
Unit V

MULTITASKING and
Virtual Mode

Task 1 Task 2 Task 3 Task 1 Task 2 Task 4

Task 3
completes

Task 4 beginsTask switch

Fig: Running Multiple Tasks Simultaneously

Time

⚫The x386 processor provides hardware support for
multitasking.

⚫A task is a program which is running, or waiting to
run while another program is running.

⚫A task is invoked by an interrupt, exception, jump,
or call.

⚫When one of these forms of transferring execution is
used with a destination specified by an entry in one
of the descriptor tables, this descriptor can be a type
which causes a new task to begin execution after
saving the state of the current task.

⚫There are two types of task-related descriptors
which can occur in a descriptor table: task state
segment descriptors and task gates.

⚫ When execution is passed to either kind of
descriptor, a task switch occurs.

⚫A task switch is like a procedure call, but it
saves more processor state information.

⚫A task switch transfers execution to a
completely new environment, the environment
of a task.

⚫ This requires saving the contents of nearly all
the processor registers, including the EFLAGS
register and the segment registers.

⚫Unlike procedures, tasks are not re-entrant.
⚫A task switch does not push anything on the

stack.
⚫The processor state information is saved in a

data structure in memory, called a task state
segment.

⚫The processor state information needed to
restore a task is saved in a type of segment,
called a task state segment or TSS.

⚫Figure :format of a TSS for tasks designed for
32- bit CPUs.

⚫The fields of a TSS are divided into two main
categories:

1. Dynamic fields the processor updates with
each task switch.

2. Static fields the processor reads, but does not
change.

TASK STATE SEGMENT

TSS DESCRIPTOR

⚫The task state segment, like all other
segments, is defined by a descriptor.

⚫The format of a TSS descriptor.
⚫The Base, Limit, and DPL fields and the

Granularity bit and Present bit have functions
similar to their use in data-segment
descriptors.

⚫The Busy bit in the Type field indicates
whether the task is busy.

⚫A busy task is currently running or waiting to
run.

⚫A Type field with a value of 9 indicates an
inactive task; a value of 11 (decimal)
indicates a busy task.

⚫Tasks are not recursive.
⚫The processor uses the Busy bit to detect an

attempt to call a task whose execution has
been interrupted.

multitasking

⚫Task State Segment
⚫ TSS Descriptor
⚫ Task Register
⚫ Task Gate Descriptor
⚫ Task Switching
⚫ Task Linking
⚫ Task Address Space.

Multitasking……
⚫To provide efficient, protected multitasking, the 80386

employs several special data structures.
⚫ It does not use special instructions to control

multitasking
⚫ It interprets ordinary control-transfer instructions

differently when they refer to the special data
structures.

⚫The registers and data structures that support
multitasking are:

1. Task state segment
2. Task state segment descriptor
3. Task register
4. Task gate descriptor

Task MGMT Feature #1
⚫With these structures the 80386 can rapidly

switch execution from one task to another,
saving the context of the original task so that
the task can be restarted later.

Task MGMT Feature #2
⚫Interrupts and exceptions can cause task

switches (if needed in the system design).
⚫The processor not only switches

automatically to the task that handles the
interrupt or exception, but it automatically
switches back to the interrupted task when
the interrupt or exception has been serviced.

⚫Interrupt tasks may interrupt lower-priority
interrupt tasks to any depth.

Task MGMT Feature #3
⚫With each switch to another task, the 80386

can also switch to another LDT and to
another page directory.

⚫Thus each task can have a different logical-to-
linear mapping and a different linear-to-
physical mapping.

⚫This is yet another protection feature,
because tasks can be isolated and prevented
from interfering with one another.

6. Task State Segment

⚫All the information the processor needs in
order to manage a task is stored in a special
type of segment, a task state segment (TSS).

⚫Figure
⚫Format of a TSS for executing 80386 tasks

Diagram :
80386 32-Bit Task State Segment

TSS Fields
⚫The fields of a TSS belong to two classes:
1. A dynamic set that the processor updates

with each switch from the task.
2. A static set that the processor reads but

does not change.

Dynamic Set
⚫This set includes the fields that store:
1. The general registers (EAX, ECX, EDX, EBX,

ESP, EBP, ESI, EDI)
2. The segment registers (ES, CS, SS, DS, FS,

GS)
3. The flags register (EFLAGS)
4. The instruction pointer (EIP)
5. The selector of the TSS of the previously

executing task (updated only when a return
is expected)

Static Set
⚫This set includes the fields that store:
1. The selector of the task's LDT.
2. The register (PDBR) that contains the base

address of the task's page directory (read
only when paging is enabled).

3. Pointers to the stacks for privilege levels 0-
2.

4. The T-bit (debug trap bit) which causes the
processor to raise a debug exception when a
task switch occurs.

5. The I/O map base

Bit map
⚫The base address for the I/O permission

bit map and interrupt redirection bitmap.
⚫If present, these maps are stored in the

TSS at higher addresses.
⚫The base address points to the beginning

of the I/O map and the end of the 32-byte
interrupt map.

Dynamic set
⮚ That where processor updates

with each switch from the
task.

⮚ This set includes the fields that
store:

• The general registers (EAX, ECX,
EDX, EBX, ESP, EBP, ESI, EDI).

• The segment registers (ES, CS, SS,
DS, FS, GS).

• The flags register (EFLAGS).
• The instruction pointer (EIP).
• The selector of the TSS of the

previously executing task (updated
only when a return is expected).

Static set
⮚ It is that where processor reads

but does not change.
⮚ This set includes the fields that

store:
• The selector of the task's LDT.
• The register (PDBR) that contains the

base address of the task's page
directory (read only when paging is
enabled).

• Pointers to the stacks for privilege
levels 0-2.

• The T-bit (debug trap bit) which
causes the processor to raise a debug
exception

• The I/O map base

Task State Segment (TSS)
Two classes of TSS
format

link
ESP0

SS0
ESP1

SS1
ESP2

SS2
PTDB
EIP

ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0

ES
CS
SS
DS
FS
GS

LDTR
IOMAP TRAP

EFLAGS
EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

I/O permission bitmap

= field is ‘static’

= field is ‘Dynamic’

= field is ‘reserved’

0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100

32-bits

Fig. 1 :Task state
segment

⚫Task state segments may reside anywhere in
the linear space.

⚫The only case that requires caution is :
⚫when the TSS spans a page boundary and

the higher-addressed page is not present.
⚫In this case, the processor raises an exception

if it encounters the not-present page while
reading the TSS during a task switch.

⚫Such an exception can be avoided by either of
two strategies:

1. By allocating the TSS so that it does not
cross a page boundary.
2. By ensuring that both pages are either both
present or both not-present at the time of a
task switch. If both pages are not-present, then
the page-fault handler must make both pages
present before restarting the instruction that
caused the task switch.

7. TSS Descriptor

⚫The task state segment, like all other
segments, is defined by a descriptor.

⚫Figure (Next) :the format of a TSS descriptor
⚫The B-bit in the type field indicates whether

the task is busy.
⚫A type code of 9 indicates a non-busy task; a

type code of 11 indicates a busy task.
⚫Tasks are not reentrant.
⚫The B-bit allows the processor to detect an

attempt to switch to a task that is already
busy.

Fields of TSS Descriptor
⚫The BASE, LIMIT, and DPL fields and the G-bit and

P-bit have functions similar to their counterparts in
data-segment descriptors.

⚫The LIMIT field, must have a value equal to or
greater than 103.

⚫An attempt to switch to a task whose TSS
descriptor has a limit less that 103 causes an
exception.

⚫A larger limit is permissible, and a larger limit is
required if an I/O permission map is present.

⚫A larger limit may also be convenient for systems
software if additional data is stored in the same
segment as the TSS.

⚫A procedure that has access to a TSS
descriptor can cause a task switch.

⚫In most systems the DPL fields of TSS
descriptors should be set to zero, so that only
trusted software has the right to perform task
switching.

⚫Having access to a TSS-descriptor does not
give a procedure the right to read or modify a
TSS.

⚫Reading and modification can be
accomplished only with another descriptor
that redefines the TSS as a data segment.

⚫An attempt to load a TSS descriptor into any
of the segment registers (CS, SS, DS, ES, FS,
GS) causes an exception.

⚫TSS descriptors may reside only in the GDT.

⚫An attempt to identify a TSS with a selector
that has TI=1 (indicating the current LDT)
results in an exception.

8.TR
⚫TSS descriptors may only be loaded into GDT.

⚫When multiple TSS descriptors exist in GDT,
the TSS currently in use is accessed through
the use of the Task Register.

⚫TR is used as an index pointer into the GDT to
locate a TSS descriptor.

TR…..
⚫The task register (TR) identifies the currently

executing task by pointing to the TSS.

⚫Figure (Next):
the path by which the processor accesses

the current TSS

TASK REGISTER
⚫The task register (TR) is used to
find the current TSS.
⚫The task register has :

•a visible part (i.e., a part which can be
read and changed by software),

•an invisible part (i.e., a part maintained
by the processor and inaccessible to
software).

⚫The selector in the visible portion indexes
to a TSS descriptor in the GDT.

⚫ The processor uses the invisible portion
of the TR register to retain the base and
limit values from the TSS descriptor.

⚫ Keeping these values in a register makes
execution of the task more efficient,
because the processor does not need to
fetch these values from memory to
reference the TSS of the current task.

⚫The LTR and STR instructions are used to
modify and read the visible portion of the task
register.

⚫Both instructions take one operand, a 16-bit
segment selector located in memory or a
general register.

LTR : Load task register
⚫Loads the visible portion of the task register

with the selector operand, which must
select a TSS descriptor in the GDT.

⚫LTR also loads the invisible portion with
information from the TSS descriptor
selected by the operand.

⚫LTR is a privileged instruction; it may be
executed only when CPL is zero.

⚫generally use during system initialization to
give an initial value to the task register

⚫Then, contents of TR are changed by task
switch operations.

STR : Store task register
⚫stores the visible portion of the task

register in a general register or
memory word.

⚫STR is not privileged.

9.Task Gate Descriptor

⚫A task gate descriptor provides an
indirect, protected reference to a TSS.

⚫Figure (Next) :the format of a task gate
⚫The SELECTOR field of a task gate must

refer to a TSS descriptor.
⚫The value of the RPL in this selector is not

used by the processor.

⚫The DPL field of a task gate controls the right
to use the descriptor to cause a task switch.

⚫A procedure may not select a task gate
descriptor unless the maximum of the selector's
RPL and the CPL of the procedure is
numerically less than or equal to the DPL of the
descriptor.

⚫This constraint prevents untrusted procedures
from causing a task switch.

⚫Note : when a task gate is used, the DPL of the
target TSS descriptor is not used for privilege
checking.

⚫A procedure that has access to a task gate
has the power to cause a task switch, just as
a procedure that has access to a TSS
descriptor.

⚫The 80386 has task gates in addition to TSS
descriptors to satisfy three needs:

1. The need for a task to have a single busy bit.
2. The need to provide selective access to

tasks.
3. The need for an interrupt or exception to

cause a task switch.

Need #1
To have a single busy bit for a task:
⚫Because the busy-bit is stored in the TSS

descriptor, each task should have only one
such descriptor.

⚫There may, however, be several task gates
that select the single TSS descriptor.

Need #2
To provide selective access to tasks:
⚫Task gates fulfill this need, because they can

reside in LDTs and can have a DPL that is
different from the TSS descriptor's DPL.

⚫A procedure that does not have sufficient
privilege to use the TSS descriptor in the GDT
(which usually has a DPL of 0) can still switch to
another task if it has access to a task gate for
that task in its LDT.

⚫With task gates, systems software can limit the
right to cause task switches to specific tasks.

Need #3
The need for an interrupt or exception to cause a
task switch:
⚫Task gates may also reside in the IDT, making it

possible for interrupts and exceptions to cause
task switching.

⚫When interrupt or exception vectors to an IDT
entry that contains a task gate, the 80386
switches to the indicated task.

⚫Thus, all tasks in the system can benefit from the
protection afforded by isolation from interrupt
tasks.

Figure :
How both a task gate in an LDT
and a task gate in the IDT can

identify the same task

10. Task Switching
⚫The 80386 switches execution to another task

in any of four cases:
1. The current task executes a JMP or CALL
that refers to a TSS descriptor.
2. The current task executes a JMP or CALL
that refers to a task gate.
3. An interrupt or exception vectors to a task
gate in the IDT.
4. The current task executes an IRET when the
NT flag is set.

⚫JMP, CALL, IRET, interrupts, and exceptions
are all ordinary mechanisms of the 80386
that can be used in circumstances that do not
require a task switch.

⚫Either the type of descriptor referenced or
the NT (nested task) bit in the flag word
distinguishes between the standard
mechanism and the variant that causes a task
switch.

⚫To cause a task switch, a JMP or CALL
instruction can refer either to a TSS
descriptor or to a task gate.

⚫The effect is the same in either case: the
80386 switches to the indicated task.

⚫An exception or interrupt causes a task
switch when it vectors to a task gate in the
IDT.

⚫ If it vectors to an interrupt or trap gate in
the IDT, a task switch does not occur.

⚫Whether invoked as a task or as a procedure
of the interrupted task, an interrupt handler
always returns control to the interrupted
procedure in the interrupted task.

⚫If the NT flag is set, however, the handler is
an interrupt task, and the IRET switches back
to the interrupted task.

When a task switch is called, the following steps take place:

1.The new TSS descriptor or task gate must have
sufficient privilege to allow a task switch.

2.The new TSS descriptor must have its present bit set
and have a valid limit field.

3.The state of the current task(also called its context) is
saved.

4.The TR is loaded with the selector of the new TSS
descriptor.

5.The state of the new task is loaded from its TSS and
execution is resumed.

Step 1
⚫ Checking that the current task is allowed to switch to the

designated task.
⚫ Data-access privilege rules apply in the case of JMP or CALL

instructions.
⚫ The DPL of the TSS descriptor or task gate must be less than

or equal to the maximum of CPL and the RPL of the gate
selector.

⚫ Exceptions, interrupts, and IRETs are permitted to switch
tasks regardless of the DPL of the target task gate or TSS
descriptor.

⚫The DPL, CPL, and RPL values are compared before any
further processing takes place.

⚫ Interrupts and exceptions do not force protection
checking.

Step 2
⚫Checking that the TSS descriptor of the new

task is marked present and has a valid limit.
⚫Any errors up to this point occur in the

context of the outgoing task.
⚫Errors are restartable and can be handled in

a way that is transparent to applications
procedures.

Step 3
⚫Saving the state of the current task.

⚫This involves copying the contents of all
processor registers into the TSS for the current
task.

⚫The processor finds the base address of the current
TSS cached in the task register.

⚫It copies the registers into the current TSS (EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS,
FS, GS, and the flag register).

⚫The EIP field of the TSS points to the instruction
after the one that caused the task switch.

Step 4
⚫Loading the task register with :
✔the selector of the incoming task's TSS

descriptor,
✔marking the incoming task's TSS descriptor

as busy, and
✔setting the TS (task switched) bit of the MSW,

as is the busy bit in the new TSS descriptor.

⚫The selector is either the operand of a control
transfer instruction or is taken from a task
gate.

Step 5
⚫Loading the incoming task's state from its TSS

and resuming execution.
⚫The registers loaded are the LDT register; the

flag register; the general registers EIP, EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDI; the
segment registers ES, CS, SS, DS, FS, and GS;
and PDBR.

⚫Any errors detected in this step occur in the
context of the incoming task.

⚫To an exception handler, it appears that the
first instruction of the new task has not yet
executed.

⚫The privilege level at which the old task
was running has no relation to the
privilege level of the new task.

⚫Because the tasks are isolated by their
separate address spaces and task state
segments, and because privilege rules
control access to a TSS, no privilege
checks are needed to perform a task
switch.

⚫The new task begins executing at the
privilege level indicated by the RPL of the
new contents of the CS register, which are
loaded from the TSS.

Note:
⚫The state of the outgoing task is always saved

when a task switch occurs.
⚫If execution of that task is resumed, it starts

after the instruction that caused the task
switch.

⚫The registers are restored to the values they
held when the task stopped executing.

11. Task Linking

⚫The back-link field of the TSS and the NT
(nested task) bit of the flag word together allow
the 80386 to automatically return to a task that
CALLed another task or was interrupted by
another task.

⚫When a CALL instruction, an interrupt
instruction, an external interrupt, or an
exception causes a switch to a new task, the
80386 automatically fills the back-link of the
new TSS with the selector of the outgoing
task's TSS and, at the same time, sets the NT
bit in the new task's flag register.

⚫The NT flag indicates whether the back-link
field is valid.

⚫The new task releases control by executing
an IRET instruction.

⚫When interpreting an IRET, the 80386
examines the NT flag.

⚫If NT is set, the 80386 switches back to the
task selected by the back-link field.

⚫Table (Next) summarizes the uses of these
fields.

Busy Bit Prevents Loops
⚫The Busy bit of the TSS descriptor prevents re-

entrant task switching.
⚫There is only one saved task context, the

context saved in the TSS, therefore a task only
may be called once before it terminates.

⚫ The chain of suspended tasks may grow to
any length, due to multiple interrupts,
exceptions, jumps, and calls.

⚫The Busy bit prevents a task from being called
if it is in this chain.

⚫A re-entrant task switch would overwrite the
old TSS for the task, which would break the
chain.

⚫The processor manages the Busy bit as follows:
1. When switching to a task, the processor sets the

Busy bit of the new task.

2. When switching from a task, the processor clears the
Busy bit of the old task if that task is not to be placed in
the chain (i.e., the instruction causing the task switch is
a JMP or IRET instruction). If the task is placed in the
chain, its Busy bit remains set.

3. When switching to a task, the processor generates a
general-protection exception if the Busy bit of the new
task already is set.
⚫In this way, the processor prevents a task from

switching to itself or to any task in the chain, which
prevents re-entrant task switching.

⚫The busy bit is effective even in
multiprocessor configurations, because the
processor automatically asserts a bus lock
when it sets or clears the busy bit.

⚫This action ensures that two processors do
not invoke the same task at the same time.

Modifying Task Linkages
⚫Any modification of the linkage order of tasks

should be accomplished only by software that
can be trusted to correctly update the back-
link and the busy-bit.

⚫Such changes may be needed to resume an
interrupted task before the task that
interrupted it.

⚫Trusted software that removes a task from the
back-link chain must follow one of the
following policies:

1. First change the back-link field in the TSS of the interrupting
task, then clear the busy-bit in the TSS descriptor of the task
removed from the list.

2. Ensure that no interrupts occur between updating the back-
link chain and the busy bit.

12. Task Addressing Space
⚫The LDT selector and PDBR fields of the TSS

give software systems designers flexibility in
utilization of segment and page mapping
features of the 80386.

⚫By appropriate choice of the segment and
page mappings for each task:
⮚tasks may share address spaces,
⮚may have address spaces that are largely

distinct from one another,
OR

⮚may have any degree of sharing between
these two extremes.

⚫The ability for tasks to have distinct address spaces
is an important aspect of 80386 protection.

⚫A module in one task cannot interfere with a
module in another task if the modules do not have
access to the same address spaces.

⚫The flexible memory management features of the
80386 allow systems designers to assign areas of
shared address space to those modules of different
tasks that are designed to cooperate with each
other.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

