
Unit III Memory Management
Descriptor Tables

 Descriptor Tables

 Descriptors are stored in three tables:

 Global descriptor table (GDT)

 Maintains a list of most segments

 May contain special “system” descriptors

 The first descriptor is a null descriptor

 Interrupt descriptor table (IDT)

 Maintains a list of interrupt service routines

 Descriptor table (LDT) Is optional

 Extends range of GDT

 Is allocated to each task when multitasking is enabled

 The first descriptor is a null descriptor

Descriptor Tables
 Locations of the tables

 In Memory

 Pointed out by GDTR, LDTR and IDTR for the

 GDT, LDT and IDT respectively.

 The GDTR and IDTR are 48-bits in length, the

 first 16-bits (least significant) storing the size

 (limit) of the table and the remaining storing a 32-

 bit address pointing to the base of the tables

 Limit = (no. of descriptors * 8) - 1

 LLDT stores a 16-bit selector pointing to an entry

 in the GDT

Unit III Memory Management
• The 80386 transforms logical addresses (i.e., addresses as viewed by

programmers) into physical address (i.e., actual addresses in physical
memory) in two steps:

1.Segment translation, in which a logical address (consisting of a
segment selector and segment offset) are converted to a linear
address.

2.Page translation, in which a linear address is converted to a physical
address. This step is optional, at the discretion of systems-software
designers.

• These translations are performed in a way that is not visible to
applications programmers.

Segment Translation

• Processor converts a logical address into a
linear address

• To perform segment translation, the processor
uses the following data structures:

1.Descriptors
2.Descriptor tables
3.Selectors
4.Segment Registers

1.1 Descriptors

• The segment descriptor provides the processor with
the data it needs to map a logical address into a linear
address.

• Descriptors are created by compilers, linkers, loaders,
or the operating system, not by applications
programmers.

• 2 general descriptor formats (Next Slide)
• All types of segment descriptors take one of these

formats.

Segment-Descriptor Fields

1.BASE : Defines the location of the segment within the 4 gigabyte
linear address space. The processor concatenates the three
fragments of the base address to form a single 32-bit value.

2.LIMIT: Defines the size of the segment. When the processor
concatenates the two parts of the limit field, a 20-bit value
results. The processor interprets the limit field in one of two
ways, depending on the setting of the granularity bit:

I. In units of one byte, to define a limit of up to 1 megabyte.
II.In units of 4 Kilobytes, to define a limit of up to 4 gigabytes. The

limit is shifted left by 12 bits when loaded, and low-order one-bits
are inserted.

1.Granularity bit: Specifies the units with which
the LIMIT field is interpreted. When the bit is
clear, the limit is interpreted in units of one
byte; when set, the limit is interpreted in units
of 4 Kilobytes.

2.TYPE: Distinguishes between various kinds of
descriptors.

3.DPL (Descriptor Privilege Level): Used by the
protection mechanism.

6.Segment-Present bit

• If this bit is zero, the descriptor is not valid for use in address
transformation; the processor will signal an exception when a
selector for the descriptor is loaded into a segment register.

• format of a descriptor when the present-bit is zero (Next)
• The OS is free to use the locations marked AVAILABLE.
• Operating systems that implement segment-based virtual

memory clear the present bit in either of these cases:
I. When the linear space spanned by the segment is not

mapped by the paging mechanism.
II.When the segment is not present in memory.

8. Accessed Bit

• The processor sets this bit when the segment is
accessed;

i.e., a selector for the descriptor is loaded
into a segment register or used by a

selector test instruction.
• Operating systems that implement virtual

memory at the segment level may, by
periodically testing and clearing this bit,
monitor frequency of segment usage.

Note : Creation and maintenance
of descriptors is the responsibility
of systems software, usually
requiring the cooperation of
compilers, program loaders or
system builders, and the operating
system.

2. Descriptor Table
• Segment descriptors are stored in either of two kinds of descriptor table:

1.The global descriptor table (GDT)
2. A local descriptor table (LDT)

• A descriptor table is simply a memory array of 8-byte entries that contain
descriptors.

• A descriptor table is variable in length and may contain up to 8192 (213)
descriptors.

• The first entry of the GDT (INDEX=0) is not used by the processor.
• The processor locates the GDT and the current LDT in memory by means of the

GDTR and LDTR registers.
• These registers store the base addresses of the tables in the linear address space

and store the segment limits.
• The instructions LGDT and SGDT give access to the GDTR .
• The instructions LLDT and SLDT give access to the LDTR.

3. Selectors

• The selector portion of a logical address identifies a
descriptor by specifying a descriptor table and indexing a
descriptor within that table.

• Selectors may be visible to applications programs as a
field within a pointer variable, but the values of selectors
are usually assigned (fixed up) by linkers or linking loaders.

• the format of a selector (Next)

• Index: Selects one of 8192 descriptors in a descriptor
table. The processor simply multiplies this index value by
8 (the length of a descriptor), and adds the result to the
base address of the descriptor table in order to access the
appropriate segment descriptor in the table.

• Table Indicator: Specifies to which descriptor table the
selector refers. A zero indicates the GDT; a one indicates
the current LDT.

• Requested Privilege Level: Used by the protection
mechanism.

• Because the first entry of the GDT is not used by the
processor, a selector that has an index of zero and a table
indicator of zero (i.e., a selector that points to the first
entry of the GDT), can be used as a null selector.

• The processor does not cause an exception when a
segment register (other than CS or SS) is loaded with a
null selector.

• It will, however, cause an exception when the segment
register is used to access memory.

• This feature is useful for initializing unused segment
registers so as to trap accidental references.

4. Segment Registers

• The 80386 stores information from descriptors in segment
registers, thereby avoiding the need to consult a
descriptor table every time it accesses memory.

• Every segment register has a "visible" portion and an
"invisible" portion

• The visible portions of these segment address registers
are manipulated by programs as if they were simply 16-bit
registers.

• The invisible portions are manipulated by the processor.

Instructions

• The operations that load these registers are normal
program instructions.

• These instructions are of two classes:
1. Direct load instructions; for example, MOV, POP, LDS,
LSS, LGS, LFS : These instructions explicitly reference
the segment registers.
2. Implied load instructions; for example, far CALL and
JMP : These instructions implicitly reference the CS
register, and load it with a new value.

• Using these instructions, a program loads the
visible part of the segment register with a 16-
bit selector.

• The processor automatically fetches the base
address, limit, type, and other information
from a descriptor table and loads them into the
invisible part of the segment register.

• Because most instructions refer to data in
segments whose selectors have already been
loaded into segment registers, the processor
can add the segment-relative offset supplied by
the instruction to the segment base address
with no additional overhead.

2. Page Translation

• Page Frame
• Linear Address
• Page Tables
• Page-Table Entries
• Page-Translation Cache

Page Translation

• Optional step
• IInd phase of address translation
• 80386 transforms a linear address into a

physical address
• Implements the basic features needed for

page-oriented virtual-memory systems and
page-level protection

• Page translation is in effect only when the PG
bit of CR0 is set.

• This bit is typically set by OS during software
initialization.

• The PG bit must be set if OS is to implement
multiple virtual 8086 tasks, page-oriented
protection, or page-oriented virtual memory.

1.Page Frame

• A page frame is a 4K-byte unit of contiguous
addresses of physical memory.

• Pages begin on byte boundaries and are fixed
in size.

2. Linear Address

• A linear address refers indirectly to a physical
address by specifying a page table, a page
within that table, and an offset within that
page.

• Format of a linear address

DIR, PAGE, OFFSET

• Processor converts the DIR, PAGE, and OFFSET fields of a linear
address into the physical address by consulting two levels of
page tables.

• The addressing mechanism uses the DIR field as an index into a
page directory, uses the PAGE field as an index into the page
table determined by the page directory, and uses the OFFSET
field to address a byte within the page determined by the page
table.

3. Page Tables

• A page table is simply an array of 32-bit page
specifiers.

• A page table is itself a page, and therefore
contains 4 Kilobytes of memory or at most 1K
32-bit entries.

Table Levels

• Two levels of tables are used to address a page of memory.
• At the higher level is a page directory.
• The page directory addresses up to 1K page tables of the

second level.
• A page table of the second level addresses up to 1K pages.
• All the tables addressed by one page directory, therefore, can

address 1M pages (220).
• Because each page contains 4K bytes 212 bytes), the tables of

one page directory can span the entire physical address space
of the 80386 (220 times 212 = 232).

CR3 Usage

• The physical address of the current page
directory is stored in the CPU register CR3, also
called the page directory base register (PDBR).

• Memory management software has the option
of using one page directory for all tasks, one
page directory for each task, or some
combination of the two.

4. Page-Table Entries

• Entries in either level of page tables have the
same format.

• Format
1.Page Frame Address
2.Present Bit
3.Accessed and Dirty Bits
4.Read/Write and User/Supervisor Bits

4.1 Page Frame Address

• The page frame address specifies the physical
starting address of a page.

• Because pages are located on 4K boundaries,
the low-order 12 bits are always zero.

• In a page directory, the page frame address is
the address of a page table.

• In a second-level page table, the page frame
address is the address of the page frame that
contains the desired memory operand.

4.2 Present Bit

• The Present bit indicates whether a page table
entry can be used in address translation.

• P=1 indicates that the entry can be used (Page
in the memory).

• When P=0 in either level of page tables, the
entry is not valid for address translation, and
the rest of the entry is available for software
use; none of the other bits in the entry is
tested by the hardware (Page is not in the
physical memory).

• Format of a page-table entry when P=0.

• If P=0 in either level of page tables when an
attempt is made to use a page-table entry for
address translation, the processor signals a
page exception.

• In software systems that support paged virtual
memory, the page-not-present exception
handler can bring the required page into
physical memory.

• The instruction that caused the exception can
then be reexecuted.

4.3 Accessed and Dirty Bits

• These bits provide data about page usage in
both levels of the page tables.

• With the exception of the dirty bit in a page
directory entry, these bits are set by the
hardware

• The processor does not clear any of these bits.

• The processor sets the corresponding accessed
bits in both levels of page tables to one before
a read or write operation to a page.

• The processor sets the dirty bit in the second-
level page table to one before a write to an
address covered by that page table entry.

• The dirty bit in directory entries is undefined.

• An OS that supports paged virtual memory can
use these bits to determine what pages to
eliminate from physical memory when the
demand for memory exceeds the physical
memory available.

• The operating system is responsible for testing
and clearing these bits.

4.4 Read/Write and User/Supervisor
Bits

• These bits are not used for address translation
• Use : for page-level protection, which the

processor performs at the same time as address
translation.

• Only two types of pages are recognized by the
protection mechanism:

1. Read-only access (R/W=0).
2. Read/write access (R/W=1).

Imp…..

• With pages, there are two levels of privilege:
1. Supervisor level (U/S=0)—for the OS, other
system software (such as device drivers), and
protected system data (such as page tables).
2. User level (U/S=1)—for application code and
data.

Imp…..

• When the processor is running at supervisor
level, all pages are accessible.

• When the processor is running at user level,
only pages from the user level are accessible.

5.Page Translation Cache

• Processor stores the most recently used page-
table data in an on-chip cache.

• Only if the necessary paging information is not
in the cache must both levels of page tables be
referenced.

• The existence of the page-translation cache is
invisible to applications programmers but not
to systems programmers; OS programmers
must flush the cache whenever the page tables
are changed.

• The page-translation cache can be flushed by
either of two methods:

1.By reloading CR3 with a MOV instruction;
for example: MOV CR3, EAX

2. By performing a task switch to a TSS (Task
State Segment) that has a different CR3 image
than the current TSS.

Combining Segment and Page Translation

• By appropriate choice of options and
parameters to both phases, memory-
management software can implement several
different styles of memory management.

5.1 "Flat" Architecture

• When the 80386 is used to execute software
designed for architectures that don't have
segments, it may be expedient to effectively
"turn off" the segmentation features of the
80386.

• The 80386 does not have a mode that disables
segmentation, but the same effect can be
achieved by initially loading the segment
registers with selectors for descriptors that
encompass the entire 32-bit linear address
space.

• Once loaded, the segment registers don't need
to be changed.

• The 32-bit offsets used by 80386 instructions
are adequate to address the entire linear-
address space.

5.2 Segments Spanning Several
Pages

• The architecture of the 80386 permits

segments to be larger or smaller than the size
of a page (4 Kilobytes).

• For example, suppose a segment is used to
address and protect a large data structure that
spans 132 Kilobytes.

• In a software system that supports paged
virtual memory, it is not necessary for the
entire structure to be in physical memory at
once.

• The structure is divided into 33 pages, any
number of which may not be present.

• The applications programmer does not need to
be aware that the virtual memory subsystem is
paging the structure in this manner.

5.3 Pages Spanning Several
Segments

• Segments may be smaller than the size of a
page.

• For example, consider a small data structure
such as a semaphore.

• Because of the protection and sharing
provided by segments it may be useful to
create a separate segment for each
semaphore.

• But, because a system may need many
semaphores, it is not efficient to allocate a
page for each.

• Therefore, it may be useful to cluster many
related segments within a page.

5.4 Non-Aligned Page and Segment Boundaries

• The architecture of the 80386 does not enforce
any correspondence between the boundaries
of pages and segments.

• It is perfectly permissible for a page to contain
the end of one segment and the beginning of
another.

• Likewise, a segment may contain the end of
one page and the beginning of another.

5.5 Aligned Page and Segment Boundaries

• Memory-management software may be
simpler, however, if it enforces some
correspondence between page and segment
boundaries.

• For example, if segments are allocated only in
units of one page, the logic for segment and
page allocation can be combined.

• There is no need for logic to account for
partially used pages.

5.6 Page-Table per Segment

• An approach to space management that provides
even further simplification of space-
management software is to maintain a one-to-
one correspondence between segment
descriptors and page-directory entries.

• Sample next
• Each descriptor has a base address in which the

low-order 22 bits are zero; in other words, the
base address is mapped by the first entry of a
page table.

• A segment may have any limit from 1 to 4
megabytes.

• Depending on the limit, the segment is
contained in from 1 to 1K page frames.

• A task is thus limited to 1K segments (a sufficient
number for many applications), each containing
up to 4 Mbytes.

• The descriptor, the corresponding page-directory
entry, and the corresponding page table can be
allocated and deallocated simultaneously.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

