
210255: Microprocessor

Teaching
Scheme

Examination
Scheme

Credit

TH: 03 Hours /Week In-Sem: 30 Marks
End-Sem: 70 Marks

3

210257: Microprocessor Lab
Teaching Scheme Examination

Scheme
Credit

PR: 02 Hours /Week TW : 25 Marks

PR: 25 Marks

01

Prerequisites
Digital Electronics & Logic Design

Course Objectives
1. Course Objectives:
2. To learn the architecture and programmer’s model of

advanced processor

3. To understand the system level features and processes of
advanced processor

4. To acquaint the learner with application instruction set and
logic to build assembly language programs.

5. To understand debugging and testing techniques confined to
80386 DX

Course Outcomes
1. On completion of the course, student will be

able to–
2. CO1: To apply the assembly language programming to

develop small real life embedded application.

3. CO2: To understand the architecture of the advanced
processor thoroughly to use the resources for
programming

4. CO3: To understand the higher processor architectures
descended from 80386 architecture

Unit I
80386DX- Basic Programming Model and Applications Instruction Set

Memory Organization and Segmentation- Global Descriptor Table, Local
Descriptor Table, Interrupt Descriptor Table, Data Types, Registers, Instruction
Format, Operand Selection, Interrupts and Exceptions

Applications Instruction Set- Data Movement Instructions, Binary Arithmetic
Instructions, Decimal Arithmetic Instructions, Logical Instructions, Control
Transfer Instructions, String and Character Transfer Instructions, Instructions for
Block Structured Language, Flag Control Instructions, Coprocessor Interface
Instructions, Segment Register Instructions, Miscellaneous Instructions.

 CO Mapped - CO1 and CO2

INTRODUCTION

What is Microprocessor ?

•It is a program controlled semiconductor device
(IC), which fetches, decode and executes
instructions.

2. What are the basic units of a microprocessor ?
•The basic units or blocks of a microprocessor
are ALU, an array of registers and control unit.

3.what is Software and Hardware?
•The Software is a set of instructions or
commands needed for performing a specific task
by a programmable device or a computing
machine.

•The Hardware refers to the components or
devices used to form computing machine in
which the software can be run and tested.

•Without software the Hardware is an idle
machine.

4. What is assembly language?
•The language in which the mnemonics (short
-hand form of instructions) are used to write a
program is called assembly language.

•The manufacturers of microprocessor give the
mnemonics.

5. What are machine language and assembly
language programs?
•The software developed using 1's and 0's are
called machine language programs.

•The software developed using mnemonics are
called assembly language programs.

6. What is the drawback in machine language
and assembly language programs?
•The machine language and assembly language
programs are machine dependent.

•The programs developed using these languages
for a particular machine cannot be directly run
on another machine .

7. Define bit, byte and word.
•A digit of the binary number or code is called
bit. Also, the bit is the fundamental storage unit
of computer memory.

•The 8-bit (8-digit) binary number or code is
called byte and 16-bit binary number or code is
called word.

(Some microprocessor manufactures refer the
basic data size operated by the processor as
word).

8. What is a bus?
•Bus is a group of conducting lines that carries
data, address and control signals.

9. What is the function of microprocessor in a
system?
•The microprocessor is the master in the
system, which controls all the activity of the
system.

• It issues address and control signals and
fetches the instruction and data from memory.

• Then it executes the instruction to take
appropriate action.

Microprocessor :

CPU on a single chip
CPU consists of control unit, ALU and registers.

Microprocessor based system

-CPU

-Input

-Output

-Memory

What are microprocessor-based systems?

Memory
Output
units

Input
units

Bus

Microprocessor

Control
unit

Datapath

ALU

Reg.

•

Microprocessor-based systems are electrical systems
consisting of microprocessors, memories, I/O units, and
other peripherals.
• Microprocessors are the brains of the systems.
• Microprocessors access memories and other units

through buses.
• The operations of microprocessors are controlled by

instructions stored in memories

Reference Material

1. Douglas Hall, “Microprocessors & Interfacing”, McGraw Hill,
Revised 2 Edition, 2006 ISBN 0-07-100462-9
2. A.Ray, K.Bhurchandi, ”Advanced Microprocessors and peripherals:
Arch, Programming & Interfacing”, Tata McGraw Hill,2004 ISBN
0-07-463841-6
3. Intel 80386 Programmer's Reference Manual 1986, Intel
Corporation, Order no.: 231630-011, December 1995.
4. Intel 80386 Hardware Reference Manual 1986, Intel Corporation,
Order no.: 231732-001, 1986.
5. James Turley- “Advanced 80386 Programming Techniques”,
McGraw-Hill, ISBN: 10:0078813425, 13: 978-0078813429.

Text Books

80386
•32-bit microprocessor
•forms the basis for a high-performance 32-bit
system

•Features : multitasking support, memory
management, pipelined architecture, address
translation caches, and a high-speed bus
interface [all on one chip]

• integration of features speeds the execution of
instructions

• Paging and dynamic data bus sizing can each be
invoked selectively , making the 80386 suitable
for a wide variety of system designs and user
applications.

80386

•32-bit wide internal and external data paths
•Eight general-purpose 32-bit registers
• The instruction set offers 8-, 16-, and 32-bit
data types

•The processor outputs 32-bit physical
addresses directly, for a physical memory
capacity of four gigabytes.

80386 System Overview

•Separate 32-bit data and address paths.
•A 32-bit memory access can be completed in
only two clock cycles, enabling the bus to
sustain a throughput of 40 megabytes per
second (at 20 MHz).

•By making prompt transfers between the
microprocessor, memory, and peripherals, the
high-speed bus design ensures that the entire
system benefits from the processor's
increased performance.

80386 System Overview

•Pipelined architecture enables the 80386 to
perform instruction fetching, decoding,
execution, and memory management functions
in parallel.

•Because the 80386 prefetches instructions
and queues them internally, instruction fetch
and decode times are absorbed in the pipeline;
the processor rarely has to wait for an
instruction to execute.

80386 Internal Architecture
The six functional units of the 80386 are
identified as follows:
1.Bus Interface Unit
2.Code Prefetch Unit
3.Instruction Decode Unit
4.Execution Unit
5.Segmentation Unit
6.Paging Unit

The basic programming model consists of
these aspects:
1. Memory organization and segmentation
2. Data types
3. Registers
4. Instruction format
5. Operand selection
6. Interrupts and exceptions

1.Basic Programming Model
x386

1.1 Memory organization & segmentation
1.1.1 The "Flat" Model
1.1.2 The Segmented Model

1.1 Memory organization & segmentation

⚫ Physical memory organized as sequence of 8-bit
bytes

⚫ Each byte is assigned unique address
(range 0 to 232 – 1)

⚫ Physical address space : 4 GB (physical memory)
⚫ Logical address space : 64 TB (Virtual memory)
⚫ x386 programs independent of physical address

space
⚫ Programmer not known @ the physical memory

addresses
⚫ Also, no clue @ exact location of data n code in

memory

1.1 continued
⚫ The architecture of the 80386 gives designers

the freedom to choose a model for each task.
⚫ The model of memory organization can range

between the following :
1. A "flat" address space consisting of a single

array of up to 4 gigabytes.
2. A segmented address space consisting of a

collection of up to 16,383 linear address spaces
of up to 4 gigabytes each.

1.1.1 The "Flat" Model
⚫ The applications programmer sees a single array

of up to 232 bytes (4 gigabytes)
⚫ The processor maps the 4 gigabyte flat space

onto the physical address space by the address
translation mechanisms

⚫ Applications programmers do not need to know
the details of the mapping.

⚫ A pointer into this flat address space is a 32-bit
ordinal number that may range from 0 to 232-1.

⚫ Relocation of separately-compiled modules in this
space must be performed by systems software
(e.g., linkers, locators, binders, loaders).

1.1.2 The Segmented Model

⚫ The address space as viewed by an applications
program (called the logical address space) is a
much larger space of up to 246 bytes (64
terabytes).

⚫ The processor maps the 64 terabyte logical
address space onto the physical address space (up
to 4 gigabytes) by the address translation
mechanisms.

⚫ Applications programmers do not need to know
the details of this mapping.

1.1.2 continued
⚫ Applications programmers view the logical address

space of the 80386 as a collection of up to 16,383
one-dimensional subspaces, each with a specified
length.

⚫ Each of these linear subspaces is called a
segment.

⚫ A segment is a unit of contiguous address space.
⚫ Segment sizes may range from one byte up to a

maximum of 232 bytes (4 gigabytes).

1.1.2 continued
⚫ A complete pointer in logical address space consists

of two parts (Figure Next Slide)
1. A segment selector, which is a 16-bit field that

identifies a segment.

2. An offset, which is a 32-bit ordinal that addresses
to the byte level within a segment.

Fig: Two-Component Pointer

1.1.2 continued
⚫ During execution of a program, the processor

associates with a segment selector the physical
address of the beginning of the segment.

⚫ Separately compiled modules can be relocated at
run time by changing the base address of their
segments.

⚫ The size of a segment is variable; therefore, a
segment can be exactly the size of the module it
contains.

1.2 Data Types
⚫ Bytes, words, and doublewords are the

fundamental data types
⚫ A byte is eight contiguous bits starting at any logical
 address.
⚫ The bits are numbered 0 through 7; bit zero is the

least significant bit.

Byte….
⚫ Each byte within a word has its own address, and

the smaller of the addresses is the address of the
word.

⚫ The byte at this lower address contains the eight
least significant bits of the word

⚫ while the byte at the higher address contains the
eight most significant bits.

Word….
⚫ A word is two contiguous bytes starting at any byte

address.
⚫ A word contains 16 bits.
⚫ The bits of a word are numbered from 0 through 15;

bit 0 is the least significant bit.
⚫ The byte containing bit 0 of the word is called the

low byte
⚫ the byte containing bit 15 is called the high byte.

Doubleword
⚫ A doubleword is two contiguous words starting at

any byte address.
⚫ A doubleword thus contains 32 bits.
⚫ The bits of a doubleword are numbered from 0

through 31
⚫ bit 0 is the least significant bit
⚫ The word containing bit 0 of the doubleword is

called the low word
⚫ the word containing bit 31 is called the high word

Fig: Fundamental Data Types

Fig: Bytes, Words, and
Doublewords in Memory

Additional Data Types
⚫ The processor also supports additional

interpretations of these operands.
⚫ Depending on the instruction referring to the

operand, the following additional data types are
recognized:

1. Integer 6. Bit field
2.Ordinal 7. Bit string
3.Near Pointer 8. BCD
4.Far Pointer 9. Packed BCD
5.String

Fig: 80386 Additional Data Types

Integer
⚫ A signed binary numeric value contained in a 32-bit

doubleword,16-bit word, or 8-bit byte.
⚫ All operations assume a 2's complement representation.
⚫ The sign bit is located in bit 7 in a byte, bit 15 in a word,

and bit 31 in a doubleword.
⚫ The sign bit has the value zero for positive integers and

one for negative.
⚫ Since the high-order bit is used for a sign, the range of

an 8-bit integer is -128 through +127; 16-bit integers may
range from -32,768 through +32,767; 32-bit integers
may range from -231 through +231-1.

⚫ The value zero has a positive sign.

Ordinal
⚫ An unsigned binary numeric value contained in

a 32-bit doubleword, 16-bit word, or 8-bit
byte.

⚫ All bits are considered in determining
magnitude of the number.

⚫ The value range of an 8-bit ordinal number is
0-255; 16 bits can represent values from 0
through 65,535; 32 bits can represent values
from 0 through 232-1.

Near Pointer
⚫ A 32-bit logical address.
⚫ A near pointer is an offset within a segment.
⚫ Near pointers are used in either a flat or a

segmented model of memory organization.

Far Pointer
⚫ A 48-bit logical address of two components
1. a 16-bit segment selector component and
2. a 32-bit offset component
⚫ Far pointers are used by applications

programmers only when systems designers choose
a segmented memory organization.

String:
⚫ A contiguous sequence of bytes, words, or

doublewords.
⚫ A string may contain from zero bytes to 232-1 bytes

(4 gigabytes).
Bit field:
⚫ A contiguous sequence of bits.
⚫ A bit field may begin at any bit position of any byte

and may contain up to 32 bits.
Bit string:
⚫ A contiguous sequence of bits. A bit string may

begin at any bit position of any byte and may
contain up to 232-1 bits.

BCD
⚫ A byte (unpacked) representation of a decimal

digit in the range 0 through 9.
⚫ Unpacked decimal numbers are stored as unsigned

byte quantities.
⚫ One digit is stored in each byte.
⚫ The magnitude of the number is determined from

the low-order half-byte; hexadecimal values 0-9
are valid and are interpreted as decimal numbers.

⚫ The high-order half-byte must be zero for
multiplication and division; it may contain any value
for addition and subtraction.

Packed BCD
⚫ A byte (packed) representation of two decimal

digits
⚫ Each in the range 0 through 9
⚫ One digit is stored in each half-byte.
⚫ The digit in the high-order half-byte is the most

significant.
⚫ Values 0-9 are valid in each half-byte.
⚫ The range of a packed decimal byte is 0-99.

1.3 Registers
1.3.1 General Registers
1.3.2 Segment Registers
1.3.3 Stack Implementation
1.3.4 Flag Register

Register Categories
• sixteen registers
• may be grouped into 3 basic categories:
1. General registers. These eight 32-bit general-purpose
registers are used primarily to contain operands for
arithmetic and logical operations.
2. Segment registers. These special-purpose registers
permit systems software designers to choose either a flat
or segmented model of memory organization. These six
registers determine, at any given time, which segments of
memory are currently addressable.
3. Status and instruction registers. These special-purpose
registers are used to record and alter certain aspects of
the 80386 processor state.

1.3.1 General Registers
⚫ Eight 32-bit registers
⚫ EAX,EBX,ECX, EDX,EBP,ESP, ESI,EDI
⚫ Use: primarily to contain operands for arithmetic

and logical operations.
⚫ Can also be used for operands of address

computations
⚫ Exception: ESP can not be used as an index

operand

Fig: 80386 Applications Register Set

Register Organization
•Eight 32 - bit general purpose registers may be used as either 8 bit or
16 bit registers.
•A 32 - bit register known as an extended register, is represented by
the register name with prefix E.
•The 16 bit registers BP, SP, SI and DI in 8086 are available with their
extended size of 32 bit and are names as EBP, ESP, ESI and EDI.
•AX represents the lower 16 bit of the 32 bit register EAX.
•BP, SP, SI, DI represents the lower 16 bit of their 32 bit
counterparts, and can be used as independent 16 bit registers.
•The six segment registers available in 80386 are CS, SS, DS, ES, FS
and GS.
•The CS and SS are the code and the stack segment registers
respectively, while DS, ES, FS, GS are 4 data segment registers.
•A 16 bit instruction pointer IP is available along with 32 bit
counterpart EIP.

Use
•All of the general-purpose registers are available
for addressing calculations and for the results of
most arithmetic and logical calculations; however,
a few functions are dedicated to certain
registers.

•By implicitly choosing registers for these
functions, the 80386 architecture can encode
instructions more compactly.

•The instructions that use specific registers
include: double-precision multiply and divide, I/O,
string instructions, translate, loop, variable shift
and rotate, and stack operations.

1.3.2 Segment Registers

•The segment registers of the 80386 give
systems software designers the flexibility to
choose among various models of memory
organization.

1.3.2 Continued
⚫ Complete programs generally consist of many

different modules
⚫ Each module consisting of instructions and data
⚫ At any given time during program execution, only a

small subset of a program's modules are actually
in use.

⚫ The 80386 architecture takes advantage of this
by providing mechanisms to support direct access
to the instructions and data of the current
module's environment, with access to additional
segments on demand.

1.3.2 Continued
⚫ At any given instant, six segments of memory may

be immediately accessible to an executing 80386
program.

⚫ The segment registers CS, DS, SS, ES, FS, and
GS are used to identify these six current
segments.

⚫ Each of these registers specifies a particular kind
of segment, as characterized by the associated
mnemonics ("code," "data," or "stack").

⚫ Each register uniquely determines one particular
segment, from among the segments that make up
the program, that is to be immediately accessible
at highest speed.

•The segment containing the currently
executing sequence of instructions is known
as the current code segment; it is specified
by means of the CS register.

•The 80386 fetches all instructions from this
code segment, using as an offset the
contents of the instruction pointer.

•CS is changed implicitly as the result of
intersegment control-transfer instructions
(for example, CALL and JMP), interrupts, and
exceptions.

CS

•Subroutine calls, parameters, and
procedure activation records usually
require that a region of memory be
allocated for a stack.

•All stack operations use the SS register
to locate the stack.

•Unlike CS, the SS register can be loaded
explicitly, thereby permitting
programmers to define stacks dynamically.

SS

•The DS, ES, FS, and GS registers allow the
specification of four data segments, each
addressable by the currently executing
program.

•Accessibility to four separate data areas helps
programs efficiently access different types of
data structures; for example, one data
segment register can point to the data
structures of the current module, another to
the exported data of a higher-level module,
another to a dynamically created data
structure, and another to data shared with
another task.

⚫ An operand within a data segment is
addressed by specifying its offset either
directly in an instruction or indirectly via
general registers.

Fig: Use of Memory Segmentation

1.3.3 Stack Implementation
⚫ Stack operations are facilitated by three registers:
1. The stack segment (SS) register.
2. The stack pointer (ESP) register.
3. The stack-frame base pointer (EBP) register.

SS Register
⚫ Stacks are implemented in memory.
⚫ A system may have a number of stacks that is

limited only by the maximum number of segments.
⚫ A stack may be up to 4 gigabytes long, the

maximum length of a segment.
⚫ One stack is directly addressable at a time──the

one located by SS.
⚫ This is the current stack, often referred to

simply as "the" stack.
⚫ SS is used automatically by the processor for all

stack operations.

Fig : 80386 Stack

ESP Register
⚫ ESP points to the top of the push-down stack

(TOS).
⚫ It is referenced implicitly by PUSH and POP

operations, subroutine calls and returns, and
interrupt operations.

⚫ When an item is pushed onto the stack the
processor decrements ESP, then writes the item
at the new TOS.

⚫ When an item is popped off the stack, the
processor copies it from TOS, then increments
ESP.

⚫ The stack grows down in memory toward lesser
addresses.

EBP Register
⚫ The EBP is the best choice of register for

accessing data structures, variables and
dynamically allocated work space within the stack.

⚫ EBP is often used to access elements on the stack
relative to a fixed point on the stack rather than
relative to the current TOS.

⚫ It typically identifies the base address of the
current stack frame established for the current
procedure.

⚫ When EBP is used as the base register in an
offset calculation, the offset is calculated
automatically in the current stack segment (i.e.,
the segment currently selected by SS).

EBP Continued
⚫ Because SS does not have to be explicitly specified,

instruction encoding in such cases is more efficient.
⚫ EBP can also be used to index into segments

addressable via other segment registers.

• The flags register is a 32-bit register named EFLAGS.
• The bits within this register
• The flags control certain operations and indicate the
status of the 80386.

• The low-order 16 bits of EFLAGS is named FLAGS and
can be treated as a unit.

• This feature is useful when executing 8086 and 80286
code, because this part of EFLAGS is identical to the
FLAGS register of the 8086 and the 80286.

• The flags may be considered in three groups: the
status flags, the control flags, and the systems flags.

1.3.4 Flags Register

Status Flags

⚫ The status flags of the EFLAGS register allow
the results of one instruction to influence later
instructions.

⚫ The arithmetic instructions use OF, SF, ZF, AF,
PF, and CF.

⚫ The SCAS (Scan String), CMPS (Compare String),
and LOOP instructions use ZF to signal that their
operations are complete.

⚫ There are instructions to set, clear, and
complement CF before execution of an arithmetic
instruction.

Control Flag
⚫ The control flag DF of the EFLAGS register

controls string instructions.

DF (Direction Flag, bit 10)

⚫ Setting DF causes string instructions to
auto-decrement; that is, to process strings from
high addresses to low addresses.

⚫ Clearing DF causes string instructions to
auto-increment, or to process strings from low
addresses to high addresses.

Instruction Pointer Register
⚫ The instruction pointer register (EIP) contains

the offset address, relative to the start of the
current code segment, of the next sequential
instruction to be executed.

⚫ The instruction pointer is not directly visible to
the programmer

⚫ It is controlled implicitly by control-transfer
instructions, interrupts, and exceptions.

Fig : Instruction Pointer
Register

EIP
⚫ The low-order 16 bits of EIP is named IP
⚫ It can be used by the processor as a unit.
⚫ This feature is useful when executing instructions

designed for the 8086 and 80286 processors.

1.1.4 Instruction Format
80386 instruction contains :
1. a specification of the operation to be

performed,
2. the type of the operands to be manipulated, and
3. the location of these operands
 in encoded format

⚫ If an operand is located in memory, the
instruction must also select, explicitly or
implicitly, which of the currently addressable
segments contains the operand.

⚫ 80386 instructions are composed of various
elements and have various formats.

⚫ Of instruction elements, only one, the opcode, is
always present.

⚫ The other elements may or may not be present,
depending on the particular operation involved and
on the location and type of the operands.

Instruction Elements
(in order of occurrence)
I. Prefixes
II. Opcode
III. Register Specifier
IV. Addressing Mode Specifier
V. SIB (Scale, Index, Base)
VI. Displacement
VII. Immediate Operands

I. Prefixes
⚫ One or more bytes preceding an instruction that

modify the operation of the instruction.
⚫ The types of prefixes can be used by applications

programs:
1. Segment Override
2. Address Size
3. Operand Size
4. Repeat

1. Segment override :- explicitly specifies
which segment register an instruction should
use, thereby overriding the default
segment-register selection used by the 80386
for that instruction.
2. Address size :- switches between 32-bit and
16-bit address generation.
3. Operand size :-switches between 32-bit and
16-bit operands.
4. Repeat :-used with a string instruction to
cause the instruction to act on each element of
the string.

II. Opcode
⚫ Specifies the operation performed by the

instruction.
⚫ Some operations have several different opcodes,

each specifying a different variant of the
operation.

III. Register Specifier
⚫ An instruction may specify one or two register

operands.
⚫ Register specifiers may occur either in the same

byte as the opcode or in the same byte as the
addressing-mode specifier.

IV. Addressing Mode Specifier
⚫ When present, specifies whether an operand is a

register or memory location;
⚫ If operand in memory, specifies whether a

displacement, a base register, an index register,
and scaling are to be used.

V. SIB
⚫ SIB (scale, index, base) byte
⚫ when the addressing-mode specifier indicates

that an index register will be used to compute the
address of an operand, an SIB byte is included in
the instruction to encode the base register, the
index register, and a scaling factor.

VI. Displacement
⚫ When the addressing-mode specifier indicates

that a displacement will be used to compute the
address of an operand, the displacement is
encoded in the instruction.

⚫ A displacement is a signed integer of 32, 16, or
eight bits.

⚫ The eight-bit form is used in the common case
when the displacement is sufficiently small.

⚫ The processor extends an eight-bit displacement
to 16 or 32 bits, taking into account the sign.

VII. Immediate Operand
⚫ When present, directly provides the value of an

operand of the instruction.
⚫ Immediate operands may be 8, 16, or 32 bits wide.
⚫ In cases where an 8-bit immediate operand is

combined in some way with a 16- or 32-bit
operand, the processor automatically extends the
size of the eight-bit operand, taking into account
the sign.

Operand Selection
⚫ Instruction : 0/ more operands
⚫ 0 operand instruction : NOP
⚫ An operand can be in any of these locations:
1. In the instruction itself (an immediate operand)
2. In a register (EAX, EBX, ECX, EDX, ESI, EDI, ESP,

or EBP in the case of 32-bit operands; AX, BX, CX,
DX, SI, DI, SP, or BP in the case of 16-bit
operands; AH, AL, BH, BL, CH, CL, DH, or DL in the
case of 8-bit operands; the segment registers; or
the EFLAGS register for flag operations)

3. In memory
4. At an I/O port

⚫ Immediate operands and operands in registers can
be accessed more rapidly than operands in
memory since memory operands must be fetched
from memory.

⚫ Register operands are available in the CPU.
⚫ Immediate operands are also available in the CPU,

because they are prefetched as part of the
instruction.

Implicit/Explicit/Combo Operands

Of the instructions that have operands,
⚫ some specify operands implicitly :
 Example of Implicit operand: AAM

⚫ others specify operands explicitly :
Example of Explicit operand: XCHG EAX, EBX

⚫ still others use a combination of implicit and explicit
specification :

 Example of Implicit and explicit operands: PUSH
COUNTER

Note
⚫ Most instructions have implicit operands.

⚫ All arithmetic instructions, for example, update
the EFLAGS register.

⚫ An 80386 instruction can explicitly reference one
or two operands.

⚫ Two-operand instructions, such as MOV, ADD,
XOR, etc., generally overwrite one of the two
participating operands with the result.

⚫ A distinction can thus be made between the
source operand (the one unaffected by the
operation) and the destination operand (the one
overwritten by the result).

⚫ For most instructions, one of the two explicitly
specified operands - either the source or the
destination - can be either in a register or in
memory.

⚫ The other operand must be in a register or be an
immediate source operand.

⚫ Thus, the explicit two-operand instructions of the
80386 permit operations of the following kinds:

1. Register-to-register
2. Register-to-memory
3. Memory-to-register
4. Immediate-to-register
5. Immediate-to-memory

⚫ Certain string instructions and stack manipulation
instructions, transfer data from memory to
memory.

⚫ Both operands of some string instructions are in
memory and are implicitly specified.

⚫ Push and pop stack operations allow transfer
between memory operands and the memory-based
stack.

Default Segment Register
Selection Rules
Memory

Reference
Needed

 Segment
Register
Used

Implicit Segment Selection Rule

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any memory
reference that uses ESP or EBP as a base
register.

Local Data Data (DS) All data references except when relative to
stack or string destination.

Destination
Strings

Extra (ES) Destination of string instructions.

Effective-Address Computation

⚫ The modR/M byte provides the most flexible of
the addressing methods

⚫ instructions that require a modR/M byte as the
second byte of the instruction are the most
common in the 80386 instruction set.

⚫ For memory operands defined by modR/M, the
offset within the desired segment is calculated by
taking the sum of up to three components:

1. A displacement element in the instruction.
2. A base register.
3. An index register. The index register may be

automatically multiplied by a scaling factor of 2,
4, or 8.

⚫ The offset that results from adding these
components is called an effective address.

⚫ Each of these components of an effective
address may have either a positive or negative
value.

⚫ If the sum of all the components exceeds 232,
the effective address is truncated to 32 bits.

Unit I Part II
Applications Instruction Set

Few Instruction Types
⚫ Data Movement Instructions
⚫ Binary Arithmetic Instructions
⚫ Decimal Arithmetic Instructions
⚫ Logical Instructions
⚫ Control Transfer Instructions
⚫ String and Character Transfer Instructions
⚫ Instructions for Block Structured Language
⚫ Flag Control Instructions
⚫ Coprocessor Interface Instructions
⚫ Segment Register Instructions
⚫ Miscellaneous Instructions.

Data Movement Instructions

⚫ provide convenient methods for moving bytes,
words, or doublewords of data between memory
and the registers of the base architecture

⚫ Types:
1. General-purpose data movement instructions.
2. Stack manipulation instructions.
3. Type-conversion instructions.

MOV
⚫ Transfers a byte, word, or doubleword from the

source operand to the destination operand

1. To a register from memory
2. To memory from a register
3. Between general registers
4. Immediate data to a register
5. Immediate data to a memory
⚫ cannot move from memory to memory or from segment

register to segment register
⚫ Exception: string move instruction MOVS

XCHG
⚫ Swaps the contents of two operands.
⚫ Takes the place of three MOV instructions
⚫ Does not require a temporary location to save the

contents of one operand while load the other is
being loaded

⚫ Useful for implementing semaphores or similar
data structures for process synchronization

⚫ Can swap two byte /word / doubleword operands
⚫ The operands for the XCHG instruction may be

two register operands, or a register operand with
a memory operand.

⚫ When used with a memory operand, XCHG
automatically activates the LOCK signal.

Stack Manipulation Instructions
⚫ Push
⚫ Pop

Push
Function:
1. To decrement the stack pointer (ESP)
2. then to transfer the source operand to the top

of stack indicated by ESP
Use
1. to place parameters on the stack before calling

a procedure
2. To store temporary variables on the stack
Operands
⚫ memory operands, immediate operands, and

register operands (including segment registers)

PUSH

PUSHA
⚫ Push all registers
Function
⚫ To save the contents of 8 general registers on

the stack
Use
⚫ To simplify procedure calls by reducing the

number of instructions required to retain the
contents of the general registers for use in a
procedure

Order
⚫ general registers : EAX, ECX,EDX, EBX, the initial

value of ESP before EAX was pushed, EBP, ESI,
and EDI

⚫ complemented by the POPA

PUSHA

POP
Function
1. To transfer the word or doubleword at the

current top of stack (indicated by ESP) to the
destination operand,

2. then to increment ESP to point to the new top
of stack

⚫ To move information from the stack to a general
register, or to memory

POP

POPA
⚫ Pop All Registers
⚫ to restore the registers saved on the stack by

PUSHA
⚫ Exception: it ignores the saved value of ESP

 POPA

Type Conversion Instructions
⚫ To convert bytes into words, words into

doublewords, and doublewords into 64-bit items
(quad-words)

⚫ useful for converting signed integers
⚫ automatically fill the extra bits of the larger item

with the value of the sign bit of the smaller item

⚫ This kind of conversion, is called sign extension.

Sign Extension

Classes of type conversion
instructions
1. The forms CWD, CDQ, CBW, and CWDE which

operate only on data in the EAX register

2. The forms MOVSX and MOVZX, which permit one
operand to be in any general register while
permitting the other operand to be in memory or
in a register.

CWD and CDQ
⚫ CWD (Convert Word to Doubleword) and CDQ

(Convert Doubleword to Quad-Word) double the
size of the source operand.

⚫ CWD extends the sign of the word in register AX
throughout register DX.

⚫ CDQ extends the sign of the doubleword in EAX
throughout EDX.

⚫ CWD can be used to produce a doubleword
dividend from a word before a word division, and
CDQ can be used to produce a quad-word dividend
from a doubleword before doubleword division.

Binary Arithmetic Instructions
⚫ The arithmetic instructions of the 80386

processor simplify the manipulation of numeric
data that is encoded in binary.

⚫ Standard add, subtract, multiply, and divide as
well as increment, decrement, compare, and
change sign

⚫ Both signed and unsigned binary integers are
supported.

⚫ The binary arithmetic instructions may also be
used as one step in the process of performing
arithmetic on decimal integers.

⚫ Many of the arithmetic instructions operate on
both signed and unsigned integers.

⚫ Effect: processor update the flags ZF, CF, SF,
and OF in such a manner that subsequent
instructions can interpret the results of the
arithmetic as either signed or unsigned.

⚫ CF contains information relevant to unsigned
integers

⚫ SF and OF contain information relevant to signed
integers

⚫ ZF is relevant to both signed and unsigned
integers

⚫ ZF is set when all bits of the result are zero.

⚫ If the integer is unsigned, CF may be tested after
one of these arithmetic operations to determine
whether the operation required a carry or borrow
of a one-bit in the high-order position of the
destination operand.

⚫ CF is set if a one-bit was carried out of the
high-order position (addition instructions ADD,
ADC, AAA, and DAA) or if a one-bit was carried
(i.e. borrowed) into the high-order bit
(subtraction instructions SUB, SBB, AAS,DAS,
CMP, and NEG).

⚫ If the integer is signed, both SF and OF should
be tested.

⚫ SF always has the same value as the sign bit of
the result.

⚫ The most significant bit of a signed integer is the
bit next to the sign──bit 6 of a byte, bit 14 of a
word, or bit 30 of a doubleword.

⚫ OF is set in either of these cases:
1. A one-bit was carried out of the MSB into the

sign bit but no one bit was carried out of the
sign bit (addition instructions ADD, ADC,
INC,AAA, and DAA), i.e. the result was greater
than the greatest positive number that could
becontained in the destination operand.

2. A one-bit was carried from the sign bit into the
MSB but no one bit was carried into the sign bit
(subtraction instructions SUB, SBB, DEC,AAS,
DAS, CMP, and NEG), i.e. the result was smaller
that the smallest negative number that could be
contained in the destination operand.

Note
⚫ These status flags are tested by executing one of

the two families of conditional instructions:
1. Jcc (jump on condition cc)
2. SETcc (byte set on condition).

Addition and Subtraction Instructions
1. ADD
2. ADC
3. INC
4. SUB
5. SBB
6. DEC

1.ADD
⚫ Add Integers
⚫ to replace the destination operand with the

sum of the source and destination operands.
⚫ Sets CF if overflow.

2.ADC
⚫ Add Integers with Carry
⚫ To sum the operands, adds one if CF is set,

and replaces the destination operand with the
result.

⚫ If CF is cleared, ADC performs the same
operation as the ADD instruction.

⚫ An ADD followed by multiple ADC instructions
can be used to add numbers longer than 32
bits.

3.INC
⚫ Increment
⚫ To add one to the destination operand
⚫ INC does not affect CF.
⚫ Use ADD with an immediate value of 1 if an

increment that updates carry (CF) is needed.

4.SUB
⚫ Subtract Integers
⚫ To subtract the source operand from the

destination operand and replaces the destination
operand with the result.

⚫ If a borrow is required, the CF is set.
⚫ The operands may be signed or unsigned bytes,

words, or doublewords.

5.SBB
⚫ Subtract Integers with Borrow
⚫ To subtract the source operand from the

destination operand, subtracts 1 if CF is set, and
returns the result to the destination operand.

⚫ If CF is cleared, SBB performs the same
operation as SUB.

⚫ SUB followed by multiple SBB instructions may be
used to subtract numbers longer than 32 bits.

⚫ If CF is cleared, SBB performs the same
operation as SUB.

6.DEC
⚫ Decrement
⚫ to subtract 1 from the destination operand
⚫ DEC does not update CF.
⚫ Use SUB with an immediate value of 1 to perform

a decrement that affects carry.

Comparison and Sign Change Instruction

⚫ CMP (Compare) subtracts the source operand
from the destination operand.

⚫ It updates OF, SF, ZF, AF, PF, and CF but does
not alter the source and destination operands.

⚫ A subsequent Jcc or SETcc instruction can test
the appropriate flags.

⚫ NEG (Negate) subtracts a signed integer operand
from zero.

⚫ The effect of NEG is to reverse the sign of the
operand from positive to negative or from
negative to positive.

Multiplication Instructions
⚫ The 80386 has separate multiply instructions for

unsigned and signed operands.
⚫ MUL operates on unsigned numbers, while IMUL

operates on signed integers as well as unsigned.

MUL
⚫ Unsigned Integer Multiply
⚫ performs an unsigned multiplication of the source

operand and the accumulator.
⚫ If the source is a byte, the processor multiplies it

by the contents of AL and returns the
double-length result to AH and AL.

⚫ If the source operand is a word, the processor
multiplies it by the contents of AX and returns
the double-length result to DX and AX.

⚫ If the source operand is a doubleword, the
processor multiplies it by the contents of EAX
and returns the 64-bit result in EDX and EAX.

⚫ MUL sets CF and OF when the upper half of the
result is nonzero; otherwise, they are cleared.

IMUL (Signed Integer Multiply)
⚫ performs a signed multiplication operation.
⚫ IMUL has three variations:
1. A one-operand form: The operand may be a byte,
word, or doubleword located in memory or in a
general register. This instruction uses EAX and
EDX as implicit operands in the same way as the
MUL instruction.
2. A two-operand form. One of the source operands
may be in any general register while the other may
be either in memory or in a general register. The
product replaces the general-register operand.
3. A three-operand form; two are source and one is
the destination operand. One of the source
operands is an immediate value stored in the
instruction; the second may be in memory or in any
general register. The product may be stored in any
general register. The immediate operand is treated
as signed. If the immediate operand is a byte, the
processor automatically sign-extends it to the size
of the second operand before performing the
multiplication.

The MUL/IMUL Instruction
⚫ 2 instructions for multiplying binary data.
⚫ MUL (Multiply) instruction handles unsigned data
⚫ IMUL (Integer Multiply) handles signed data
⚫ Both instructions affect the Carry and Overflow

flag.
⚫ SYNTAX:

MUL multiplier
 IMUL multiplier

⚫ Multiplicand in both cases will be in an
accumulator, depending upon the size of the
multiplicand and the multiplier and the generated
product is also stored in two registers depending
upon the size of the operands.

⚫ 3 cases:

Summary

Division Instructions

⚫ The 80386 has separate division instructions for
unsigned and signed operands.

⚫ DIV operates on unsigned numbers, while IDIV
operates on signed integers as well as unsigned.

⚫ In either case, an exception (interrupt zero) occurs
if the divisor is zero or if the quotient is too large
for AL, AX, or EAX.

DIV (Unsigned Integer
Divide)
⚫ performs an unsigned division of the accumulator by

the source operand.
⚫ The dividend (the accumulator) is twice the size of

the divisor (the source operand); the quotient and
remainder have the same size as the divisor.

⚫ Non-integral quotients are truncated to integers
toward 0.

⚫ The remainder is always less than the divisor.
⚫ For unsigned byte division, the largest quotient is

255.
⚫ For unsigned word division, the largest quotient is

65,535.
⚫ For unsigned doubleword division the largest

quotient is 232-1.

Size of Source
Operand
(divisor)

 Dividend Quotient Remainder

Byte AX AL AH

Word DX:AX AX DX

Doubleword EDX:EAX EAX EDX

The DIV/IDIV Instructions

⚫ The division operation generates two elements - a
quotient and a remainder.

⚫ In case of multiplication, overflow does not occur
because double-length registers are used to keep
the product.

⚫ However, in case of division, overflow may occur.
⚫ The processor generates an interrupt if overflow

occurs.
⚫ DIV (Divide) instruction for unsigned data
⚫ IDIV (Integer Divide) for signed data.

⚫ SYNTAX:
DIV/IDIV divisor

⚫ The dividend is in an accumulator.
⚫ Both the instructions can work with 8-bit, 16-bit or

32-bit operands.
⚫ The operation affects all six status flags.
⚫ 3 cases

Decimal Arithmetic
Instructions
⚫ Packed BCD Adjustment Instructions
1. DAA
2. DAS
⚫ Unpacked BCD Adjustment Instructions
1. AAA
2. AAS
3. AAM
4. AAD

Logical Instructions

The group of logical instructions includes:
● The Boolean operation instructions
● Bit test and modify instructions
● Bit scan instructions
● Rotate and shift instructions
● Byte set on condition

Bit Test and Modify Instructions

⚫ This group of instructions operates on a single bit
which can be in memory or in a general register.

⚫ The location of the bit is specified as an offset from
the low-order end of the operand.

⚫ The value of the offset either may be given by an
immediate byte in the instruction or may be
contained in a general register.

⚫ These instructions first assign the value of the
selected bit to CF, the carry flag.

⚫ Then a new value is assigned to the selected bit, as
determined by the operation.

⚫ OF, SF, ZF, AF, PF are left in an undefined state.

Bit Test and Modify Instruction

BT (Bit Test) – reports the status of a bit in the operand by
setting or clearing CF to match it. The operand under test
may be either a register or a memory location. The second
operand specifies which bit in the first operand to test.

Example

BT EAX, 5 ; test bit 5 of EAX
JC foo : jump if bit 5 was set

Bit Test and Modify Instruction
BTC (Bit Test & Complement) – It operates exactly
like the BT, except that the bit being tested is inverted
after the test is performed, and its condition is saved
in CF.

Example

BTC EAX, 9 ; test & invert bit 9
JC foo : jump if bit used to be 1

Bit Test and Modify Instruction
BTR (Bit Test & Reset) – the BTR instruction operates exactly like the BTC
instruction, except that it always clears the bit being tested.

Example

BTR EAX , 0 ; test & clear bit 0
JC foo : jump if it was set

BTS (Bit Test & Set) – The BTS instruction operates exactly
like the BTC instruction, except that it always sets the bit being
tested.

Example

BTR DWORD PTR DS:[840621], 3 ; test & set bit 3
JC foo : jump if it was set

Bit Test & Modify Instructions

Bit Scan Instructions
⚫ scan a word/doubleword for a one-bit and store the

index of the first set bit into a register.
⚫ The bit string being scanned may be either in a

register or in memory.
⚫ The ZF flag is set if the entire word is zero (no set

bits are found)
⚫ ZF is cleared if a one-bit is found.
⚫ If no set bit is found, the value of the destination

register is undefined.

1. BSF (Bit Scan Forward) scans from low-order to
high-order (starting from bit index zero).

2. BSR (Bit Scan Reverse) scans from high-order to
low-order (starting from bit index 15 of a word or
index 31 of a doubleword).

Logical Instructions
⚫ The processor instruction set provides the instructions

AND, OR, XOR, TEST and NOT Boolean logic, which tests,
sets and clears the bits according to the need of the
program.

⚫ The format for these instructions:
 AND : AND operand1, operand2
 OR: OR operand1, operand2
 XOR: XOR operand1, operand2
 TEST: TEST operand1, operand2
 NOT: NOT operand1

The AND Instruction

⚫ The AND instruction is used for supporting logical
expressions by performing bitwise AND operation.

⚫ The bitwise AND operation returns 1, if the matching
bits from both the operands are 1, otherwise it returns
0. For example:

Operand1: 0101
Operand2: 0011

⚫ After AND -> Operand1: 0001

⚫ The AND operation can be used for clearing one
or more bits.

⚫ For example the BL register contains 0011
1010.

⚫ If we need to clear the high order bits to zero,
we AND it with 0FH.
AND BL, 0FH ; This sets BL to 0000 1010

The OR Instruction
⚫ The OR instruction is used for supporting logical

expression by performing bitwise OR operation.
⚫ The bitwise OR operator returns 1, if the matching

bits from either or both operands are one.
⚫ It returns 0, if both the bits are zero.
⚫ For example,

 Operand1: 0101
 Operand2: 0011

After OR -> Operand1: 0111

⚫ The OR operation can be used for setting one or
more bits.

⚫ For example, let us assume the AL register contains
0011 1010, we need to set the four low order bits,
we can OR it with a value 0000 1111, i.e., FH.
OR BL, 0FH ; This sets BL to 0011 1111

The XOR Instruction

⚫ The XOR instruction implements the bitwise XOR
operation.

⚫ The XOR operation sets the resultant bit to 1, if and
only if the bits from the operands are different.

⚫ If the bits from the operands are same (both 0 or
both 1), the resultant bit is cleared to 0.

⚫ For example,
 Operand1: 0101
 Operand2: 0011

After XOR -> Operand1: 0110
⚫ XORing an operand with itself changes the operand

to 0.
⚫ This is used to clear a register.

XOR EAX, EAX

The TEST Instruction

⚫ The TEST instruction works same as the AND
operation, but unlike AND instruction, it does not
change the first operand.

⚫ So, if we need to check whether a number in a
register is even or odd, we can also do this using
the TEST instruction without changing the original
number.

TEST AL, 01H
JZ EVEN_NUMBER

The NOT Instruction

⚫ The NOT instruction implements the bitwise NOT
operation.

⚫ NOT operation reverses the bits in an operand.
⚫ The operand could be either in a register or in the

memory.
⚫ For example,

 Operand1: 0101 0011
After NOT -> Operand1: 1010 1100

The CMP Instruction

⚫ This instruction basically subtracts one operand
from the other for comparing whether the
operands are equal or not.

⚫ It does not disturb the destination or source
operands.

⚫ Non destructive subtraction
⚫ It is used along with the conditional jump

instruction for decision making.

Assembly Conditions
⚫ Conditional execution in assembly language is

accomplished by several looping and branching
instructions.

⚫ These instructions can change the flow of control in a
program.

⚫ Conditional execution is observed in two scenarios:

⚫ SYNTAX
CMP destination, source

⚫ The CMP instruction compares two operands.
⚫ It is generally used in conditional execution.
⚫ CMP compares two numeric data fields.

CMP……⚫ The destination operand could be either in
register or in memory.

⚫ The source operand could be a constant
(immediate) data, register or memory.

⚫ EXAMPLE:
cmp dx, 00 ; Compare the DX value
;with zero
je L7 ; If yes, then jump to label L7
.
.

L7: ...

⚫ CMP is often used for comparing whether a counter
value has reached the number of time a loop needs to
be run.

⚫ Consider the following typical condition:

Unconditional Jump

⚫ This is performed by the JMP instruction.
⚫ Conditional execution often involves a transfer of

control to the address of an instruction that does
not follow the currently executing instruction.

⚫ Transfer of control may be forward to execute a
new set of instructions, or backward to re-execute
the same steps.

⚫ SYNTAX:
jmp label

⚫ The jmp instruction provides a label name where
the flow of control is transferred immediately.

EXAMPLE

Conditional Jump

⚫ If some specified condition is satisfied in
conditional jump, the control flow is transferred to
a target instruction.

⚫ There are numerous conditional jump instructions,
depending upon the condition and data.

Conditional Jump
⚫ Following are the conditional jump instructions used on

signed data used for arithmetic operations:

⚫ Following are the conditional jump instructions used on
unsigned data used for logical operations:

⚫ The following conditional jump instructions have
special uses and check the value of flags:

⚫ The syntax for the J<condition> set of instructions:
⚫ Example,

Example
⚫ Write a program to display the largest of three

variables. [The variables need to be double-digit
variables. The three variables num1, num2 and
num3 have values 47, 22 and 31 respectively]

Assembly Loops
⚫ The JMP instruction can be used for implementing

loops.
⚫ Example, the following code snippet can be used for

executing the loop-body 10 times.

Assembly Loops
⚫ The processor instruction set includes a group of

loop instructions for implementing iteration.
⚫ The basic LOOP instruction has the following

syntax:
loop label

Where, label is the target label that identifies the
target instruction as in the jump instructions.

⚫ The loop instruction assumes that the ECX register
contains the loop count.

⚫ When the loop instruction is executed, the ECX
register is decremented and the control jumps to
the target label, until the ECX register value, i.e.,
the counter reaches the value zero.

Assembly Loops
⚫ The above code snippet could be written as:

Example

⚫ Write a program to print the number 1 to 9 on the
screen.

Assembly Numbers
⚫ Numerical data is generally represented in binary

system.
⚫ Arithmetic instructions operate on binary data.
⚫ When numbers are displayed on screen or entered

from keyboard, they are in ASCII form.
⚫ Common Practice: Converting input data in ASCII

form to binary for arithmetic calculations and
converting the result back to binary.

Decimal Number
Representation
⚫ Decimal numbers can be represented in two forms:
1. ASCII form
2. BCD or Binary Coded Decimal form

ASCII Representation

⚫ In ASCII representation, decimal numbers are stored
as string of ASCII characters.

⚫ For example, the decimal value 1234 is stored as:

Where, 31H is ASCII value for 1,
32H is ASCII value for 2, and so on.

⚫ There are the following four instructions for processing
numbers in ASCII representation:

1. AAA - ASCII Adjust After Addition
2. AAS - ASCII Adjust After Subtraction
3. AAM - ASCII Adjust After Multiplication
4. AAD - ASCII Adjust Before Division

⚫ These instructions do not take any operands and
assumes the required operand to be in the AL register.

⚫ Use AAA only after executing the form of
an add instruction that stores a two-BCD-digit byte
result in the AL register.

⚫ AAA then adjusts AL to contain the correct decimal
result.

⚫ The top nibble of AL is set to 0.
⚫ To convert AL to an ASCII result, follow

the AAA instruction with:
or %AL, 0x30

How AAA handles a carry

Carry Action

Decimal Carry AH + 1; CF and AF set to 1

No Decimal Carry AH unchanged; CF and AF
cleared to 0

BCD Representation

⚫ There are two types of BCD representation:
1. Unpacked BCD representation
2. Packed BCD representation

⚫ In unpacked BCD representation, each byte stores
the binary equivalent of a decimal digit.

⚫ For example, the number 1234 is stored as:

Unpacked BCD
⚫ There are two instructions for processing these

numbers:
1. AAM - ASCII Adjust After Multiplication
2. AAD - ASCII Adjust Before Division

⚫ The four ASCII adjust instructions, AAA, AAS, AAM
and AAD can also be used with unpacked BCD
representation.

Packed BCD
⚫ In packed BCD representation, each digit is

stored using four bits.
⚫ Two decimal digits are packed into a byte.
⚫ For example, the number 1234 is stored as:

• There are two instructions for processing these numbers:
1. DAA - Decimal Adjust After Addition
2. DAS - decimal Adjust After Subtraction

• There is no support for multiplication and division in packed
BCD representation.

Assembly Strings
⚫ We specify the length of the string by either of the

two ways:
1. Explicitly storing string length
2. Using a sentinel character

⚫ We can store the string length explicitly by using
the $ location counter symbol, that represents the
current value of the location counter.

Example
msg db 'Hello, world!', 0xa ; string
len equ $ - msg ;length of string

⚫ $ points to the byte after the last character of the
string variable msg.

⚫ Therefore, $-msg gives the length of the string.
⚫ We can also write

msg db 'Hello world!', 0xa ; string
len equ 13 ;length of string

⚫ Alternatively, we can store strings with a trailing
sentinel character to delimit a string instead of
storing the string length explicitly.

⚫ The sentinel character should be a special
character that does not appear within a string.

⚫ For example:
message DB ‘HELLO WORLD!', 0

String Instructions
⚫ Each string instruction may require a source operand, a

destination operand, or both.
⚫ For 32-bit segments, string instructions use ESI and EDI

registers to point to the source and destination
operands, respectively.

⚫ For 16-bit segments, however, the SI and the DI
registers are used to point to the source and
destination respectively.

String Instructions
⚫ There are five basic instructions for processing strings. They

are:
1. MOVS - This instruction moves 1 Byte, Word or Doubleword

of data from memory location to another.
2. LODS - This instruction loads from memory. If the operand

is of one byte, it is loaded into the AL register, if the
operand is one word, it is loaded into the AX register and a
doubleword is loaded into the EAX register.

3. STOS - This instruction stores data from register (AL, AX, or
EAX) to memory.

4. CMPS - This instruction compares two data items in
memory. Data could be of a byte size, word or doubleword.

5. SCAS - This instruction compares the contents of a register
(AL, AX or EAX) with the contents of an item in memory.

Each of the above instruction has a byte,
word and doubleword version and string
instructions can be repeated by using a
repetition prefix.

String Instructions
⚫ These instructions use the ES:DI and DS:SI pair of

registers, where DI and SI registers contain valid offset
addresses that refers to bytes stored in memory.

⚫ SI is normally associated with DS (data segment) and DI
is always associated with ES (extra segment).

⚫ The DS:SI (or ESI) and ES:DI (or EDI) registers point to
the source and destination operands respectively.

⚫ The source operand is assumed to be at DS:SI (or ESI)
and the destination operand at ES:DI (or EDI) in
memory.

⚫ For 16-bit addresses the SI and DI registers are used
and for 32-bit addresses the ESI and EDI registers are
used.

The following table provides various versions of
string instructions and the assumed space of
the operands.

SI

MOVS
⚫ The MOVS instruction is used to copy a data item

(byte, word or doubleword) from the source string
to the destination string.

⚫ The source string is pointed by DS:SI and the
destination string is pointed by ES:DI.

LODS

STOS

⚫ The STOS instruction copies the data item from AL
(for bytes - STOSB), AX (for words - STOSW) or EAX
(for doublewords - STOSD) to the destination string,
pointed to by ES:DI in memory.

CMPS

⚫ The CMPS instruction compares two strings.
⚫ This instruction compares two data items of one

byte, word or doubleword, pointed to by the DS:SI
and ES:DI registers and sets the flags accordingly.

⚫ Use of the conditional jump instructions along with
this instruction also possible.

SCAS

⚫ The SCAS instruction is used for searching a
particular character or set of characters in a string.

⚫ The data item to be searched should be in AL (for
SCASB), AX (for SCASW) or EAX (for SCASD)
registers. The string to be searched should be in
memory and pointed by the ES:DI (or EDI) register.

Repetition Prefixes
⚫ The REP prefix, when set before a string

instruction, for example - REP MOVSB, causes
repetition of the instruction based on a counter
placed at the CX register.

⚫ REP executes the instruction, decreases CX by 1,
and checks whether CX is zero. It repeats the
instruction processing until CX is zero.

⚫ The Direction Flag (DF) determines the direction of
the operation.

⚫ Use CLD (Clear Direction Flag, DF = 0) to make the
operation left to right.

⚫ Use STD (Set Direction Flag, DF = 1) to make the
operation right to left.

REP Variants
⚫ The REP prefix also has the following variations:
1. REP: it is the unconditional repeat. It repeats the

operation until CX is zero.
2. REPE or REPZ: It is conditional repeat. It repeats

the operation while the zero flag indicate
equal/zero. It stops when the ZF indicates not
equal/zero or when CX is zero.

3. REPNE or REPNZ: It is also conditional repeat. It
repeats the operation while the zero flag indicate
not equal/not zero. It stops when the ZF indicates
equal/zero or when CX is decremented to zero.

Assembly Arrays
⚫ To define a one dimensional array
⚫ Use of the data definition directives
⚫ To define a one dimensional array of numbers:
 NUMBERS DW 34, 45, 56, 67, 75, 89
⚫ This allocates 2x6 = 12 bytes of consecutive memory

space.
⚫ The symbolic address of the first number will be

NUMBERS and that of the second number will be
NUMBERS + 2 and so on.

Define An Array
⚫ We can define an array named ARR of size 8, and

initialize all the values with zero, as:
 ARR DW 0

DW 0
DW 0
DW 0
DW 0
DW 0
DW 0
DW 0

⚫ Which, can be abbreviated as:
ARR DW 0, 0 , 0 , 0 , 0 , 0 , 0 , 0

Any Shortcut??????

ARR TIMES 8 DW 0
⚫ Restriction: The TIMES directive can also be used

for multiple initializations to the same value

Assembly Procedures
⚫ Procedures are identified by a name.
⚫ Following this name, the body of the procedure is

described, which perform a well-defined job.
⚫ End of the procedure is indicated by a return

statement.
⚫ Syntax to define a procedure:

⚫ The procedure is called from another function by
using the CALL instruction.

⚫ The CALL instruction should have the name of the
called procedure as argument :
CALL proc_name

⚫ The called procedure returns the control to the
calling procedure by using the RET instruction.

Stacks Data Structure
⚫ An array-like data structure in the memory
⚫ Data can be stored and removed
⚫ ‘top' of the stack
⚫ PUSH and POP operations
⚫ LIFO data structure, i.e., the data stored first is

retrieved last.
⚫ Assembly language provides two instructions for stack

operations: PUSH and POP.
⚫ Syntax:
PUSH operand
POP address/register

Shift and Rotate
Instructions

⚫ The shift and rotate instructions reposition the bits
within the specified operand.

⚫ These instructions fall into the following classes:
● Shift instructions
● Double shift instructions
● Rotate instructions

Shift Instructions

⚫ The bits in bytes, words, and doublewords may be
shifted arithmetically or logically.

⚫ Depending on the value of a specified count, bits
can be shifted up to 31 places.

⚫ To specify the count in one of three ways:
1. To specify the count implicitly as a single shift
2. To specify the count as an immediate value
3. To specify the count as the value contained in CL.

This form allows the shift count to be a variable
that the program supplies during execution.Only
the low order 5 bits of CL are used.

⚫ CF always contains the value of the last bit shifted
out of the destination operand.

⚫ In a single-bit shift, OF is set if the value of the
high-order (sign) bit was changed by the operation.
Otherwise, OF is cleared.

⚫ Following a multibit shift the content of OF is
always undefined.

⚫ The shift instructions provide a convenient way to
accomplish division or multiplication by binary
power.

Note : division of signed numbers by shifting right is
not the same of division performed by the IDIV
instruction.

SAL & SHL
⚫ Shift Arithmetic Left
⚫ shifts the destination byte, word, or doubleword

operand left by one or by the number of bits
specified in the count operand (an immediate value
or the value contained in CL)

⚫ The processor shifts zeros in from the right
(low-order) side of the operand as bits exit from the
left (high-order) side.

⚫ SHL (Shift Logical Left) is a synonym for SAL

SHL
⚫ Synonym SAL
⚫ shifts the bits in the register or memory operand to

the left by the specified number of bit positions
⚫ CF receives the last bit shifted out of the left of the

operand.
⚫ SHL shifts in zeros to fill the vacated bit locations.
⚫ These instructions operate on byte, word, and

doubleword operands.

SHR
⚫ Shift Logical Right
⚫ Shifts the destination byte, word, or doubleword

operand right by one or by the number of bits
specified in the count operand

⚫ Count: an immediate value or the value contained in
CL.

⚫ The processor shifts zeros in from the left side of the
operand as bits exit from the right side.

⚫ SHR shifts the bits of the register or memory operand
to the right by the specified number of bit positions.

⚫ CF receives the last bit shifted out of the right of the
operand.

⚫ SHR shifts in zeros to fill the vacated bit locations.

Shift and Rotate Instruction

 Shift Logical Right

SAR
⚫ Shift Arithmetic Right
⚫ Shifts the destination byte, word, or doubleword

operand to the right by one or by the number of bits
specified in the count operand

⚫ Count :an immediate value or the value contained in
CL

⚫ The processor preserves the sign of the operand by
shifting in zeros on the left (high-order) side if the
value is positive or by shifting by ones if the value is
negative.

⚫ SAR preserves the sign of the register or memory
operand as it shifts the operand to the right by the
specified number of bit positions.

⚫ CF receives the last bit shifted out of the right of the
operand.

Shift and Rotate Instruction

 Shift Arithmetic Right

− logical shifts move 0
in the rightmost bit for
a logical left shift;

− 0 to the leftmost bit
position for a logical
right shift

− arithmetic right shift
copies the sign-bit
through the number

− logical right shift
copies a 0 through the
number.

Double-Shift Instructions

⚫ These instructions provide the basic operations
needed to implement operations on long unaligned
bit strings.

⚫ The double shifts operate either on word or
doubleword operands, as follows:

1. Taking two word operands as input and producing a
one-word output.
2. Taking two doubleword operands as input and
producing a doubleword output.

⚫ Of the two input operands, one may either be in a
general register or in memory

⚫ the other may only be in a general register.
⚫ The results replace the memory or register

operand.
⚫ The number of bits to be shifted is specified either

in the CL register or in an immediate byte of the
instruction.

⚫ Bits are shifted from the register operand into the
memory or register operand.

⚫ CF is set to the value of the last bit shifted out of
the destination operand.

⚫ SF, ZF, and PF are set according to the value of the
result.

⚫ OF and AF are left undefined.

SHLD
⚫ Shift Left Double
⚫ shifts bits of the R/M field to the left, while shifting

high-order bits from the Reg field into the R/M field
on the right

⚫ The result is stored back into the R/M operand.
⚫ The Reg field is not modified.

SHRD
⚫ Shift Right Double
⚫ shifts bits of the R/M field to the right, while

shifting low-order bits from the Reg field into the
R/M field on the left

⚫ The result is stored back into the R/M operand.
⚫ The Reg field is not modified.

Rotate Instructions
⚫ Allow bits in bytes, words, and doublewords to be

rotated
⚫ Bits rotated out of an operand are not lost as in a

shift, but are "circled" back into the other "end" of
the operand.

⚫ Rotates affect only the carry and overflow flags.
⚫ CF may act as an extension of the operand in two of

the rotate instructions, allowing a bit to be isolated
and then tested by a conditional jump instruction (JC
/JNC).

⚫ CF always contains the value of the last bit rotated
out, even if the instruction does not use this bit as an
extension of the rotated operand.

⚫ In single-bit rotates, OF is set if the operation
changes the high-order (sign) bit of the destination
operand.

⚫ If the sign bit retains its original value, OF is
cleared.

⚫ On multibit rotates, the value of OF is always
undefined.

ROL
⚫ Rotate Left
⚫ rotates the byte, word, or doubleword destination

operand left by one or by the number of bits
specified in the count operand

⚫ Count : immediate value / value contained in CL
⚫ For each rotation specified, the high-order bit that

exits from the left of the operand returns at the
right to become the new low-order bit of the
operand.

ROR
⚫ Rotate Right
⚫ rotates the byte, word, or doubleword destination

operand right by one or by the number of bits
specified in the count operand

⚫ Count : immediate value / value contained in CL
⚫ For each rotation specified, the low-order bit that

exits from the right of the operand returns at the
left to become the new high-order bit of the
operand.

RCL (Rotate Through Carry
Left)
⚫ rotates bits in the byte, word, or doubleword

destination operand left by one or by the
number of bits specified in the count
operand (an immediate value or the value
contained in CL)

⚫ differs from ROL
⚫ treats CF as a high-order one-bit extension of the

destination operand
⚫ Each high-order bit that exits from the left side of

the operand moves to CF before it returns to the
⚫ operand as the low-order bit on the next rotation

cycle.

AAA ------ ASCII Adjust after Addition.
DAA ------- Decimal Adjust AL after Addition

Corrects result in AH and AL after addition when working with BCD
values.
Mov AX,0009h
Mov BX ,0006h
Add AX, BX ; result AX =0fH (Ah =00 ,Al =0f)
AAA (DAA) ; now Ax =0105 h (Ah =01 ,Al =05)
AAD- ASCII Adjust before Division.
Prepares two BCD values for division.
Mov BX,0003h
Mov AX, 0105h ; now Ax =0105 h (Ah =01 ,Al =05)
AAD ; result AX =0fH (Ah =00 ,Al =0f)
Div BX ; AX/BX

AAM -----ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.

Mov AX,0003h
Mov BX ,0005h
MUL AX, BX ; result AX =0fH (Ah =00 ,Al =0f)
AAM ; now Ax =0105 h (Ah =01 ,Al =05)

AAS --------ASCII Adjust after Subtraction.
DAS ---- Decimal Adjust AL after Subtraction
Corrects result in AH and AL after subtraction when working with BCD values.

MOV AX, 02FFh ; AH = 02, AL = 0FFh
 AAS ; AH = 01, AL = 09

ARPL -- Adjust RPL Field of Selector
ARPL DEST , SRC

 IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC
 THEN ZF := 1;
 RPL bits(0,1) of DEST := RPL bits(0,1) of SRC;
 ELSE ZF := 0;
 ENF IF;

The ARPL instruction has two operands. The first operand is a 16-bit memory variable or word
register that contains the value of a selector. The second operand is a word register. If the RPL
field ("requested privilege level"--bottom two bits) of the first operand is less than the RPL field
of the second operand, the zero flag is set to 1 and the RPL field of the first operand is
increased to match the second operand. Otherwise, the zero flag is set to 0 and no change is
made to the first operand.ARPL appears in operating system software, not in application
programs. It is used to guarantee that a selector parameter to a subroutine does not request
more privilege than the caller is allowed. The second operand of ARPL is normally a register
that contains the CS selector value of the caller.

VERR, VERW -- Verify a
Segment for Reading or
Writing

VERR eax ; Set ZF=1 if segment can be read,
 selector in eax
VERW eax ;Set ZF=1 if segment can be written,
 selector in eax

BOUND -- Check Array Index Against Bounds

Bound eax,fffffff1h
If eax > fffffff1h then it call interrupt 5

BOUND ensures that a signed array index is within the limits specified by a block
of memory consisting of an upper and a lower bound. Each bound uses one
word for an operand-size attribute of 16 bits and a doubleword for an
operand-size attribute of 32 bits. The first operand (a register) must be greater
than or equal to the first bound in memory (lower bound), and less than or equal
to the second bound in memory (upper bound). If the register is not within
bounds, an Interrupt 5 occurs; the return EIP points to the BOUND
instruction.The bounds limit data structure is usually placed just before the array
itself, making the limits addressable via a constant offset from the beginning of
the array.

I/O Port data transfer
IN Input from Port
OUT Output to Port
⚫ IN al, DX Input from port DX into AL
⚫ Out al, DX output from AL to port DX

⚫ INS/INSB/INSW/INSD -- Input from Port to String

⚫ INS al, DX Input byte from port
DX into AL

⚫ INS ax,DX Input word from port
DX into AX

⚫ INS eax, DX Input dword from
port DX into EAX

⚫ INSB al, DX Input byte from
port DX into AL

⚫ INSW ax, DX Input word from
port DX into AX

⚫ INSD eax, DX Input dword
from port DX into EAX

Flag manipulation
instruction

STC -- Set Carry Flag
STD -- Set Direction Flag
STI -- Set Interrupt Flag
CLC -- Clear Carry Flag
CLD -- Clear Direction Flag
CLI -- Clear Interrupt Flag
 CMC -- Complement Carry Flag

SAHF -- Store AH into Flags
LAHF --- Load Flags into AH Register

