
Initialization

Unit 2:
 Bus Cycles and System Architecture

10/06/24 1

10/06/24

Initialization

• After a signal on the RESET pin, certain registers of 80386 are
set to predefined values.

• These values are adequate to enable execution of a bootstrap
program.

2

10/06/24

Processor State after RESET

• Contents of EAX depends on results power-up self test

• Self-test may be requested externally by assertion of BUSY# at the end of
RESET (EAX=0 if the 80386 passed the test, else 80386 unit is faulty)

• If self-test is not requested , EAX is undefined

• DX holds a component identifier and revision number
 (DH=3, indicates 80386, DL=unique identifier of the revision level)

3

10/06/24

Processor State after RESET

• Control Register 0 (CR0) contains

4

Dr.Sable Nilesh (ICOER) 10/06/24

State of flags and other registers

5

10/06/24

Functional Pin Diagram

6

10/06/24

Pin Description Table

7

10/06/24

Pin Description Table (Cont…)

8

10/06/24

I/O Addressing

The 80386 allows input/output to be performed in either of two
ways:
a. By means of a separate I/O address space (using specific I/O

instructions)

b. By means of memory-mapped I/O (using generalpurpose
operand manipulation instructions)

9

10/06/24

Separate I/O address space
 (An Isolated I/O)

 I/O devices treated separately from memory.
• Hardware and software architecture of

8088/8086 support separate memory I/O
address space.

 Can be accessed as either byte-wide or word-wide.
 Can be treated as either independent byte-wide

I/O ports or word-wide I/O ports.
 Page 0:

• Certain I/O instructions can only perform
operations to ports in this part of the address
range.

• Other I/O instructions can input/output data
for ports anywhere in the address space.

10

10/06/24

Separate I/O address space
 (An Isolated I/O)

Advantages: -
 1 MByte memory address space is available for use

with memory.
 Special instructions have been provided in the

instruction set of 8088/8086 to perform isolated
I/O input and output operations.

 These instructions have been tailored to maximize
I/O performance.

Disadvantages: -
 All input and output data transfers must take place

between AL or AX register and the I/O port

11

10/06/24

Memory-mapped I/O

I/O devices is placed in memory
address space of the
microcomputer.
• The memory address space is

assigned to I/O devices.

• MPU looks at the I/O port as
though it is a storage location in
memory.

• Make use of instructions that
affect data in memory rather than
special input/output instructions.

12

10/06/24

Memory-mapped I/O

Advantages:
 Many more instructions and addressing

modes are available to perform I/O
operations.

 I/O transfers can now take place
between I/O port and internal registers
other than just AL/AX.

Disadvantages:
 Memory instructions tend to execute

slower than those specifically designed
for isolated I/O.

 Part of the memory address space is lost

13

10/06/24

I/O Instructions

There are two classes of I/O instruction:
1. Those that transfer a single item (byte, word, or doubleword)

located in a register.

2. Those that transfer strings of items (strings of bytes, words, or
doublewords) located in memory.

These are known as "string I/O instructions" or "block I/O
instructions".

14

10/06/24

Register I/O Instructions

• The I/O instructions IN and OUT
are provided to move data
between I/O ports and the EAX
(32-bit I/O), the AX (I6-bit I/O), or
AL (8-bit I/O) general registers.

• IN and OUT instructions
addresses I/O ports either
directly, with the address of one of
up to 256 port

15

10/06/24

Block I/O Instructions

• The block (or string) I/O instructions INS and OUTS move blocks of
data between I/O ports and memory space.

• Block I/O instructions use the DX register to specify the address of a
port in the I/O address space.

• Block I/O instructions use either SI or DI to designate the source or
destination memory address.

• For each transfer, SI or DI are automatically either incremented or
decremented as specified by the direction bit in the flags register.

16

10/06/24

Read and Write Cycles

• Data transfers occur as a result of bus cycles,
classified as read or write cycles.

• Two choices of address timing are
dynamically selectable: non-pipelined, or
pipelined.

• After a bus idle state, the processor always
uses non-pipelined address timing.

• However, the NA# (Next Address) input may
be asserted to select pipelined address
timing for the next bus cycle.

• When pipelining is selected and the
Intel386 DX has a bus request pending
internally, the address and definition of the
next cycle is made available even before the
current bus cycle is acknowledged by
READY#.

• Terminating a read cycle or write cycle, like
any bus cycle, requires acknowledging the
cycle by asserting the READY# input.

• Until acknowledged, the processor inserts
wait states

17

10/06/24

Non-pipelined read & write cycles

18

10/06/24

Non-pipelined read & write cycles

• At the end of the second bus state within the bus cycle,
READY# is sampled

• If asserted the bus cycle terminates

• Else the cycle continues another bus state (a wait state) and
READY# is sampled again at the end of that state.

• This continues indefinitely until the cycle is acknowledged by
READY# asserted.

19

System Architecture

Unit 2:
 Bus Cycles and System Architecture

10/06/24 20

10/06/24

Systems Registers

• EFLAGS

• Memory Management Registers

• Control Registers

• Debug Registers

• Test Registers

21

10/06/24

Systems Registers

 EFLAGS

• Memory Management Registers

• Control Registers

• Debug Registers

• Test Registers

22

10/06/24

EFLAGS

System Flags of EFLAG REGISTER

23

10/06/24

Systems Registers

• EFLAGS

 Memory Management Registers

• Control Registers

• Debug Registers

• Test Registers

24

10/06/24

Memory-Management Registers

• Four registers of the 80386 locate the data structures that control segmented
memory management:
 GDTR Global Descriptor Table Register
 LDTR Local Descriptor Table Register

• These registers point to the segment descriptor tables GDT and LDT.

• IDTR Interrupt Descriptor Table Register
This register points to a table of entry points for interrupt handlers (the IDT).

• TR Task Register
This register points to the information needed by the processor to define the

 current task.

25

10/06/24

Systems Registers

• EFLAGS

• Memory Management Registers

 Control Registers

• Debug Registers

• Test Registers

26

10/06/24

Control Registers

27

10/06/24

Systems Registers

• EFLAGS

• Memory Management Registers

• Control Registers

 Debug Registers

• Test Registers

28

10/06/24

Debug Registers

• Six registers: to control debug
features

• Accessed by variants of the MOV
instruction

• debug registers are privileged
resources

Registers are:
 Debug Address Registers (DRO-

DR3)
 Debug Status Register (DR6)
 Debug Control Register (DR7)

29

10/06/24

Systems Registers

• EFLAGS

• Memory Management Registers

• Control Registers

• Debug Registers

 Test Registers

30

10/06/24

Test Registers

• Two test registers are provided for the purpose of testing.

• TR6 is the test command register, and TR7 is the test data
register.

• The test registers are privileged resources; in protected mode, the
MOV instructions that access them can only be executed at
privilege level 0

31

10/06/24

The Test Command Register (TR6)

• C: Command bit, two commands: ‘0’- write
entries into the TLB and ‘1’ perform TLB
lookups

• Linear Address:
 on a TLB write command, a TLB entry is

allocated to this linear address and the rest of
that TLB entry is set as per the values of TR7
& TR6

 on a TLB lookup command, the TLB is
interrogated as per this value and if one and
only one TLB entry matches, the rest of the
fields of TR6 & TR7 are set from the matching
TLB entry.

• V: The Valid bit for this TLB entry. The TLB uses the
valid bit to identify entries that contain valid data.
Entries of the TLB that have not been assigned values
have zero in the valid bit. All valid bits can be cleared
by writing to CR3.

• D, D#: The dirty bit for/from the TLB entry
• U, U#: The U/S bit for/from the TLB entry
• W, W#: The R/W bit for/from the TLB entry

Meaning of D, U, and W Bit Pairs

32

10/06/24

The Test Data Register (TR7)
Holds data read from or data to be written to the TLB

• Physical Address: This is the data field of the TLB. On a write to the TLB, the TLB
entry allocated to the linear address in TR6 is set to this value. On a TLB lookup, if
HT is set, the data field (physical address) from the TLB is read out to this field. If
HT is not set, this field is undefined.

• HT: For a TLB lookup, the HT bit indicates whether the lookup was a hit (HT <- 1)
or a miss (HT <- 0). For a TLB write, HT must be set to 1.

• REP: For a TLB write, selects which of four associative blocks of the TLB is to be
written. For a TLB read, if HT is set, REP reports in which of the four associative
blocks the tag was found; if HT is not set, REP is undefined.

33

10/06/24

Test Operations
 To write a TLB entry

• Move a doubleword to TR7 that contains the desired physical address, HT,
and REP values. HT must contain 1. REP must point to the associative block in
which to place the entry

• Move a doubleword to TR6 that contains the appropriate linear address, and
values for V, D, U, and W. Be sure C=0 for "write" command.

 To look up (read) a TLB entry
• Move a doubleword to TR6 that contains the appropriate linear address and

attributes. Be sure C = 1 for "lookup" command
• Store TR 7. If the HT bit in TR 7 indicates a hit, then the other values reveal

the TLB contents. If HT indicates a miss, then the other values in TR 7 are
indeterminate

34

10/06/24

Systems Instructions
1. Verification of pointer parameters:

• ARPL Adjust RPL ──
• LAR Load Access Rights ──
• LSL Load Segment Limit ──
• VERR Verify for Reading ──
• VERW Verify for Writing ──

2. Addressing descriptor tables:
• LLDT Load LDT Register ──
• SLDT Store LDT Register ──
• LGDT Load GDT Register ──
• SGDT Store GDT Register──

3. Multitasking:
• LTR Load Task Register ──
• STR Store Task Register──

4. Coprocessing and Multiprocessing :
• CLTS Clear Task-Switched Flag ──
• ESC Escape instructions ──
• WAIT Wait until Coprocessor not ──

Busy
• LOCK Assert Bus-Lock Signal──

35

10/06/24

Systems Instructions
5. Input and Output :

• IN Input ──
• OUT Output INS Input String ── ──
• OUTS Output String──

 6. Interrupt control :
• CLI Clear Interrupt-Enable Flag ──
• STI Set Interrupt-Enable Flag ──
• LIDT Load IDT Register ──
• SIDT Store IDT Register──

7. Debugging :
• MOV Move to and from debug registers──

 8. TLB testing :
• MOV Move to and from test registers ──

9. System Control:
• SMSW Set MSW ──
• LMSW Load MSW ──
• HLT Halt Processor ──
• MOV Move to and from control ──

registers

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

