Addressing Modes of 80386

Introduction

[] Addressing modes indicate a way of locating data or operands.

|| Described the type of operands and the way they are accessed
for executing an instruction.

[| The method by which address of source data and address of
destination of result is given in the instruction is called as *
Addressing Modes”.

[| The 80386 Microprocessor Provide 11 addressing modes.

Addressing Modes

Register addressing Mode

Immediate addressing Mode
Direct addressing Mode

Register Indirect addressing Mode
Based addressing Mode

Index addressing Mode

Scaled Index addressing Mode
Based Index addressing Mode

Based Scaled Index addressing Mode
Based Index addressing Mode with Displacement

0 O 0>0O 000N O > &3 .3

Based Scaled Index addressing Mode with Displacement

Register addressing Mode

[] The data is stored in a register and it is referred using a
particular register.

[] All register accept IP used in this addressing mode.

[] The 8/16/32 bit data required to execute an instruction is
present in 8/16/32 bit register is given along with the
instruction is called “Register addressing mode.

[1 Example: ADD EAX,EBX

Immediate addressing Mode

[] In this addressing mode, immediate data is part of
instruction.

[] The 8/16/32 bit data required to execute an instruction is given
directly along with the instruction is called “Immediate addressing

Example :
[l Mov EAX,12345678H

[| The linear address consists of two components:
[] The segment base address and
[] An effective address.
[The effective address is calculated by using four address elements:

[] DISPLACEMENT: An 8-, or 32-bit immediate value

[] BASE: The contents of any general purpose register. It is
generally used by compilers to point to the start of the local
variable area.

[| INDEX: The contents of any general purpose register except for
ESP. The index registers are used to access the elements of an
array, or a string of characters.

[] SCALE: The index register's value can be multiplied by a scale
factor, either 1, 2, 4 or 8. Scaled index mode is especially useful
for accessing arrays or structures.

[l The effective address (EA) of an operand is calculated according to the following formula:

[l EA = Base Register + (Index Register * Scaling) + Displacement.

SEGMENT REGISTER

55
G
FS
ES
DS

—= 3 SELECTOR

DESCRIPTOR RECISTERS

: BASE RECISTER I

I IHOEX REGISTER I

LS

DISPLACEMENT

EFFECTIVE
ADDRESS

LINEAR

BASE ADDRESS

ADDREST
_.IG}—’

-------P

I (IH INSTRUCTION)

TARGET ADDRESS

SEGMENT BASE ADDRESS

el

SECGMENT
L LT

SELECTED
SEGMENT

Direct addressing Mode

[1 The 8/16/32 bit data required to execute an instruction is present in memory location and effective
address of this memory location is given directly along with the instruction then it is called “Direct

addressing mode”.

[l Example : Mov AX,[5000H]

CS r T
=S NO DISPLACEMENT

— DS |— + — 8-BIT DISPLACEMENT |—
ES 3Z-BIT DISPLACEMENT
B » .
ES

Register Indirect addressing Mode

[] A base register will contain the address of operand
[| Example: MOV [ECX], EDX

[| The 8/16/32 bit data required to execute an instruction is present in
memory location and effective address of that memory location is
present in a 32 bit register and the name of this register is given along
with the instruction then it is called “Register Indirect addressing

ode”.
=5 | 1] [|
j| ===l
— - I B B I
— = F o —
_ = | = I3 C i
. —) - — = — = OES |

== == I

g ==
== | == T |
- £ ' = T T [
| A

Based addressing Mode

] A BASE register's contents is added to a
DISPLACEMENT to form the operands offset.

] Example: MOV ECX, [EAX+24]

25
— s
ES
FS
GS

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

NO DISPLACEMENT
P + 8-BIT DISPLACEMENT

l 32-BIT DISPLACEMENT

Index addressing Mode

[An INDEX register's contents is added to a DISPLACEMENT to form the operands
offset. EXAMPLE: ADD EAX, TABLE[ESI]

[1] The 8/16/32 bit data required to execute an instruction is present in memory
location and effective address of that memory location is obtained by adding three
contents : 1. The 32 bit content of base register 2. The 32 bit content of Index
Register 3. Displacement.

- - EAX
B r n|
EDX | NO DISPLACEMENT |
EBX — + | @8-BIT DISPLACEMENT |
- L 32-BIT DISPLACEMENT J
EBD

EST
- - EDI

i

(e I o O
L B)
1

Scaled Index addressing Mode

[] An INDEX register's contents is multiplied by a scaling factor
which is added to a DISPLACEMENT to form the operands

offset.

[] Example: MOV EBX, LIST[ESI*4]

3 EAX

C8 ECK

85 EDX

— s b + - EBX
ES -

Fg EBP

cs | ESI

|
L J EDI

r 1
| NO DISPLACEMENT |
— + —| 2-BIT DISPLACEMENT |
l 32-BIT DISPLACEMENT J

Based Index addressing Mode

[|The contents of a BASE register are added to the contents of an INDEX
register to form the effective address of an operand.

[] The 8/16/32 bit data required to execute an instruction is present in memory
location and effective address of that memory location is obtained by adding
two contents : 1. The 32 bit content of base register 2. The 32 bit content of
Index Register is called as Based Index addressing Mode.

Example: MOV EAX, [ESI] [EBX]

P 1

= EA E AL
=S ECXM Eo

== Sl o .

—r= D= EBX EBX
ES E=sE e

B= =Eere | S = =

== =ST E=ST

= ELXL EDL

Based Scaled Index addressing Mode

[1 The contents of an INDEX register is multiplied by a SCALING factor and
the result is added to the contents of a BASE register to obtain the operands
offset.

[] Example: MOV ECX, [EDX*8] [EAX]

3 - EAX EAX 1
cs ECX ECX
sS EDX EDX 2

— s — + - EBX I + 4 EBX I * —

ES ESP -—= -
FS EBP EBP
=S EST ESI €

- = EDT EDI ¥ =

Based Index addressing Mode with Displacement

[l The contents of an INDEX Register and a BASE register's contents and a
DISPLACEMENT are all summed together to form the operand offset.

[1 Example: ADD EDX, [ESI] [EBP+00FFFFFOH]

e r 1
EAX EAX
CS ECX ECX . -
88 EDX EDX NO DISPLACEMENT
— DS B+ — EBX — + — EBX + — GE-BIT DISPLACEMENT
ES 3P -——- 32-BIT DISPLACEMENT
FS EBP EBP L 4
GS ESI ESI
. EDI EDI

Based Scaled Index addressing Mode with

Displacement

[1 The contents of an INDEX register are multiplied by a SCALING factor, the
result is added to the contents of a BASE register and a DISPLACEMENT to

form the operand's offset.

[lEXAMPLE: MOV EAX, LIST [EDI*4] [EBP+80]

r 1

G [
E EAX ERX
Cs ECX ECX
55 EDX EDX
— Da = +— EB% ¥ — EBX
ES ESP wrhim
FS EBP EBP
@3 ESL ESI
EDI EDI

—

]

| NO
— + - B-BIT
l 32-BIT

3
DISPLACEMENT |
DISPLACEMENT |
DISPLACEMENT J

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17

