
Unit III Memory Management 
Descriptor Tables

 Descriptor Tables

 Descriptors are stored in three tables:

 Global descriptor table (GDT)

 Maintains a list of most segments

 May contain special “system” descriptors

 The first descriptor is a null descriptor

 Interrupt descriptor table (IDT)

 Maintains a list of interrupt service routines

 Descriptor table (LDT) Is optional

 Extends range of GDT

 Is allocated to each task when multitasking is enabled

 The first descriptor is a null descriptor



Descriptor Tables
 Locations of the tables

 In Memory

 Pointed out by GDTR, LDTR and IDTR for the

 GDT, LDT and IDT respectively.

 The GDTR and IDTR are 48-bits in length, the

 first 16-bits (least significant) storing the size

 (limit) of the table and the remaining storing a 32-

 bit address pointing to the base of the tables

 Limit = (no. of descriptors * 8) - 1

 LLDT stores a 16-bit selector pointing to an entry

 in the GDT



Unit III Memory Management
• The 80386 transforms logical addresses (i.e., addresses as viewed by 

programmers) into physical address (i.e., actual addresses in physical 
memory) in two steps:

1.Segment translation, in which a logical address (consisting of a 
segment selector and segment offset) are converted to a linear 
address.

2.Page translation, in which a linear address is converted to a physical 
address. This step is optional, at the discretion of systems-software 
designers.

• These translations are performed in a way that is not visible to 
applications programmers.





Segment Translation

• Processor converts a logical address into a 
linear address

• To perform segment translation, the processor 
uses the following data structures:

1.Descriptors
2.Descriptor tables
3.Selectors
4.Segment Registers





1.1 Descriptors

• The segment descriptor provides the processor with 
the data it needs to map a logical address into a linear 
address. 

• Descriptors are created by compilers, linkers, loaders, 
or the operating system, not by applications 
programmers. 

• 2 general descriptor formats (Next Slide)
• All types of segment descriptors take one of these 

formats.





Segment-Descriptor Fields

1.BASE : Defines the location of the segment within the 4 gigabyte 
linear  address space. The processor concatenates the three 
fragments of the base address to form a single 32-bit value.

2.LIMIT: Defines the size of the segment. When the processor 
concatenates the two parts of the limit field, a 20-bit value 
results. The processor interprets the limit field in one of two 
ways, depending on the setting of the granularity bit:

I.  In units of one byte, to define a limit of up to 1 megabyte.
II.In units of 4 Kilobytes, to define a limit of up to 4 gigabytes. The 

limit is shifted left by 12 bits when loaded, and low-order one-bits 
are inserted. 



1.Granularity bit: Specifies the units with which 
the LIMIT field is interpreted. When the bit is 
clear, the limit is interpreted in units of one 
byte; when set, the limit is interpreted in units 
of 4 Kilobytes.

2.TYPE: Distinguishes between various kinds of 
descriptors. 

3.DPL (Descriptor Privilege Level): Used by the 
protection mechanism.



6.Segment-Present bit

• If this bit is zero, the descriptor is not valid for use in address 
transformation; the processor will signal an exception when a 
selector for the descriptor is loaded into a segment register. 

• format of a descriptor when the present-bit is zero (Next)
• The OS is free to use the locations marked AVAILABLE. 
• Operating systems that implement segment-based virtual 

memory clear the present bit in either of these cases:
I. When the linear space spanned by the segment is not 

mapped by the paging mechanism.
II.When the segment is not present in memory.





8. Accessed Bit

• The processor sets this bit when the segment is 
accessed;

i.e., a selector for the descriptor is loaded 
into a segment register or used by a 

selector test instruction. 
• Operating systems that implement virtual 

memory at the segment level may, by 
periodically testing and clearing this bit, 
monitor frequency of segment usage.



Note : Creation and maintenance 
of descriptors is the responsibility 
of systems software, usually 
requiring the cooperation of 
compilers, program loaders or 
system builders, and the operating 
system.



2. Descriptor Table
• Segment descriptors are stored in either of two kinds of descriptor table:

1.The global descriptor table (GDT)
2. A local descriptor table (LDT)

• A descriptor table is simply a memory array of 8-byte entries that contain 
descriptors.

•  A descriptor table is variable in length and may contain up to 8192 (213) 
descriptors. 

• The first entry of the GDT (INDEX=0) is not used by the processor.
• The processor locates the GDT and the current LDT in memory by means of the 

GDTR and LDTR registers. 
• These registers store the base addresses of the tables in the linear address space 

and store the segment limits. 
• The instructions LGDT and SGDT give access to the GDTR .
• The instructions LLDT and SLDT give access to the LDTR.





3. Selectors

• The selector portion of a logical address identifies a 
descriptor by specifying a descriptor table and indexing a 
descriptor within that table.

• Selectors may be visible to applications programs as a 
field within a pointer variable, but the values of selectors 
are usually assigned (fixed up) by linkers or linking loaders. 

• the format of a selector (Next)





• Index: Selects one of 8192 descriptors in a descriptor 
table. The processor simply multiplies this index value by 
8 (the length of a descriptor), and adds the result to the 
base address of the descriptor table in order to access the 
appropriate segment descriptor in the table.

• Table Indicator: Specifies to which descriptor table the 
selector refers. A zero indicates the GDT; a one indicates 
the current LDT.

• Requested Privilege Level: Used by the protection 
mechanism.



• Because the first entry of the GDT is not used by the 
processor, a selector that has an index of zero and a table 
indicator of zero (i.e., a selector that points to the first 
entry of the GDT), can be used as a null selector.

• The processor does not cause an exception when a 
segment register (other than CS or SS) is loaded with a 
null selector.

•  It will, however, cause an exception when the segment 
register is used to access memory. 

• This feature is useful for initializing unused segment 
registers so as to trap accidental references.



4. Segment Registers

• The 80386 stores information from descriptors in segment 
registers, thereby avoiding the need to consult a 
descriptor table every time it accesses memory.

• Every segment register has a "visible" portion and an 
"invisible" portion

• The visible portions of these segment address registers 
are manipulated by programs as if they were simply 16-bit 
registers. 

• The invisible portions are manipulated by the processor.





Instructions

• The operations that load these registers are normal 
program instructions.

• These instructions are of two classes:
1. Direct load instructions; for example, MOV, POP, LDS, 
LSS, LGS, LFS : These instructions explicitly reference 
the segment registers.
2. Implied load instructions; for example, far CALL and 
JMP : These instructions implicitly reference the CS 
register, and load it with a new value.



• Using these instructions, a program loads the 
visible part of the segment register with a 16-
bit selector. 

• The processor automatically fetches the base 
address, limit, type, and other information 
from a descriptor table and loads them into the 
invisible part of the segment register.



• Because most instructions refer to data in 
segments whose selectors have already been 
loaded into segment registers, the processor 
can add the segment-relative offset supplied by 
the instruction to the segment base address 
with no additional overhead.



2. Page Translation

• Page Frame
• Linear Address
• Page Tables
• Page-Table Entries
• Page-Translation Cache



Page Translation

• Optional step
• IInd phase of address translation
• 80386 transforms a linear address into a 

physical address 
• Implements the basic features needed for 

page-oriented virtual-memory systems and 
page-level protection



• Page translation is in effect only when the PG 
bit of CR0 is set. 

• This bit is typically set by OS during software 
initialization. 

• The PG bit must be set if OS is to implement 
multiple virtual 8086 tasks, page-oriented 
protection, or page-oriented virtual memory.



1.Page Frame

• A page frame is a 4K-byte unit of contiguous 
addresses of physical memory.

• Pages begin on byte boundaries and are fixed 
in size.



2. Linear Address

• A linear address refers indirectly to a physical 
address by specifying a page table, a page 
within that table, and an offset within that 
page. 

• Format of a linear address





DIR, PAGE, OFFSET

• Processor converts the DIR, PAGE, and OFFSET fields of a linear 
address into the physical address by consulting two levels of 
page tables. 

• The addressing mechanism uses the DIR field as an index into a 
page directory, uses the PAGE field as an index into the page 
table determined by the page directory, and uses the OFFSET 
field to address a byte within the page determined by the page 
table.





3. Page Tables

• A page table is simply an array of 32-bit page 
specifiers. 

• A page table is itself a page, and therefore 
contains 4 Kilobytes of memory or at most 1K 
32-bit entries.



Table Levels

• Two levels of tables are used to address a page of memory. 
• At the higher level is a page directory.
• The page directory addresses up to 1K page tables of the 

second level. 
• A page table of the second level addresses up to 1K pages. 
• All the tables addressed by one page directory, therefore, can 

address 1M pages (220).
•  Because each page contains 4K bytes 212 bytes), the tables of 

one page directory can span the entire physical address space 
of the 80386 (220 times 212 = 232).



CR3 Usage

• The physical address of the current page 
directory is stored in the CPU register CR3, also 
called the page directory base register (PDBR). 

• Memory management software has the option 
of using one page directory for all tasks, one 
page directory for each task, or some 
combination of the two.



4. Page-Table Entries

• Entries in either level of page tables have the 
same format. 

• Format
1.Page Frame Address
2.Present Bit
3.Accessed and Dirty Bits
4.Read/Write and User/Supervisor Bits





4.1 Page Frame Address

• The page frame address specifies the physical 
starting address of a page.

• Because pages are located on 4K boundaries, 
the low-order 12 bits are always zero.

•  In a page directory, the page frame address is 
the address of a page table. 

• In a second-level page table, the page frame 
address is the address of the page frame that 
contains the desired memory operand.



4.2 Present Bit

• The Present bit indicates whether a page table 
entry can be used in address translation. 

• P=1 indicates that the entry can be used (Page 
in the memory).

• When P=0 in either level of page tables, the 
entry is not valid for address translation, and 
the rest of the entry is available for software 
use; none of the other bits in the entry is 
tested by the hardware (Page is not in the 
physical memory). 

• Format of a page-table entry when P=0.





• If P=0 in either level of page tables when an 
attempt is made to use a page-table entry for 
address translation, the processor signals a 
page exception. 

• In software systems that support paged virtual 
memory, the page-not-present exception 
handler can bring the required page into 
physical memory. 

• The instruction that caused the exception can 
then be reexecuted.



4.3 Accessed and Dirty Bits

• These bits provide data about page usage in 
both levels of the page tables.

• With the exception of the dirty bit in a page 
directory entry, these bits are set by the 
hardware

• The processor does not clear any of these bits.



• The processor sets the corresponding accessed 
bits in both levels of page tables to one before 
a read or write operation to a page.

• The processor sets the dirty bit in the second-
level page table to one before a write to an 
address covered by that page table entry.

•  The dirty bit in directory entries is undefined.



• An OS that supports paged virtual memory can 
use these bits to determine what pages to 
eliminate from physical memory when the 
demand for memory exceeds the physical 
memory available.

•  The operating system is responsible for testing 
and clearing these bits.



4.4 Read/Write and User/Supervisor 
Bits

• These bits are not used for address  translation
• Use : for page-level protection, which the 

processor performs at the same time as address 
translation.

• Only two types of pages are recognized by the 
protection mechanism:

1. Read-only access (R/W=0).
2. Read/write access (R/W=1).



Imp…..

• With pages, there are two levels of privilege:
1. Supervisor level (U/S=0)—for the OS, other 
system software (such as device drivers), and 
protected system data (such as page tables).
2. User level (U/S=1)—for application code and 
data.



Imp…..

• When the processor is running at supervisor 
level, all pages are accessible. 

• When the processor is running at user level, 
only pages from the user level are accessible.



5.Page Translation Cache

• Processor stores the most recently used page-
table data in an on-chip cache.

• Only if the necessary paging information is not 
in the cache must both levels of page tables be 
referenced.

• The existence of the page-translation cache is 
invisible to applications programmers but not 
to systems programmers; OS programmers 
must flush the cache whenever the page tables 
are changed. 



• The page-translation cache can be flushed by 
either of two methods:

1.By reloading CR3 with a MOV instruction; 
for example:  MOV CR3, EAX

2. By performing a task switch to a TSS (Task 
State Segment) that has a different CR3 image 
than the current TSS.



Combining Segment and Page Translation

• By appropriate choice of options and 
parameters to both phases, memory-
management software can implement several 
different styles of memory management.





5.1 "Flat" Architecture

• When the 80386 is used to execute software 
designed for architectures that don't have 
segments, it may be expedient to effectively 
"turn off" the segmentation features of the 
80386. 

• The 80386 does not have a mode that disables 
segmentation, but the same effect can be 
achieved by initially loading the segment 
registers with selectors for descriptors that 
encompass the entire 32-bit linear address 
space.

•  Once loaded, the segment registers don't need 
to be changed. 

• The 32-bit offsets used by 80386 instructions 
are adequate to address the entire linear-
address space.



5.2 Segments Spanning Several 
Pages

 
• The architecture of the 80386 permits 

segments to be larger or smaller than the size 
of a page (4 Kilobytes). 

• For example, suppose a segment is used to 
address and protect a large data structure that 
spans 132 Kilobytes. 

• In a software system that supports paged 
virtual memory, it is not necessary for the 
entire structure to be in physical memory at 
once.

•  The structure is divided into 33 pages, any 
number of which may not be present. 

• The applications programmer does not need to 
be aware that the virtual memory subsystem is 
paging the structure in this manner.



5.3 Pages Spanning Several 
Segments

• Segments may be smaller than the size of a 
page. 

• For example, consider a small data structure 
such as a semaphore.

•  Because of the protection and sharing 
provided by segments it may be useful to 
create a separate segment for each 
semaphore. 

• But, because a system may need many 
semaphores, it is not efficient to allocate a 
page for each. 

• Therefore, it may be useful to cluster many 
related segments within a page.



5.4 Non-Aligned Page and Segment Boundaries

• The architecture of the 80386 does not enforce 
any correspondence between the boundaries 
of pages and segments. 

• It is perfectly permissible for a page to contain 
the end of one segment and the beginning of 
another. 

• Likewise, a segment may contain the end of 
one page and the beginning of another.



5.5 Aligned Page and Segment Boundaries

• Memory-management software may be 
simpler, however, if it enforces some 
correspondence between page and segment 
boundaries. 

• For example, if segments are allocated only in 
units of one page, the logic for segment and 
page allocation can be combined.

•  There is no need for logic to account for  
partially used pages.



5.6 Page-Table per Segment

• An approach to space management that provides 
even further simplification of space-
management software is to maintain a one-to-
one correspondence between segment 
descriptors and page-directory entries.

•  Sample next
• Each descriptor has a base address in which the 

low-order 22 bits are zero; in other words, the 
base address is mapped by the first entry of a 
page table. 

• A segment may have any limit from 1 to 4 
megabytes.

• Depending on the limit, the segment is 
contained in from 1 to 1K page frames. 

• A task is thus limited to 1K segments (a sufficient 
number for many applications), each containing 
up to 4 Mbytes. 

• The descriptor, the corresponding page-directory 
entry, and the corresponding page table can be 
allocated and deallocated simultaneously.
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