =    

 Representing Relations using Zero–One Matrices: 

 Let A = [aij ] and B = [bij ] be m × n zero–one matrices.  

 The Join of A and B is the zero–one matrix with (i, j)th entry aij ∨ bij. The join of A 

and B is denoted by A ∨ B. 
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 The Meet of A and B is the zero–one matrix with (i, j)th entry aij ∧ bij. The meet of A 

and B is denoted by A ∧ B. 

 Example: Let A = {1,2,3} and B = {u,v} and  

      R1 = {(1,u), (2,u), (2,v), (3,u)}      R2 = {(1,v),(3,u),(3,v)} 

MR1 =                  MR2 =                                  M(R1 ∨ R2)  =     

 

MR1 =                  MR2 =                                  M(R1 ∧ R2)  ==     

 Matrix Relation for Union and Intersection operation:  

 The Boolean operations join and meet can be used to find the matrices representing 

the union and the intersection of two relations. Suppose that R1 and R2 are relations 

on a set A represented by the matrices MR1 and MR2, respectively.  

 The matrix representing the union of these relations has a 1 in the positions where 

either MR1 or MR2 has a 1. 

 The matrix representing the intersection of these relations has a 1 in the positions 

where both MR1 andMR2 have a 1.  

 Thus, the matrices representing the union and intersection of these relations are 

MR1 ∪ R2 = MR1 ∨ MR2             and          MR1 ∩ R2 = MR1 ∧ MR2 

 

 Example 12: Suppose that the relations R1 and R2 on a set A are represented by the 

matrices. What are the matrices representing R1 ∪ R2 and R1 ∩ R2? 

MR1 =                                     MR2 =     

Solution: The matrices of these relations are: 

MR1 ∪ R2 = MR1 ∨ MR2 =     

 

MR1 ∩ R2 = MR1 ∧ MR2 ==     

 Matrix for  Composite of Relations: 

 The matrix can be found using the Boolean product of the matrices for these relations. 

 The Boolean product  denoted by ʘ,of an m-by-n matrix (aij) and n-by-p matrix (bjk) 

of 0s and 1s is an m-by-p matrix (mik ) where 
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mik =1,          if aij = 1 and bjk = 1 for some k=1,2,...,n 

                                      0,         otherwise. 

 Suppose that R is a relation from A to B and S is a relation from B to C. From the 

definition of the Boolean product, this means that 

MS◦R = MR ʘ MS 

 The matrix representing the composite of two relations can be used to find the matrix 

for MR
n . In particular 

 

 

 Example 13: Let A = {1,2}, {1,2,3} and C = {a,b}.  

R = {(1,2),(1,3),(2,1)} is a relation from A to B.  

S = {(1,a),(3,b),(3,a)} is a relation from B to C.  

R.S = {(1,b),(1,a),(2,a)} 

MR =                 MS =              MR ʘ MS =          ʘ   

 

(0 ∧ 1) ∨ (1 ∧ 0) ∨ (1 ∧ (0 ∧ 0) ∨ (1 ∧ 0) ∨ (1 ∧ 1) 
(1 ∧ 1) ∨ (0 ∧ 0) ∨ (0 ∧ (1 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 1) 

            

 0 ∨  0 ∨ 1 0 ∨  0 ∨ 1 
1 ∨  0 ∨ 0 0 ∨  0 ∨ 0 

 

MS ◦ R =   MR ʘ MS =          

 Example 14: Find the matrix representing the relations S◦R, where the matrices 

representing R and S are 

MR =                      MS =          

 

MR ʘ MS =       ʘ    

 

(1 ∧ 0) ∨ (0 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (0 ∧ 0 ) ∨ (1 ∧ 0) (1 ∧ 0) ∨ (0 ∧ 1 ) ∨ (1 ∧ 1) 
( 1 ∧ 0) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (1∧ 1) ∨ (1 ∧ 0 ) ∨ (0 ∧ 0) (1 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 1) 
(0 ∧ 0 ) ∨ (0 ∧ 0) ∨ (0 ∧ 1) (0 ∧ 1) ∨ (0 ∧ 0 ) ∨ (0 ∧ 0) (0 ∧ 0) ∨ (0 ∧ 1) ∨ (0 ∧ 1) 

 

 0 ∨ 0 ∨ 1 1 ∨ 0 ∨ 0 0 ∨ 0 ∨ 1 
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0 ∨ 0 ∨ 0 1 ∨ 0 ∨ 0 0 ∨ 1 ∨ 0 
0 ∨ 0 ∨ 0 0 ∨ 0 ∨ 0 0 ∨ 0 ∨ 0 

 

MS◦R =  MR ʘ MS =   

 

 Example 15: Find the matrix representing the relation R2, where the matrix representing R 

is 

MR =                  Solution:   =     

 

 Example 16: Let R be the relation represented by the matrix. Find the matrices that 

represent a) R2.   b) R3.   c) R4. 

MR =    

Solution: We compute the Boolean powers of MR; thus  

 =  MR ʘ MR [ ]
 

 

 

a) R2 =   b) R3 =   c) R4 =  

 

iv. Digraph Representation 

 A directed graph, or digraph, consists of a set V of vertices (or nodes) together with a set E 

of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial 

vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge. 

 An edge of the form (a, a) is represented using an arc from the vertex a back to itself. Such 

an edge is called a loop. 

 Digraph representation for R={(1,1),(1,4),(1,6),(1,9),(2,4),(2,6),(3,6),(3,9),(4,4)} is: 
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 The directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), (b, b), (b, d), (c, a), 

(c, b), and (d, b) is displayed in figure (a) below. 

 The directed graph of the relation R = {(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 

1)} on the set {1, 2, 3, 4} is shown in figure (b) below: 

               

(a)                                      (b) 

 Example 17: Let A = {1,2,3,4}. Define a R≠ b if and only if a ≠ b. What is Inverse 

Complement of R≠ and Also representation of given relation R≠. 

Solution: R≠={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

 

 Example 18: List the ordered pairs in the relation R from A = {0, 1, 2, 3, 4} to B = {0, 1, 

2, 3}, where (a, b) ∈ R if and only if   i) a = b.    ii) a + b = 4.    iii) a > b.   iv) a | b. 

Solution: 

i. {(0,0), (1,1), (2,2), (3,3)} 

ii. {(1,3),(2,2),(3, 1), (4,0)} 

iii. {(1,0), (2,0), (2,1),(3,0), (3,1),(3,2),(4,0), (4,1), (4,2), (4,3)} 

iv. a | b means that b is a multiple of a (a is not allowed to be 0).  

     {(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 2), (3, 0), (3, 3), (4, 0)}. 

 

 Example 19: Let A be the set {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, 

b) | a divides b}? 
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Solution: Because (a, b) is in R if and only if a and b are positive integers not exceeding 4 

such that a divides b. R = {(1,1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}. 

 

 Example 20:  Consider these relations on the set of integers: 

R1 = {(a, b) | a ≤ b}, 

R2 = {(a, b) | a > b}, 

R3 = {(a, b) | a = b or a = −b}, 

R4 = {(a, b) | a = b}, 

R5 = {(a, b) | a = b + 1}, 

R6 = {(a, b) | a + b ≤ 3}. 

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, −1), and (2, 2)? 

Solution: The pair (1, 1) is in R1, R3, R4 , and R6; (1,2) is in R1 and R6; (2,1) is in R2, R5, 

and R6; (1, −1) is in R2 , R3 , and R6 ; and finally, (2,2) is in R1 , R3 , and R4 . 

 

 Example 21: Let A = {a1, a2, 3} and B = {b1, b2, b3, b4, b5}. Which ordered pairs are in 

the relation R represented by the matrix. 

MR =  

Solution:  R = {(a1,b2), (a2,b1), (a2,b3), (a2,b4), (a3,b1), (a3,b3), (a3,b5)}. 

 

 Example 22:What are the ordered pairs in the R represented by the directed graph:  

 

Solution: The ordered pairs (x, y) in the relation are 

R = {(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)}. 

Each of these pairs corresponds to an edge of the directed graph, with (2, 2) and (3, 3) 

corresponding to loops. 
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 Example 23: How many different relations are there from a set with m elements to a set 

with n elements? 

Solution: There are mn elements of the set A x B, if A is a set with m elements and B is a 

set with n elements. A relation from A to B is a subset of A x B. Thus the question asks for 

the number of subsets of the set A x B, which has mn elements.  

Therefore by the product rule, it is 2mn. 

 

 Example 24: How many relations are there on a set with n elements. 

 

 

 

 Properties of a Relation  

1. Reflexive Relation: Relation R on a set A is called reflexive if (a,a)R for every element a 

A. 

 A relation is reflexive if, we observe that for all values a:   aRa 

 In other words, all values are related to themselves. 

 A relation R is said to be not reflexive if there exist at least one element a A such that 

(a,a) R. i.e. a a 

 The relation of equality, "=" is reflexive. In a reflexive relation, we have arrows for all 

values in the domain pointing back to themselves. 
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 Note that ≤ and ≥ is reflexive (a ≤ a for any a in R). On the other hand, the relation < or 

> is not reflexive (a < a is false for any a in R). 

 A Relation R is reflexive if all the elements on the main diagonal of MR are equal to 1, 

and the elements off the main diagonal can be either 0 or 1. 

 Every Node has a self-loop. 

                      

 Example: Assume relation Rdiv ={ (a b), if a | b} on A = {1,2,3,4}. Is Rdiv reflexive?  

Rdiv = {(1,1), (1,2), (1,3), (1,4),(2,2), (2,4), (3,3), (4,4)} 

Answer: Rdiv reflexive because (1,1), (2,2), (3,3), and (4,4)  A. 

MRdiv   =  

 Example: Relation Rfun on A = {1,2,3,4} defined as: Rfun = {(1,2),(2,2),(3,3)}. Answer: 

No. Rfun is not reflexive relation since (1,1) and (4,4)  Rfun. 

 

2. Irreflexive Relation: Relation on a set A is called irreflexive if (a, a) R for every 

element a A. 

 A relation is Irreflexive if, we observe that for all values a:   aRa does not hold 

 The relation R = {(a, b), (b, a)} on set X = {a, b} is irreflexive. 

 A relation R is reflexive if and only if Matrix representation (MR) has 0 in every 

position on its main diagonal. 

 No node has a self-loop. 

       

 Example: Assume relation R≠ on A = {1,2,3,4}, such that aR≠b if and only  if a ≠ b. 
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R≠ = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

Answer: R≠ irreflexive Because (1,1),(2,2),(3,3) and (4,4)  R≠. 

 Example: Let A = {1,2,3,4} and  Rfun= {(1,2),(2,2),(3,3)}.Is Rfun irreflexive? 

Answer: No, Because (2,2) and (3,3)  Rfun. 

 

3. Symmetric Relation: Relation R on a set A is called symmetric if (b, a)  R whenever 

(a, b)  R  a, b  A.        i. e. ∀ (a, b) ∈ A (a,b) ∈ R → (b,a) ∈ R. 

 A relation is symmetric if, we observe that for all values of a & b: a R b implies b R a 

 The relation of equality is symmetric. If x = y, we can also write that y = x also. 

 Relation R is symmetric if and only if mij = mji, for all pairs of integers i and j.  

 Recalling the definition of the transpose of a matrix, we see that R is symmetric if and 

only if MR=(MR)t, that is, if MR is a symmetric matrix. 

 Neither ≤ nor < is symmetric (2 ≤ 3 and 2 < 3 but neither 3 ≤ 2 nor 3 < 2 is true). 

 Example: Let Rdiv ={(a b), if a | b} on A = {1,2,3,4}. Is Rdiv symmetric? 

Rdiv = {(1,1), (1,2), (1,3), (1,4),(2,2), (2,4), (3,3), (4,4)} 

Answer: No. It is not symmetric since (1,2)  R but (2,1)  R. 

 

 

 

 

  

 Example: Assume relation R≠ on A={1,2,3,4}, such that a R≠ b if and only  if a ≠ b. 

R≠ = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

Answer: R≠ symmetric, If (a,b) ∈ R≠ →(b,a) ∈ R≠ 

MR =   

 Example: Relation Rfun on A = {1,2,3,4} defined as: Rfun = {(1,2),(2,2),(3,3)}. Answer: 

No. It is not symmetric relation since (1,2)  Rfun  and (2,1) Rfun. 

 

4. Anti-Symmetric Relation: A relation R on a set A such that for all a, b ∈ A, if (a, b) ∈ R 

and (b, a) ∈ R, then a = b is called antisymmetric. 

 The matrix of an antisymmetric relation has the property that if mij =1 then mji = 0 for  

i ≠ j. Or, in other words, either mij = 0 or mji = 0 when i ≠ j. 
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 No link is Bidirectional. 

 

 

 

 
 

 Example: Let A = {1,2,3,4} and R = {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)} Is R 

antisymmetric? 

Answer: It is not antisymmetric since it includes both (2, 3) and (3, 2), but 2 ≠ 3.  

 Example: Let A = {1,2,3,4} and  Rfun= {(1,2),(2,2),(3,3)}.Is Rfun antisymmetric? 

Answer: Yes Rfun antisymmetric since there are no cases of (a, b) and (b, a) in Rfun. 

MRfun   =    

Imp Notes: 

 A relation is symmetric if and only if a is related to b implies that b is related to a.  

 A relation is antisymmetric if and only if there are no pairs of distinct elements a and b 

with a related to b and b related to a.  That is, the only way to have a related to b and b 

related to a is for a and b to be the same element.  

 The terms symmetric and antisymmetric are not opposites, because a relation can have 

both of these properties or may lack both of them.  A relation cannot be both symmetric 

and antisymmetric if it contains some pair of the form (a, b), where a = b. 

 

5. Asymmetric Relation: Relation R on a set A is called asymmetric if (a, b)R implies that 

(b, a) R  a,bA. 

 

6. Transitive Relation: Relation R on a set A is called transitive if whenever (a, b) R and 

(b, c)R, then (a, c)R for a, b, cA. 

 The relation R = {(1, 2), (2, 3), (1, 3)} on set A = {1, 2, 3} is transitive. 
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 The relation greater-than ">" is transitive. If x > y, and y > z, then it is true that x > z. 

This becomes clearer when we write down what is happening into words. x is greater 

than y and y is greater than z. So x is greater than both y and z. 

 The relation is-not-equal "≠" is not transitive. If x ≠ y and y ≠ z then we might have x = 

z or x ≠ z (for example 1 ≠ 2 and 2 ≠ 3 and 1 ≠ 3 but 0 ≠ 1 and 1 ≠ 0 and 0 = 0). 

 Example: Assume relation Rdiv = {(a b), if a|b} on A = {1,2,3,4}. Is Rdiv transitive?  

Rdiv = {(1,1), (1,2), (1,3), (1,4),(2,2), (2,4), (3,3), (4,4)} 

Answer: Yes Rdiv is transitive relation. 

 Example: Assume relation R≠ on A = {1,2,3,4} such that aR≠b if and only  if a ≠ b. 

R≠ = {(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} 

Answer: R≠ is not transitive relation since (1,2)  R≠  & (2,1)  R≠  but (1,1)  R≠. 

 

7. Equivalence Relation: A relation is an equivalence relation if it is reflexive, symmetric, 

and transitive. 

 Two elements a & b that are related by an equivalence relation are called equivalent.  

 The notation a ∼ b or "a ≡ b" is often used to denote that a and b are equivalent 

elements with respect to a particular equivalence relation. 

 Example: The relation R = {(1, 1), (2, 2), (3, 3), (1, 2), (2,1), (2,3), (3,2), (1,3), (3,1)} 

on set A = {1, 2, 3} is an equivalence relation since it is reflexive, symmetric, and 

transitive. 

 Equivalence Classes 

 Let R be an equivalence relation on a set A. The set of all elements that are related to an 

element a of A is called the equivalence class of a.  

 The equivalence class of a with respect to R is denoted by [a]R .  

 When only one relation is under consideration, we can delete the subscript R and write [a] 

for this equivalence class. In other words, if R is an equivalence relation on a set A, the 

equivalence class of the element a is :           

[a]R = {s ∈ A | (a, s) ∈ R}. 

 Example 25: For each of these relations on the set {1,2,3,4} decide whether it is reflexive, 

symmetric, antisymmetric, and transitive. 

i. {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)} 

ii. {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 

iii. {(2, 4), (4, 2)} 

iv. {(1, 2), (2, 3), (3, 4)} 

v. {(1, 1), (2, 2), (3, 3), (4, 4)} 
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vi. {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)} 

Solution: 

i. {(2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)} 

 The relation is not reflexive, since it does not include, for instance (1, 1) and (4, 4).  

 It is not symmetric, since it includes, for instance, (2, 4) but not (4, 2). And we have (3, 

4), but not have (4, 3). 

 It is not antisymmetric since it includes both (2, 3) and (3, 2), but 2 ≠ 3.  

 It is transitive. To see this we have to check that whenever it includes (a,b) and (b,c), 

then it  also includes (a, c). We can ignore the element 1 since it never appears. If (a, b) 

is in this relation, then by inspection we see that a must be either 2 or 3. But (2, c) and 

(3, c) are in the relation for all c ≠ 1; thus (a, c) has to be in this relation whenever (a, b) 

and (b, c) are. This proves that the relation is transitive.  

ii. {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 

 The relation is reflexive, since all the pairs (1, 1), (2, 2), (3, 3), and (4, 4) are in it.  

 It is clearly symmetric, the only nontrivial case to note being that both (1, 2) and (2, 1) 

are in the relation.  

 It is not antisymmetric because both (1, 2) and (2, 1) are in the relation.  

 It is transitive; the only nontrivial cases to note are that since both (1, 2) and (2, 1) are 

in the relation, we need to have (and do have) both (1, 1) and (2, 2) included as well. 

iii. {(2, 4), (4, 2)} 

 The relation clearly is not reflexive and clearly is symmetric. It is not antisymmetric 

since both (2, 4) and (4, 2) are in the relation.  

 It is not transitive, since although (2,4) and (4,2) are in the relation, (2,2) is not. 

iv. {(1, 2), (2, 3), (3, 4)} 

 This relation is clearly not reflexive. It is not symmetric, since, for instance, (1, 2) is 

included but (2, 1) is not.  

 It is antisymmetric, since there are no cases of (a, b) and (b, a) both being in the 

relation.  

 It is not transitive, since although (1, 2) and (2, 3) are in the relation, (1, 3) is not 

v. {(1, 1), (2, 2), (3, 3), (4, 4)} 

 This relation is clearly reflexive and symmetric.  

 It is trivially antisymmetric since there are no pairs (a, b) in the relation with a ≠ b.  

vi. {(1, 3), (1, 4), (2, 3), (2, 4), (3, 1), (3, 4)} 

 This relation is clearly not reflexive.  

 The presence of (1,4) and absence of (4, 1) shows that it is not symmetric.  
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 The presence of both (1, 3) and (3, 1) shows that it is not antisymmetric.  

 It is not transitive; both (2, 3) and (3, 1) are in the relation, but (2, 1) is not. 

 

 Example 26: Suppose that the relation R on a set is represented by the matrix. 

MR =   

Is R reflexive, symmetric, and/or antisymmetric? 

Solution: Because all the diagonal elements of this matrix are equal to 1, R is reflexive. 

Moreover, because MR is symmetric, it follows that R is symmetric. It is also easy to see 

that R is not antisymmetric. 

 

 Example 27: Determine whether the relations for the directed graphs shown in figure 

below are reflexive, symmetric, antisymmetric, and/or transitive. 

 

From Fig (a) for Directed Graph of R 

 Relation R is reflexive because there are loops at every vertex of the graph of R. 

 Relation R is neither symmetric nor antisymmetric because there is an edge from a to b 

but not one from b to a, but there are edges in both directions connecting b and c.  

 Relation R is not transitive because there is an edge from a to b and an edge from b to c, 

but no edge from a to c. 

From Fig (b) for Directed Graph of S. 

 Relation S is not reflexive because loops are not present at all the vertices of the 

directed graph of S. 

 It is symmetric and not antisymmetric, because every edge between distinct vertices is 

accompanied by an edge in the opposite direction.  

 It is also not hard to see from the directed graph that S is not transitive, because (c, a) 

and (a, b) belong to S, but (c, b) does not belong to S. 

 

 Example 28:    

i. Let R be the relation on the set of real numbers such that aRb if and only if a−b is an 

integer. Is R an equivalence relation? 
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Solution: Because a−a =0 is an integer for all real numbers a, aRa for all real numbers 

a. Hence, R is reflexive.  

Now suppose that aRb. Then a−b is an integer, so b−a is also an integer. Hence, bRa. It 

follows that R is symmetric.  

If aRb and bRc, then a−b and b–c are integers. Therefore, a−c=( −b)+(b−c) is also an 

integer. Hence, aRc. Thus, R is transitive.  

Consequently, R is an equivalence relation. 

ii. Consider the relation on A= {1,2,3,4,5,6}. R= {(i, j) | i - j = 2}.  Is R an Equivalences 

Relation? 

Solution: R={(1,3),(3,1),(2,4),(4,2),(3,5),(5,3),(4,6),(6,4)} 

Relation R is not Reflexive as (2,2) is not belong to R. Relation R is Symmetric and not 

Transitive Relation. Therefore is not a Equivalences Relation. 

iii. Consider the relation on A= {1,2,3,4,5,6,7}. R= {(x, y) | x - y is divisible by 3}.  Show 

that R an Equivalences Relation and draw Digraph of R. 

Solution: We know x-x = 0 is divisible by 3 

x R x, For Every x belong to A,  R is Reflexive Relation. 

As,        xRy =  x-y is divisible by 3 

                     =  y-x is also divisible by 3 

                     =  y-z is divisible by 3 

                     =  y R x for (x,y) ∈ A    

Therefore R is Symmetric Relation. 

As, xRy and yRz =  x - y and y - z are divisible by 3 

      =  (x – y) + (y – z) are divisible by 3 

     = (x - z) is divisible by 3 

                           = xRz  

Therefore R is Transitive Relation.      

Therefore R is Equivalences Relation. 

 

 Example 29: Example: Which of these relations on {0, 1, 2, 3} are equivalence relations? 

Determine the properties of an equivalence relation that the others lack. 

a) {(0, 0), (1, 1), (2, 2), (3, 3)} 

b) {(0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)} 

c) {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)} 

d) {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} 

e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)} 
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Solution: a) This is an equivalence relation; it is easily seen to have all three properties. The 

equivalence classes all have just one element. 

b) This relation is not reflexive since the pair (1, 1) is missing. It is also not transitive, since 

the pairs (0, 2) and (2, 3) are there, but not (0, 3). 

c) This is an equivalence relation. The elements 1 and 2 are in the same equivalence class; 

0 and 3 are each in their own equivalence class. 

d) This relation is reflexive and symmetric, but it is not transitive. The pairs (1, 3) and (3, 

2) are present, but not (1, 2). 

e) This relation would be an equivalence relation were the pair (2, 1) present. As it is, its 

absence makes the relation neither symmetric nor transitive. 

 

 Example 30: Consider the following relations on {1, 2, 3, 4}: 

i. R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}, 

ii. R2 = {(1, 1), (1, 2), (2, 1)}, 

iii. R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)}, 

iv. R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)}, 

v. R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}, 

vi. R6 = {(3, 4)}. 

Which of these relations are reflexive, symmetric, antisymmetric and transitive? 

Solution:  

Relation Reflexive Symmetric Antisymmetric Asymmetric Transitive 

R1    Y  

R2  Y    

R3 Y Y    

R4   Y Y Y 

R5 Y  Y  Y 

R6   Y Y Y 

 

 Closures of Relations: 

 Definition: The closure of a relation R with respect to property P is the relation obtained 

by adding the minimum number of ordered pairs to R to obtain property P. 

 In terms of the digraph representation of R 

 To find the reflexive closure - add loops. 

 To find the symmetric closure - add arcs in the opposite direction. 

 To find the transitive closure - if there is a path from a to b, add an arc from a to b. 
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 Note: Reflexive and symmetric closures are easy. Transitive closures can be very 

complicated. 

 

1. Reflexive Closures 

 The relation R = {(1, 1), (1, 2), (2, 1), (3, 2)} on the set A = {1, 2, 3} is not reflexive.  

 How can we produce a reflexive relation containing R that is as small as possible? This 

can be done by adding (2, 2) and (3, 3) to R, because these are the only pairs of the 

form (a, a) that are not in R. 

 This new relation contains R. Furthermore, any reflexive relation that contains R must 

also contain (2, 2) and (3, 3).  

 Because this relation contains R, is reflexive, and is contained within every reflexive 

relation that contains R, it is called the reflexive closure of R. 

 As this example illustrates, given a relation R on a set A, the reflexive closure of R can 

be formed by adding to R all pairs of the form (a, a) with a ∈ A, not already in R.  

 The addition of these pairs produces a new relation that is reflexive, contains R, and is 

contained within any reflexive relation containing R.  

 We see that the reflexive closure of R equals R ∪ Δ, where Δ= {(a, a) | a ∈ A} is the 

diagonal relation on A. 

 Add loops to all vertices on the digraph representation of R. 

 Put 1’s on the diagonal of the connection matrix of R. 

                      

2. Symmetric Closure 

 The relation {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)} on {1, 2, 3} is not symmetric.  

 How can we produce a symmetric relation that is as small as possible and contains R? 

To do this, we need only add (2, 1) and (1, 3), because these are the only pairs of the 

form (b, a) with (a, b) ∈ R that are not in R.  

 This new relation is symmetric and contains R. Furthermore, any symmetric relation 

that contains R must contain this new relation, because a symmetric relation that 

contains R must contain (2, 1) and (1, 3). Consequently, this new relation is called the 

symmetric closure of R. 
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 As this example illustrates, the symmetric closure of a relation R can be constructed by 

adding all ordered pairs of the form (b, a), where (a, b) is in the relation, that are not 

already present in R.  

 Adding these pairs produces a relation that is symmetric, that contains R, and that is 

contained in any symmetric relation that contains R.  

 The symmetric closure of a relation can be constructed by taking the union of a 

relation with its inverse that is, R ∪ R−1 is the symmetric closure of R, where R−1 = 

{(b, a) | (a, b) ∈ R}.  

 Reverse all the arcs in the digraph representation of R. 

 Take the transpose MT of the connection matrix M of R.   

                            

 Example 31:  Let R be the relation on the set A = {0, 1, 2, 3} R= {(0, 1), (1, 1), (1, 2), (2, 

0), (2, 2), (3, 0)}. Find reflexive closure and symmetric closure of R. 

Solution:  The reflexive closure R = R ∪ Δ, where Δ= {(a, a) | a ∈ A}. 

R = {(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)} 

Therefore Δ = {(0, 0), (1, 1), (2, 2), (3, 3)}. 

R = R ∪ Δ = {(0, 0),(0, 1),(1, 1),(1, 2),(2, 0),(2, 2),(3, 0),(3, 3)}. 

The symmetric closure of R = R ∪ R−1, where R−1 = {(b, a) | (a, b) ∈ R}.  

R = {(0, 1), (1, 1), (1, 2), (2, 0), (2, 2), (3, 0)} 

R−1 = {(1, 0), (1, 1), (2, 1), (0, 2), (2, 2), (0, 3)} 

R = R ∪ R−1 = { (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0),(2 ,1), (2, 2), (3, 0)}. 

 

 Example 32: Let R be the relation {(a, b) | a divides b} on the set of integers. What is the 

symmetric closure of R? 

Solution: To form the symmetric closure we need to add all the pairs (b, a) such that (a, b) 

is in R.  

In this case, that means that we need to include pairs (b, a) such that a divides b, which is 

equivalent to saying that we need to include all the pairs (a, b) such that b divides a.  

Thus the closure is { (a, b) | a divides b or b divides a } 

 

 Example 33: Draw the directed graph of the reflexive closure and Symmetric closure of 

the relations with the directed graph shown. 
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Solution: Reflexive closure: 

Add loops to all vertices on the digraph representation of R. 

Put 1‟s on the diagonal of the connection matrix of R. 

   

Symmetric closure: 

Reverse all the arcs in the digraph representation of R 

Take the transpose MT of the connection matrix M of R 

 

3. Transitive Closure 

 Suppose that a relation R is not transitive.  

 How can we produce a transitive relation that contains R such that this new relation is 

contained within any transitive relation that contains R?  

 Can the transitive closure of a relation R be produced by adding all the pairs of the form 

(a, c), where (a, b) and (b, c) are already in the relation?  

 Consider the relation R = {(1, 3), (1, 4), (2, 1), (3, 2)} on the set {1, 2, 3, 4}.  

 This relation is not transitive because it does not contain all pairs of the form (a, c) 

where (a, b) and (b, c) are in R.  

 The pairs of this form not in R are (1, 2), (2, 3), (2, 4), and (3, 1).  

 Adding these pairs does not produce a transitive relation, because the resulting relation 

contains (3, 1) and (1, 4) but does not contain (3, 4).  

 This shows that constructing the transitive closure of a relation is more complicated 

than constructing either the reflexive or symmetric closure.  
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 The transitive closure of a relation can be found by adding new ordered pairs that must 

be present and then repeating this process until no new ordered pairs are needed.  

 

 Paths in Directed Graphs 

 Theorem: Let R be a relation on a set A. There is a path of length n, where n is a 

positive integer, from a to b if and only if (a, b)∈ Rn. 

 Proof: We will use mathematical induction. By definition, there is a path from a to b of 

length one if and only if (a, b) ∈ R, so the theorem is true when n=1. 

BV                                

There is a path of length n+1 from a to b if and only if there exists an x ∈ A, such that 

(a, x) ∈ R (a path of length 1) and (x, b) ∈ Rn is a path of length n from x to b. 

(x,b) ∈ Rn holds due to P(n). Therefore, there is a path of length n +1 from a to b. This 

also implies that (a,b) ∈ Rn+1. 

 Transitive Closures using Paths in Directed Graphs 

 Finding the transitive closure of a relation is equivalent to determining which pairs of 

vertices in the associated directed graph are connected by a path. With this in mind, we 

define a new relation. 

 Theorem 1: Let R be a relation on a set A. The connectivity relation R∗ consists of the 

pairs (a, b) such that there is a path of length at least one from a to b in R. 

 Because Rn consists of the pairs(a, b)such that there is a path of length n from a to b, it 

follows that R∗ is the union of all the sets Rn. In other words, 

 i.e. R∗ = R ∪ R2 ∪ R3 ∪ R4 ∪ R5 ∪…….. ∪ Rn. 

 Theorem 2: The transitive closure of a relation R equals the connectivity relation R*. 

 Theorem 3: Let MR be the zero–one matrix of the relation R on a set with n elements. 

Then the zero–one matrix of the transitive closure R∗ is 

MR
∗ = MR ∨ MR

[2] ∨ MR
[3] ∨···∨ MR

[n] 

 

 Example 34: A = {1,2,3,4} R = {(1,2),(1,4),(2,3),(3,4)}. Find its transitive closure 

Solution: Let R be a relation on a set A and R* be transitive closure. 

R∗ = R ∪ R2 ∪ R3 ∪ R4  
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R = {(1,2),(1,4),(2,3),(3,4)} 

R2=  R.R=  [{(1,2),(1,4),(2,3),(3,4)}] .[{(1,2),(1,4),(2,3),(3,4)] 

R2 = {(1,3),(2,4)} 

R3 = R2.R =  [{(1,3),(2,4)}].[{(1,2),(1,4),(2,3),(3,4)}].          R3 = {(1,4)} 

R4 = R3.R= [{(1,4)}].[{(1,2),(1,4),(2,3),(3,4)]                       R4 = ∅ 

R∗ = R ∪ R2 ∪ R3 ∪ R4 = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}. 

 

 Example 35: If A={1,2,3,4,5},R={(1,2),(3,4),(4,5),(4,1),(1,1)}.Find its transitive closure. 

Solution: Let R be a relation on a set A and R* be transitive closure. 

R∗ = R ∪ R2 ∪ R3 ∪ R4 ∪ R5  

R = {(1,2),(3,4),(4,5),(4,1),(1,1)}. 

R2 = R.R = {(3,5) (3,1),(4,2),(4,1),(1,2),(1,1)} 

R3 = R2.R = {(3,2),(3,1),(4,2),(4,1),(1,1),(1,2)} 

R4 = R3.R = {(3,1),(3,2),(4,1),(4,2),(1,1),(1,2)} 

R5 = R4.R = {(3,1),(3,2),(4,1),(4,2),(1,1),(1,2)} 

R* = {(3,4), (4,5),(3,1),(3,2),(4,1),(4,2),(1,1),(1,2),(3,5)} 

 

 Example 36: Find the zero–one matrix of the transitive closure of the relation R where 

MR =   

Solution: From theorem 3, we have MR
∗ = MR ∨ MR

[2] ∨ MR
[3] 

To find  we have,          = MR ʘ MR =          ʘ    

(1 ∧ 1) ∨ (0 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (0 ∧ 0 ) ∨ (1 ∧ 0) 
(0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 1) (0 ∧ 1 ) ∨ (1 ∧ 0 ) ∨ (0 ∧ 0) 
(1 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (1 ∧ 0) ∨ (1 ∧ 1 ) ∨ (1 ∧ 0) (1 ∧ 1 ) ∨ (1 ∧ 0 ) ∨ (0 ∧ 0) 

 

 1 ∨  0 ∨ 1 0 ∨  0 ∨ 1 1 ∨  0 ∨ 0 
0 ∨  0 ∨ 0 0 ∨  1 ∨ 0 0 ∨  0 ∨ 0 
1 ∨  0 ∨ 0 0 ∨  1 ∨ 0 1 ∨  0 ∨ 0 

 

= MR ʘ MR =       

 

To find  we have,  =  ʘ MR =         ʘ    
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(1 ∧ 1) ∨ (1 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 0) ∨ (1 ∧ 1 ) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (1 ∧ 0 ) ∨ (1 ∧ 0) 
( 0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 1) (0 ∧ 0) ∨ (1 ∧ 1 ) ∨ (0 ∧ 1) (0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 0) 
(1 ∧ 1 ) ∨ (1 ∧ 0) ∨ (1 ∧ 1) (1 ∧ 0) ∨ (1 ∧ 1 ) ∨ (1 ∧ 1) (1 ∧ 1) ∨ (1 ∧ 0) ∨ (1 ∧ 0) 

 

 1 ∨ 0 ∨ 1 0 ∨ 1 ∨ 1 1 ∨ 0 ∨ 0 
0 ∨ 0 ∨ 0 0 ∨ 1 ∨ 0 0 ∨ 0 ∨ 0 
1 ∨ 0 ∨ 1 0 ∨ 1 ∨ 1 1 ∨ 0 ∨ 0 

 

=        

 

MR
∗ = MR ∨ MR

[2] ∨ MR
[3] =         ∨        ∨    

 

MR
∗ =   

 Transitive Closures using Warshall’s Algorithm 

 Warshall's algorithm determines whether there is a path between any two nodes in the 

graph. It does not give the number of the paths between two nodes.  

 Idea: Compute all paths containing node 1, then all paths containing nodes 1 or 2 or 1 

and 2, and so on, until we compute all paths with intermediate nodes selected from the 

set {1, 2, … n}. 

 Warshall’s algorithm is an efficient method of finding the adjacency matrix of the 

transitive closure of relation R on a finite set S from the adjacency matrix of R. It uses 

properties of the digraph D, in particular, walks of various lengths in D. 

 Warshall’s algorithm Step: 

1. We have |A| = n. Therefore We require W0, W1,W2,W3,…….Wn Warshall sets 

W0 = Relation Matrix of R = MR. 

2. To find transitive closure of relation R on set A, with |A| = n, compute Wk from Wk-

1 by using following steps:  

a) Copy 1 to all entries in Wk from Wk-1, where there is 1 in Wk-1. 

b) Find the row numbers R1, R2, R3,….. for which there is 1 in column k in Wk-1 

and column numbers C1, C2, C3,….. for which there is 1 in row k in Wk-1. 

c) Mark entries in Wk as 1 for (Ri,Ci). If there are not already 1. 

3. Stop the procedure when Wn is obtained and its gives required transitive closure. 
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 Example 37: Use Warshall Algorithm to find the transitive closures, where A = {1, 2, 3, 4, 

5, 6} and R = {(1,3), (2,4), (3,1), (3,5), (4,2), (4,6), (5,3), (6,4)} 

Solution: Step 1: |A| = 6.  

We have to find W0, W1, W2, W3, W4, W5 and W6 Warshall sets. 

W0 = 

[  
   

]  
    

Step 2: To find W1 from W0, Consider the first column and first row. 

In R1: 1 is present at C3. 

In C1: 1 is present at R3. 

Thus add new entry in W1 at (R3,C3) =1. 

W1 = [  
   

]  
    

Step 3: To find W2 from W1, Consider the second column and second row. 

In R2: 1 is present at C4. 

In C2: 1 is present at R4. 

Thus add new entry in W2 at (R4,C4) =1. 

   W2 = [  
   

]  
    

Step 4: To find W3 from W2, Consider the third column and third row. 

In R3: 1 is present at C1, C3, C5. 

In C3: 1 is present at R1, R3, R5. 

Thus add new entry in W3 at (R1,C1), (R1,C3), (R1,C5), (R3,C1), (R3,C3), (R3,C5), 

(R5,C1), (R5,C3), (R5,C5) =1. 
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  W3 = [  
   

]  
    

Step 5: To find W4 from W3, Consider the fourth column and fourth row. 

In R4: 1 is present at C2, C4, C6. 

In C4: 1 is present at R2, R4, R6. 

Thus add new entry in W4 at (R2,C2), (R2,C4), (R2,C6), (R4,C2), (R4,C4), (R4,C6), 

(R6,C2), (R6,C4), (R6,C6) =1. 

W4 = [  
   

]  
    

Step 6: To find W5 from W4, Consider the fifth column and fifth row. 

In R5: 1 is present at C1, C3, C5. 

In C5: 1 is present at R1, R3, R5. 

Thus add new entry in W5 at (R1,C1), (R1,C3), (R1,C5), (R3,C1), (R3,C3), (R3,C5), 

(R5,C1), (R5,C3), (R5,C5) =1. 

W5 = [  
   

]  
    

Step 7: To find W6 from W5, Consider the six column and six row. 

In R6: 1 is present at C2, C4, C6. 

In C6: 1 is present at R2, R4, R6. 

Thus add new entry in W6 at (R2,C2), (R2,C4), (R2,C6), (R4,C2), (R4,C4), (R4,C6), 

(R6,C2), (R6,C4), (R6,C6) =1. 
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W6 = [  
   

]  
    

Hence W6 is the transitive closure 

R* = {(1,1), (1,3), (1,5), (2,2), (2,4), (2,6), (3,1), (3,3), (3,5), (4,2), (4,4), (4,6), (5,1), (5,3) 

(5,5), (6,2), (6,4), (6,6)} 

 

 Example 38: Use Warshall Algorithm to find the transitive closures of these relations on 

{1, 2, 3, 4}: R = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)} 

Solution: Step 1: |A| = 4.  

We have to find W0, W1, W2, W3 and W4 Warshall sets. 

  R = {(1, 2), (2, 1), (2, 3), (3, 4), (4, 1)} 

W0 = [ ] 

Step 2: To find W1 from W0, Consider the first column and first row. 

In R1: 1 is present at C2 

In C1: 1 is present at R2, R4. 

Thus add new entry in W1 at (R2,C2), (R4,C2) =1 

 W1 = [ ] 

Step 3: To find W2 from W1, Consider the second column and second row. 

In R2: 1 is present at C1, C2, C3 

In C2: 1 is present at R1, R2, R4. 

Thus add new entry in W2 at (R1,C1), (R1,C2), (R1,C3), (R2,C1) (R2,C2), (R2,C3), 

(R4,C1), (R4,C2), (R4,C3)  = 1. 

W2 = [ ] 

Step 4: To find W3 from W2, Consider the third column and third row. 

In R3: 1 is present at C4 
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In C3: 1 is present at R1, R2, R4. 

Thus add new entry in W3 at (R1,C4), (R2,C4), (R4,C4) = 1 

W3 = [ ] 

Step 5: To find W4 from W3, Consider the fourth column and fourth row. 

In R4: 1 is present at C1, C2, C3, C4 

In C4: 1 is present at R1, R2, R3, R4. 

Thus add new entry in W4 at (R1,C1),(R1,C2),(R1,C3),(R1,C4),(R2,C1),(R2,C2), (R2,C3) 

, (R2,C4), (R3,C1),(R3,C2), (R3,C3), (R3,C4), (R4,C1), (R4,C2), (R4,C3), (R4,C4) = 1. 

W4 = [ ] 

 Example 39: Use Warshall Algorithm to find the transitive closures of these relations on  

A = {1, 2, 3, 4} 

a) R = {(2, 1), (2, 3), (3, 1), (3, 4), (4, 1), (4, 3)} 

 

b) R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

 

c) R = {(1, 1), (1, 4), (2, 1), (2, 3), (3, 1), (3, 2), (3, 4), (4, 2)} 

 

 Example 40: Find the transitive closure of the relation R on  A={1, 2, 3, 4)  defined  by R 

= {(1,2), (1,3), (1,4), (2,1), (2,3), (3,4), (3,2), (4,2),(4,3)}. 

 Example 41: Warshall's algorithm to compute the transitive closure of R∪S for the 

relations R and S defined on A = {1,2,3,4} described as: 
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 Partition of a Set 

 A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their 

union.  

 In other words, the collection of subsets Ai, i ∈ I (where I is an index set) forms a partition 

of S if and only if: 

Ai  ≠ ∅ for i ∈ I, 

Ai ∩ Aj = ∅ when i ≠ j, 

And  ⋃  

 

 

 Example 42: Suppose that S = {1, 2, 3, 4, 5, 6}. The collection of sets A1 = {1, 2, 3}, A2 = 

{4, 5}, and A3 = {6} forms a partition of S, because these sets are disjoint and their union 

is S. i.e. 1) A1, A2, A3 are Non Empty Sets. 

            2)  A = A1 U A2 U A3   And  

       3) A1 ∩ A2 = ∅    A1 ∩ A3 = ∅      A2 ∩ A3 = ∅     

Hence { A1, A2, A3 } form a partition for set A. 

 

 Partial Orderings 

 A relation R on a set S is called a partial ordering or partial order if it is reflexive, 

antisymmetric, and transitive.  

 A set S together with a partial ordering R is called a partially ordered set, or POSET, and is 

denoted by (S, R). 

 Members of S are called elements of the POSET. 

 Partial orderings are used to give an order to sets that may not have a natural one. 

 Let S = {1,2,3,4,5,6} and R = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (6,1), (6,4), (1,4), (6,5), 

(3,4), (6,2)}. Then R is partial order on S, and (S,R) is a poset. 

 

 Example 43: Show that the “greater than or equal” relation (≥) is a partial ordering on the 

set of integers. 
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Solution:  

 Because a ≥ a for every integer a, ≥ is reflexive.  

 If a ≥ b and b ≥ a, then a = b. Hence, ≥ is antisymmetric.  

 Finally, ≥ is transitive because a ≥ b and b ≥ c imply that a ≥ c. 

 It follows that ≥ is a partial ordering on the set of integers and (Z, ≥) is a poset. 

 Example 44: Is the “divides” relation on the set of positive integers reflexive, symmetric 

and transitive? 

Solution: 

 Because a | a whenever a is a positive integer, the “divides” relation is reflexive. (Note 

that if we replace the set of positive integers with the set of all integers the relation is 

not reflexive because by definition 0 does not divide 0.) 

 This relation is not symmetric because 1| 2, but 2  1. It is antisymmetric, for if a and 

b are positive integers with a | b and b | a, then a = b. 

 Suppose that a divides b and b divides c. Then there are positive integers k and l such 

that b = ak and c = bl. Hence, c = a(kl), so a divides c. It follows that this relation is 

transitive. 

 Example 45: The divisibility relation | is a partial ordering on the set of positive integers, 

because it is reflexive, antisymmetric, and transitive, as shown in above example. We see 

that (Z+, |) is a poset. Recall that (Z+ denotes the set of positive integers.) 

 Example 46: Show that the inclusion relation ⊆ is a partial ordering on the power set of a 

set S. 

Solution: Because A ⊆ A whenever A is a subset of S,⊆ is reflexive. It is antisymmetric 

because A ⊆ B and B ⊆ A imply that A = B. Finally, ⊆ is transitive, because A ⊆ B and B ⊆ C imply that A ⊆ C. Hence, ⊆ is a partial ordering on P(S), and (P (S),⊆) is a poset. 

 Example 47: Let R be the relation on the set of people such that xRy if x and y are people 

and x is older than y. Show that R is not a partial ordering. 

Solution: Relation R is antisymmetric because if a person x is older than a person y, then y 

is not older than x. That is, if (x, y) R, then (y, x) R. 

The relation R is transitive because if person x is older than person y and y is older than 

person z, then x is older than z. That is, if xRy and yRz, then xRz.  

Relation R is not reflexive, because no person is older than himself or herself. i.e (x, x) R 

for all people x. It follows that R is not a partial ordering. 

 Example 48: Let A={0,1,2}and R={(0,0),(0,1),(0,2),(1,1),(1,2),(2,2)}.Show R is a partial 

order relation. 

Solution: The digraph for R on the right implies 
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Reflexive: Loops on every vertex.  

Antisymmetric: No arrows of type (a,b) and (b,a). 

Transitive:(0,1), (1,2) also we have (0,2). 

 

 Partial Orderings Notation 

 A set S together with a partial ordering R is called a partially ordered set, or POSET, 

and is denoted by (S, R). 

 In different posets different symbols such as ≤, ⊆, and |, are used for a partial ordering. 

 Customarily, the notation a ⪯ b is used to denote that (a, b) ∈ R in an arbitrary poset 

(S,R). 

 This notation is used because the “less than or equal to” relation on the set of real 

numbers is the most familiar example of a partial ordering and the symbol ⪯ is similar 

to the ≤ symbol. 

 Note that the symbol ⪯ is used to denote the relation in any poset, not just the “less 

than or equals” relation. 

 The notation a ≺ b denotes that a ⪯ b, but a ≠ b. Also, we say “a is less than b” or “b is 

greater than a” if a ≺ b. 

 Suppose that ⪯ is a partial order on a set S. The relations ⪰, ≺, ≻, ⊥, and ∥ are defined as 

follows: 

  x ⪰ y if and only if y ⪯ x 

 x ≺ y if and only if x ⪯ y and x ≠ y 

 x ≻ y if and only if y ≺ x 

 x ⊥ y if and only if x ⪯ y or y ⪯ x 

 x || y if and only if neither x ⪯ y nor y ⪯ x. 

 Note that ⪰ is the inverse of ⪯, and ≻ is the inverse of ≺. Note also that x ⪯ y if and only 

if either x ≺ y or x = y, so the relation ≺ completely determines the relation ⪯. Finally, 

note that x⊥y means that x and y are related in the partial order, while x || y means that x 

and y are unrelated in the partial order. Thus, the relations ⊥ and || are complements of 

each other, as sets of ordered pairs. 

 

 Basic Properties 

 The inverse of a partial order is also a partial order. 

Proof: Clearly the reflexive, antisymmetric and transitive properties hold for ⪰. 

 If ⪯ is a partial order on S and A is a subset of S, then the restriction of ⪯ to A is a 

partial order on A 
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Proof: The reflexive, antisymmetric, and transitive properties given above hold for all 

x, y, z ∈ S and hence hold for all x, y, z ∈ A. 

 

 Comparable Element 

 The elements a and b of a poset (S,⪯) are called comparable if either a⪯b or  b⪯a. When a 

and b are elements of S such that neither a⪯b nor b⪯a, a and b are called incomparable. 

 In the poset (Z+,|), are the integers 3, 9 and 5, 7 comparable? 

 The integers 3 and 9 are comparable, because 3|9. The integers 5 and 7 are incomparable, 

because 5 7 and 7 5. 

 The adjective “partial” is used to describe partial orderings because pairs of elements may 

be incomparable. When every two elements in the set are comparable, the relation is called 

a total ordering. 

 Total Ordered Set 

 If (S,⪯) is a poset and every two elements of S are comparable, S is called a totally ordered 

Or linearly ordered set, and ⪯ is called a total order or a linear order. A totally ordered set 

is also called a chain. 

 The poset (Z, ≤) is totally ordered, because a ≤ b or b ≤ a whenever a and b are integers.  

 The poset (Z+,|) is not totally ordered because it contains elements that are incomparable, 

such as 5 and 7.Therefore Poset (Z, ⪯) is a chain and (Z+,|) is not a chain. 

 Well-Ordered Set 

 (S,⪯) is a well-ordered set if it is a poset such that ⪯ is a total ordering and every nonempty 

subset of S has a least element. 

 

 Example 49: Which of these relations on {0, 1, 2, 3} are partial orderings? Determine the 

properties of a partial ordering that the others lack. 

a) {(0, 0), (1, 1), (2, 2), (3, 3)} 

b) {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)} 

c) {(0, 0), (1, 1), (1, 2), (2, 2), (3, 3)} 

d) {(0, 0), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)} 

e) {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0),(2, 2), (3, 3)} 

Solution: 

a) Clearly this relation is reflexive because each of 0, 1, 2, and 3 is related to itself.  The 

relation is antisymmetric, because the only way for a to be related to b is for a = b.  

Similarly, the relation is transitive, because if a is related to b, and b is related to c, then 

necessarily a= b = c so a is related to c (because the relation is reflexive).  



   Discrete Mathematics: Unit 2 

Prof. S. B. Shinde [MES College of Engineering, Pune] Page 35 
 

b) This is not a partial ordering, because although the relation is reflexive, it is not 

antisymmetric (we have 2R3 and 3R2, but 2 ≠ 3), &not transitive (3R2 and 2R0, but 3 

is not related to 0). 

c) This is a partial ordering, because it is clearly reflexive; is antisymmetric (we just need 

to note that (1,2) is the only pair in the relation with unequal components); and is 

transitive (for the same reason). 

d) This is a partial ordering because it is the "less than or equal to" relation on {1, 2, 3} 

together with the isolated point 0. 

e) This is not a partial ordering. The relation is clearly reflexive, but it is not antisymmetric 

(0R1 and 1R0, but 0≠1) and not transitive (2R0 and 0R1, but 2 is not related to 1).  

 Example 50:  Which of these are posets? a) (Z, =)      b) (Z, ≠)     c) (Z, ≥)     d) (Z, ) 

a) This is a poset. The only ordered pairs we will have in this relation is (a, a) for all a ∈ 

Z. This would mean that the relation is reflexive, antisymmetric, and transitive. 

b) This is not a poset because it is not reflexive. We cannot have the order pair (a, a) for 

all a ∈ Z. This relation is also not antisymmetric and not transitive. 

c) This is a poset. For reflexive, we can have the ordered pair (a, a) for all a ∈ Z. This is 

also antisymmetric because consider the ordered pair (a, b) and a = b, this would mean 

that a > b. If this is the case, then b>a is not true and you cannot have (b, a). This is also 

transitive because if a > b, b>c, and a =b=c. Then it follows that a>c for all a, b, c ∈ Z. 

d) This is not a poset because it is not reflexive. Consider 2  2, since this is not true, we 

cannot have (2, 2). This relation is also not antisymmetric and not transitive. 

 

 Hasse Diagram  

 A Hasse Diagram is a type of mathematical diagram used to represent a finite partially 

ordered set, in the form of a drawing of its transitive reduction. A visual representation of a 

partial ordering. 

 Procedure to Draw Hasse Diagram: 

1. Start with the directed graph for this relation. Because a partial ordering is reflexive, a 

loop (a, a) is present at every vertex a. Remove these loops.  

2. Next, remove all edges that must be in the partial ordering because of the presence of 

other edges and transitivity. That is, remove all edges(x,y) for which there is an element 

z ∈ S such that x≺ z and z ≺ x. 

3. Finally, arrange each edge so that its initial vertex is below its terminal vertex. 

4. Remove all the arrows on the directed edges, because all edges point “upward” toward 

their terminal vertex. 
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 Example 51: Consider the directed graph for the partial ordering {(a, b) | a ≤ b} on the set 

{1,2,3,4}, shown in Figure (a) and draw Hasse Diagram for it. 

Solution:  

Because this relation is a partial ordering, it is reflexive, and its directed graph has loops at 

all vertices. Consequently, we do not have to show these loops because they must be 

present; in Figure (b) loops are not shown.  

Because a partial ordering is transitive, we do not have to show those edges that must be 

present because of transitivity. For example, in Figure (c) the edges (1,3), (1,4), and (2,4) 

are not shown because they must be present.  

If we assume that all edges are pointed “upward” (as they are drawn in the figure), we do 

not have to show the directions of the edges; Figure (c) does not show directions. 

 

Fig: Constructing the Hasse Diagram for ({1,2,3,4},≤). 

 Example 52: Draw the Hasse diagram representing the partial ordering {(a, b)|a divides b} 

on {1, 2, 3, 4, 6, 8, 12}. 

Solution: 

R={(1,1),(1,2),(1,3),(1,4),(1,6),(1,8),(1,12),(2,2),(2,4),(2,6),(2,8),(2,12),(3,3),(3,6),(3,12),(4

,4),(4,8),(4,12),(6,6),(6,12),(8,8),((12,12)}. 

Begin with the digraph for this partial order, as shown in Fig (a). Remove all loops, as 

shown in Fig (b).  

Then delete all the edges implied by the transitive property. These are (1,4), (1,6), (1,8), 

(1,12), (2,8), (2,12), and (3,12).  

Arrange all edges to point upward, and delete all arrows to obtain the Hasse diagram.  

The resulting Hasse diagram is shown in Fig (c). 
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 Example 53: Draw the Hasse diagram for divisibility on the set (Homework for Students) 

a) {1, 2, 3, 4, 5, 6}  

b) {3, 5, 7, 11, 13, 16, 17} 

c) {2, 3, 5, 10, 11, 15, 25}  

d) {1, 3, 9, 27, 81, 243} 

 Example 54: Draw the Hasse diagram for divisibility on the set 

a) {1, 2, 3, 4, 5, 6, 7, 8} 

b) {1, 2, 3, 5, 7, 11, 13} 

c) {1, 2, 3, 6, 12, 24, 36, 48} 

d) {1, 2, 4, 8, 16, 32, 64} 

e) {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} 

Solution: 

We put x above y if y divides x.  

We draw a line between x and y, where y divides x, if there is no number z in our set, other 

than x or y, such that y | z /\ z | x.  

Note that in part (b) the numbers other than 1 are all (relatively) prime, so the Hasse 

diagram is short and wide,  

Whereas in part (d) the numbers all divide one another, so the Hasse diagram is tall and 

narrow. 
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 Chain and Anti Chain 

 A chain in a poset P is a subset C ⊆ P such that any two elements in C are comparable. 

 An antichain in a poset P is a subset A ⊆ P Such that no two elements in A are 

comparable. 

 

 Elements of POSETS 

 Maximal Elements:  

 Let (A,⪯) be a poset. Then a ∈ A is maximal in the poset if there is no element b ∈ A 

such that a ≺ b. 

 Minimal Elements: 

 Let (A,⪯) be a poset. Then a ∈ A is minimal in the poset if there is no element b ∈ A 

such that b ≺ a. 

 Maximal and Minimal elements are easy to spot using a Hasse diagram. They are the 

“top” and “bottom” elements in the diagram. There can be more than one minimal and 

maximal element in a poset. 

 Greatest Element:  

 Let (A,⪯) be a poset. Then a ∈ A is the greatest element if for every element b ∈ A, 

b⪯a. 
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 Least Element:  

 Let (A,⪯) be a poset. Then a ∈ A is the least element if for every element b ∈ A, a⪯b. 

 Upper Bound: 

 Let S ⊆ A in the poset (A,⪯). If there exists an element u ∈ A such that s ⪯ u for all s ∈ 

S, then u is called an upper bound of S. 

 Lower Bound: 

 Let S ⊆ A in the poset (A,⪯). If there exists an element l ∈ A such that l ⪯ s for all s ∈ 

S, then l is called a lower bound of S. 

 Least Upper Bound:   

 If a is an upper bound of S such that a ⪯ u for all upper bound u of S then a is the least 

upper bound of S, denoted by lub(S). 

 Greater Lower Bound: 

 If a is a lower bound of S such that l ⪯ a for all lower bound l of S then a is the greatest 

lower bound of S, denoted by glb(S). 

 

 Example 55: Which elements of the poset ({2, 4, 5, 10, 12, 20, 25},|) are maximal, and 

which are minimal? 

Solution: The Hasse diagram in figure for this poset shows that the maximal elements are 

12, 20, and 25, and the minimal elements are 2 and 5. As this example shows, a poset can 

have more than one maximal element and more than one minimal element. 

 

 Example 56: Determine whether the posets represented by each of the Hasse diagrams in 

below figure have a greatest element and a least element. 

 

Solution: The least element of the poset with Hasse diagram (a) is a. This poset has no 

greatest element.  

The poset with Hasse diagram (b) has neither a least nor a greatest element.  
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The poset with Hasse diagram (c) has no least element. Its greatest element is d.  

The poset with Hasse diagram (d) has least element a and greatest element d. 

 Example 57: Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, 

f} in the poset with the Hasse diagram shown in figure below. 

Solution: The upper bounds of {a, b, c} are e, f, j, and h, and its only lower bound is a. 

There are no upper bounds of {j, h}, and its lower bounds are a, b, c, d, e, and f. The upper 

bounds of {a, c, d, f} are f, h, and j, and its lower bound is a. 

 

 Example 58: Find the glb and the lub of {b, d, g}, if they exist, of Example 57.  

Solution: The upper bounds of {b, d, g} are g and h. Because g ≺ h, g is the lub. The lower 

bounds of {b, d, g} are a and b. Because a≺ b, b is the glb. 

 Example 59: Answer these questions for the poset ({3, 5, 9, 15, 24, 45}, |). 

a. Find the maximal elements. 

b. Find the minimal elements. 

c. Is there a greatest element? 

d. Is there a least element? 

e. Find all upper bounds of {3, 5}. 

f. Find the least upper bound of {3, 5}, if it exists. 

g. Find all lower bounds of {15, 45}. 

h. Find the greatest lower bound of {15, 45}, if it exists. 

Solution: 

a. Maximal elements are those that do not divide any other elements of the set. In this case 

24 and 45 are the only numbers that meet that requirement. 

b. Minimal elements are those that are not divisible by any other elements of the set. In 

this case 3 and 5 are the only numbers that meet that requirement. 

c. There is no greatest element because this element would have to be a number that all 

other elements divide. Since our maximal elements are 24 and 45, and they do not 

divide each other, we do not have a greatest element. 
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d. There is no least element because this element would be a number that can divide all 

other elements. Since our minimal elements are 3 and 5, and they do not divide each 

other, we do not have a least element. 

e. We want to find all elements that both 3 and 5 divide. Clearly only 15 and 45 meet this 

requirement. 

f. The least upper bound is 15 since it divides 45 (see part (e)). 

g. We want to find all elements that divide both 15 and 45. Clearly only 3, 5, and 15 meet 

this requirement. 

h. The number 15 is the greatest lower bound, since both 3 and 5 divide it (see part (g)). 

 Example 60: Answer the questions for the poset ({{1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 

4}, {1, 3, 4}, {2, 3, 4}}, ⊆). 

a. Find the maximal elements  

b. Find the minimal elements. 

c. Is there a greatest element? 

d. Is there a least element? 

e. Find all upper bounds of {{2}, {4}}. 

f. Find the least upper bound of {{2}, {4}}, if it exists. 

g. Find all lower bounds of {{1, 3, 4}, {2, 3, 4}}. 

h. Find the greatest lower bound of {{1, 3, 4}, {2, 3, 4}},if it exists. 

Solution: 

a. The maximal elements are the ones without any elements lying above them in the 

Hasse diagram, namely {1,2}, {1,3,4}, and {2,3,4}. 

b. The minimal elements are the ones without any elements lying below them in the Hasse 

diagram, namely { 1} , { 2} , and { 4} . 

c. There is no greatest element, since there is more than one maximal element, none of 

which is greater than the others. 

d. There is no least element, since there is more than one minimal element, none of which 

is less than the others. 

e. The upper bounds are the sets containing both {2} and {4} as subsets, i.e., the sets 

containing both 2 & 4 as elements. Pictorially, these are the elements lying above both 

{2}&{4} (in the sense of there being a path in the diagram), namely {2,4} & {2,3,4}. 

f. The least upper bound is an upper bound that is less than every other upper bound. We 

found the upper bounds in part (e), and since {2,4} is less than (i.e., a subset of) 

{2,3,4}, we conclude that {2,4} is the least upper bound. 
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g. To be a lower bound of {l, 3, 4} and {2, 3, 4}, a set must be a subset of each, and so 

must be a subset of their intersection, {3, 4}. There are only two such subsets in our 

poset, namely {3, 4} and {4}. In the diagram, these are the points which lie below (in 

the path sense) both {1, 3, 4} and {2, 3, 4}. 

h. The greatest lower bound is a lower bound that is greater than every other lower bound. 

We found the lower bounds in part (g), and since {3,4} is greater than (i.e., a superset 

of) {4}, we conclude that {3,4} is the greatest lower bound. 

 Example 61: Find the following for given poset diagram(HW)  

a. Maximal elements, Minimal elements. 

b. Is there a greatest element 

c. Is there a least element? 

d. Find all upper bounds of {a, b, c}. 

e. Find the least upper bound of {a, b, c}, if it exists. 

f. Find all lower bounds of {f, g, h}. 

g. Find the greatest lower bound of {f, g, h}, if it exists. 

 

 Lattices 

 A poset in which every pair of elements has both a least upper bound and a greatest lower 

bound is called a lattice.  

 A lattice A is called a complete lattice if every subset S of A admits a glb and a lub in A. 

 To show that a partial order is not a lattice, it suffices to find a pair that does not have an 

lub or a glb (i.e., a counter-example) 

 For a pair not to have an lub/glb, the elements of the pair must first be incomparable. 

 You can then view the upper/lower bounds on a pair as a sub-Hasse diagram: If there is no 

maximum/minimum element in this sub-diagram, then it is not a lattice. 

 Lattices have many special properties. Furthermore, lattices are used in many different 

applications such as models of information flow and play an important role in Boolean 

algebra. 

 Example 62: Determine whether the posets with these Hasse diagrams are lattices. 
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Solution:  

Fig a and c are lattices. Fig b is not because, {b,c} has no lub However, it has a glb={a}. 

 Example 63: Determine whether the posets with these Hasse diagrams are lattices. 

                 

(a)                                     (b)                                                        c) 

Solution:  

a) Yes. Every two elements will have a least upper bound and greatest lower bound. 

b) No. If we take the elements b and c, then we will have f, g, and h as the upper bound, but 

none of them will be the least upper bound. 

c) No, because the pair {b,c}does not have a least upper bound. 

 

 Function-Introduction 

 Definition: Let A and B be nonempty sets. A function f from A to B, denoted f: A →B, is 

an assignment of exactly one element of B to each element of A.   

 We write f (a) = b if b is the unique element of B assigned by the function f to the element 

a of A. 

 If f is a function from A to B, we say that A is the domain of f and B is the codomain of f. 

 If f (a) = b, we say that b is the image of a and a is a preimage of b.  

 The range, or image, of f is the set of all images of elements of A. Also, if f is a function 

from A to B, we say that f maps A to B. 
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 When we define a function we specify its domain, its codomain, and the mapping of 

elements 

of the domain to elements in the codomain. 

 Two functions are equal when they have the same domain, have the same codomain, and 

map each element of their common domain to the same element in their common 

codomain. 

 Note that if we change either the domain or the codomain of a function, then we obtain a 

different function. If we change the mapping of elements, then we also obtain a different 

function. 

        

 

 Example 64: Suppose that each student in a discrete mathematics class is assigned a letter 

grade from the set {A,B,C,D, F}. And suppose that the grades are A for Adams, C for 

Chou, B for Goodfriend, A for Rodriguez, and F for Stevens. What are the domain, 

codomain, and range of the function that assigns grades to students? 

 

Solution: Let G be the function that assigns a grade to a student in our discrete mathematics 

class. Note that G(Adams) = A, for instance.  

The domain of G is the set {Adams, Chou, Goodfriend, Rodriguez, Stevens}, and  

The codomain is the set {A,B,C,D, F}.  
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The range of G is the set {A,B,C, F}, because each grade except D is assigned to some 

student. 

 Example 65: Let R be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 

21), (Desire, 22), (Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate 

student and this student‟s age. Specify a function determined by this relation. 

Solution: If f is a function specified by R, then f (Abdul) = 22, f (Brenda) = 24,f (Carla) = 

21, f (Desire) = 22, f (Eddie) = 24, and f (Felicia) = 22.  

(Here, f (x) is the age of x, where x is a student.) For the domain, we take the set {Abdul, 

Brenda, Carla, Desire, Eddie, Felicia}.  

We also need to specify a codomain, which needs to contain all possible ages of students.  

Because it is highly likely that all students are less than 100 years old, we can take the set 

of positive integers less than 100 as the codomain. 

The range of the function we have specified is the set of different ages of these students, 

which is the set {21, 22, 24}. 

 

 Example 66: Let f be the function that assigns the last two bits of a bit string of length 2 or 

greater to that string. For example, f (11010) = 10. Then, the domain of f is the set of all bit 

strings of length 2 or greater, and both the codomain and range are the set {00, 01, 10, 11}. 

 

 Example 67: Let f : Z → Z assign the square of an integer to this integer. Then, f (x) = x2, 

where the domain of f is the set of all integers, the codomain of f is the set of all integers, 

and the range of f is the set of all integers that are perfect squares, namely, {0, 1, 4, 9, . . . }. 

 

 Example 68: If we write (define) a function as:  f(x)=x2 then we say: 'f of x equals x 

squared'  and we have: 

f(-1) = 1  f(1) = 1  f(2) = 4 

f(5) = 25  f(7) = 49                     and so on. 

This function f maps numbers to their squares. 

 

 Type of Function:: 

1. Injective / One-to-one function 

 A function f is said to be one-to-one, or injective, if and only if f(x) = f(y) implies x = y 

for all x, y in the domain of f. A function is said to be an injection if it is one-to-one. 
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 Note that a function f is one-to-one if and only if f(x) ≠ f(y) whenever x ≠ y. This way 

of expressing that f is one-to-one is obtained by taking the contrapositive of the 

implication in the definition. 

 

2. Surjective / Onto function 

 A function f from A to B is called onto, or surjective, if and only if for every b ∈ B 

there is an element a ∈ A such that f(a) = b. 

 

3. Bijective / One-to-one Correspondent 

 A function f is called a bijection if it is both one-to one (injection) and onto (surjection).

 

4. Identity function 

 Let A be a set. The identity function on A is the function iA: A→ A where iA (x) = x. 

 Example: Let A = {1, 2, 3}  Then: 

  iA(1) = 1  iA(2) = 2  and  iA(3) = 3. 

 

5. Inverse functions 

 Let f be a bijection from set A to set B. The inverse function of f is the function that 

assigns to an element b from B the unique element a in A such that f(a) = b.  

 The inverse function of f is denoted by f-1
. Hence, f-1(b) = a, when f(a) = b.  

 If the inverse function of f exists, f is called invertible. 
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 Note: If f is not a bijection then it is not possible to define the inverse function of f. 

Solution: 

Case 1: Assume f is not one-to-one: 

Inverse is not a function. One element of B is mapped to two different elements. 

 

Case 2: Assume f is not onto: 

Inverse is not a function. One element of B is not assigned any value in B. 

 

6. Composition of Functions 

Let g be a function from the set A to the set B and let f be a function from the set B to the 

set C. The composition of the functions f and g, denoted for all a ∈ A by f ◦ g, is defined by 

(f ◦ g)(a) = f (g(a)). 
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In other words, f ◦ g is the function that assigns to the element a of A the element assigned 

by f to g(a). That is, to find (f ◦ g)(a) we first apply the function g to a to obtain g(a) and 

then we apply the function f to the result g(a) to obtain (f ◦ g)(a) = f (g(a)). Note that the 

composition f ◦ g cannot be defined unless the range of g is a subset of the domain of f . In 

figure below the composition of functions is shown. 

 

 Example 69: Let A = {1,2,3} and B = {a, b, c, d} Find (f O g) 

g : A →A 

     1 → 3 

     2 → 1 

     3 → 2 

f: A →B 

1 → b 

2 → a 

3 → d 

 

Solution: 

f O g : A →B:  

           1 → d 

     2 → b 

     3 → a 

 Example 70: Determine whether the function f from{a, b, c, d} to {1,2,3,4,5} with f(a)=4, 

f(b)=5, f(c)=1, and f(d)=3 is one-to-one. 

Solution: The function f is one-to-one because f takes on different values at the four 

elements of its domain. 

 

 Example 71: Determine whether the function f(x)= x2 from the set of integers to the set of 

integers is one-to-one. 

Solution: The function f(x)= x2 is not one-to-one because, for instance, f(1)= f(−1) =1, but 

1≠ −1. 

Note that the function (x)= x2 with its domain restricted to Z+ is one-to-one. 

 Example 72: Identify the following Function. 
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 Example 73: Let f be the function from {a, b, c, d} to {1, 2, 3} defined by f(a)= 3, f(b)= 2, 

f(c)= 1, and f(d)= 3. Is f an onto function? 

Solution: Because all three elements of the codomain are images of elements in the domain, 

we see that f is onto. Note that if the codomain were {1, 2, 3, 4}, then f would not be onto. 

 

 Example 74: Let f be the function from {a, b, c} to {1, 2, 3} such that f(a) = 2, f(b) = 3, 

and f(c) = 1. Is f invertible, and if it is, what is its inverse? 

Solution: The function f is invertible because it is a one-to-one correspondence. The inverse 

function f−1 reverses the correspondence given by f, so f−1(1) = c, f−1(2) = a, and f−1(3) = b. 

 Example 75: Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = 

c, & g(c) = a Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f(a) = 

3, f(b) = 2, and f(c) = 1. What is the composition of (fOg)? 

Solution: The composition f O g is defined by  

(fOg)(a) = f(g(a)) = f(b) = 2,  

(fOg)(b) = f(g(b)) = f(c) = 1, and 

(fOg)(c) = f(g(c)) = f(a) = 3. 

 Example 76: Let f and g be the functions from the set of integers to the set of integers 

defined by f (x) = 2x + 3 and g(x) = 3x + 2. What is the composition of (f Og)? What is the 

composition of (gOf)? 

Solution: Both the compositions (fOg) and (gOf) are defined. Moreover, 

(fOg)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7  

And (gOf)(x) = g(f (x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11 

 Example 77: Let f(x)= x+2, g(x)= x-2 and h(x)=3x for x  R, where R is set of real 

numbers. Find (gOf), (fOg), (fOf), (gOg), (fOh), (hOg), (hOf),(fOhOg) 

Solution:  
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(gOf) = g(f(x)) = g(x+2) = (x+2)-2 = x 

(fOg) = f(g(x)) = f(x-2) = (x-2)+2 = x 

(fOf) = f(f(x)) = f(x+2) = (x+2)+2 = x+4 

(gOg) = g(g(x)) = g(x-2) = (x-2)-2 = x-4 

(fOh) = f(h(x)) = f(3x)  = (3x)+2 = 3x+2 

(hOg) = h(g(x)) = h(x-2) =3(x-2) = 3x-6 

 (hOf) = h(f(x)) = h(x+2) =3(x+2) = 3x+6 

(fOhOg) = fOh(g(x)) = fOh(x-2) =f(h(x-2)) = f(3x-6) = (3x-6)+2 = 3x-4 

 

 Important Note: 

 A one-to-one correspondence is called invertible because we can define an inverse of this 

function. A function is not invertible if it is not a one-to-one correspondence, because the 

inverse of such a function does not exist. 

 When the composition of a function and its inverse is formed, in either order, an identity 

function is obtained. To see this, suppose that f is a one-to-one correspondence from the set 

A to the set B. Then the inverse function f−1 exists and is a one-to-one correspondence from 

B to A. The inverse function reverses the correspondence of the original function, so f −1 

(b) = a when f (a) = b, and f (a) = b when f −1 (b) = a.  

Hence,  (f −1Of)(a) = f−1 (f(a)) = f−1(b) = a, 

And        (fOf −1)(b) = f (f −1(b)) = f(a) = b. 

 Consequently (f−1Of) = iA and (fOf −1) = iB , where iA and iB are the identity functions on 

the sets A and B, respectively. That is, (f−1)−1 = f . 

 

 Pigeonhole Principle 

 If k is a positive integer and k+1 objects are placed into k boxes, then at least one of the 

boxes will contain two or more objects.   OR 

 In mathematics, the pigeonhole principle states that if n items are put into m containers, 

with n > m, then at least one container must contain more than one item. 

 Proof: We prove the pigeonhole principle using a proof by contraposition. Suppose that 

none of the k boxes contains more than one object. Then the total number of objects would 

be at most k. This is a contradiction, because there are at least k+1 objects. 
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Pigeons in holes. Here there are n = 10 pigeons in m = 9 holes. Since 10 is greater than 

9, the pigeonhole principle says that at least one hole has more than one pigeon. 

 The abstract formulation of the principle: Let X and Y be finite sets and let f: X → Y be a 

function. 

     If X has more elements than Y, then f is not one-to-one. 

     If X and Y have the same number of elements and f is onto, then f is one-to-one. 

     If X and Y have the same number of elements and f is one-to-one, then f is onto. 

 If “A” is the average number of pigeons per hole, where A is not an integer then 

 At least one pigeon hole contains ceil[A] (smallest integer greater than or equal to A) 

pigeons 

 Remaining pigeon holes contains at most floor[A] (largest integer less than or equal to 

A) pigeons. 

 Example 78: In a group of 366 people, there must be two people with the same birthday. 

 Example 79: In a group of 27 English words, at least two words must start with the same 

letter. 

 Example 80: How many students must be in a class to guarantee that at least two students 

receive the same score on the final exam, if the exam is graded on a scale from 0 to 100 

points? 

Solution: There are 101 possible scores on the final. The pigeonhole principle shows that 

among any 102 students there must be at least 2 students with the same score. 

 

 Generalized Pigeon hole Principle 

 If n pigeonholes are occupied by Kn+1 or more pigeons then at least one pigeonhole is 

occupied by K+1 or more pigeons. 

 Example 81: Find the minimum no of students in a class to be ensure that three of them 

born in the same month. 
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Solution:  n = 12, K+1 =3     i.e. K=2,            Kn+1 = 2*12+1 = 25 

 Example 82: What is the minimum number of students required in a discrete mathematics 

class to be sure that at least six will receive the same grade, if there are five possible 

grades, A, B, C, D, and F? 

Solution: n = 5, K+1 =6     i.e. K=5,              Kn+1 = 5*5+1 = 26 

 Example 83: Show that 7 colours are used to paint 50 bicycles, and then at least 8 bicycles 

will be of same colour. 

Solution: n = 7, K+1 =8               i.e. K=7,             Kn+1 = 7*7+1 = 50 

 Example 84: How many cards must be selected from a standard deck of 52 cards to 

guarantee that at least three cards of the same suit are chosen? 

Solution: n = 4, K+1 =3                          i.e. K=2,              Kn+1 = 4*2+1 = 09 

 Example 85: If (Kn+1) pigeons are kept in n pigeon holes where K is a positive integer, 

what is the average no. of pigeons per pigeon hole? 

Solution: average number of pigeons per hole = (Kn+1)/n = K + 1/n 

Therefore at least a pigeonholes contains (K+1) pigeons i.e., ceil[K +1/n] and remaining 

contain at most K i.e., floor[k+1/n] pigeons. 

i.e., the minimum number of pigeons required to ensure that at least one pigeon hole 

contains (K+1) pigeons is (Kn+1). 

 Example 86: A bag contains 10 red marbles, 10 white marbles, and 10 blue marbles. What 

is the minimum no. of marbles you have to choose randomly from the bag to ensure that we 

get 4 marbles of same color? 

Solution: Apply pigeonhole principle. 

No. of colors (pigeonholes) n = 3 and No. of marbles (pigeons) K+1 = 4 

Therefore the minimum no. of marbles required = Kn+1 

By simplifying we get Kn+1 = 10. 

Verification: ceil[Average] is [Kn+1/n] = 4 

[Kn+1/3] = 4 

Kn+1 = 10            i.e., 3 red + 3 white + 3 blue + 1(red or white or blue) = 10 


