
Microprocessor
SE Second Shift

Lecture Number-10
Date-17/02/2021

Memory organization & segmentation
Physical memory organized as sequence of 8-bit

bytes
Each byte is assigned unique address (range 0 to

232 – 1)
Physical address space : 4 GB (physical memory)
Logical address space : 64 TB (Virtual memory)
x386 programs independent of physical address

space
Programmer not known @ the physical memory

addresses
Also, no clue @ exact location of data n code in

memory

1.1 continued
The architecture of the 80386 gives designers the

freedom to choose a model for each task.
The model of memory organization can range

between the following :
1. A "flat" address space consisting of a single array

of up to 4 gigabytes.
2. A segmented address space consisting of a

collection of up to 16,383 linear address spaces of
up to 4 gigabytes each.

 The "Flat" Model
The applications programmer sees a single array of

up to 232 bytes (4 gigabytes)
The processor maps the 4 gigabyte flat space onto

the physical address space by the address
translation mechanisms

Applications programmers do not need to know the
details of the mapping.

A pointer into this flat address space is a 32-bit
ordinal number that may range from 0 to 232-1.

Relocation of separately-compiled modules in this
space must be performed by systems software
(e.g., linkers, locators, binders, loaders).

 The Segmented Model

The address space as viewed by an applications
program (called the logical address space) is a
much larger space of up to 246 bytes (64 terabytes).

The processor maps the 64 terabyte logical
address space onto the physical address space (up
to 4 gigabytes) by the address translation
mechanisms.

Applications programmers do not need to know the
details of this mapping.

continued
Applications programmers view the logical address

space of the 80386 as a collection of up to 16,383
one-dimensional subspaces, each with a specified
length.

Each of these linear subspaces is called a segment.
A segment is a unit of contiguous address space.
Segment sizes may range from one byte up to a

maximum of 232 bytes (4 gigabytes).

continued
A complete pointer in logical address space

consists of two parts (Figure Next Slide)
1. A segment selector, which is a 16-bit field that

identifies a segment.

1. An offset, which is a 32-bit ordinal that addresses
to the byte level within a segment.

Fig: Two-Component Pointer

1.1.2 continued
During execution of a program, the processor

associates with a segment selector the physical
address of the beginning of the segment.

Separately compiled modules can be relocated at
run time by changing the base address of their
segments.

 The size of a segment is variable; therefore, a
segment can be exactly the size of the module it
contains.

1.7 Data Types
Bytes, words, and doublewords are the

fundamental data types
A byte is eight contiguous bits starting at any

logical address.
 The bits are numbered 0 through 7; bit zero is the

least significant bit.

Byte….
Each byte within a word has its own address, and

the smaller of the addresses is the address of the
word.

 The byte at this lower address contains the eight
least significant bits of the word

 while the byte at the higher address contains the
eight most significant bits.

Word….
A word is two contiguous bytes starting at any byte

address.
 A word contains 16 bits.
The bits of a word are numbered from 0 through

15; bit 0 is the least significant bit.
 The byte containing bit 0 of the word is called the

low byte
the byte containing bit 15 is called the high byte.

Doubleword
A doubleword is two contiguous words starting at

any byte address.
A doubleword thus contains 32 bits.
The bits of a doubleword are numbered from 0

through 31
bit 0 is the least significant bit
The word containing bit 0 of the doubleword is

called the low word
the word containing bit 31 is called the high word

Fig: Fundamental Data Types

Fig: Bytes, Words, and
Doublewords in Memory

Additional Data Types
The processor also supports additional

interpretations of these operands.
Depending on the instruction referring to the

operand, the following additional data types are
recognized:

1. Integer 6. Bit field

2.Ordinal 7. Bit string

3.Near Pointer 8. BCD

4.Far Pointer 9. Packed BCD

5.String

Fig: 80386 Additional Data Types

Integer
A signed binary numeric value contained in a 32-bit

doubleword,16-bit word, or 8-bit byte.
All operations assume a 2's complement representation.
The sign bit is located in bit 7 in a byte, bit 15 in a word,

and bit 31 in a doubleword.
The sign bit has the value zero for positive integers and

one for negative.
Since the high-order bit is used for a sign, the range of an

8-bit integer is -128 through +127; 16-bit integers may
range from -32,768 through +32,767; 32-bit integers may
range from -231 through +231-1.

The value zero has a positive sign.

Ordinal
An unsigned binary numeric value contained in

a 32-bit doubleword, 16-bit word, or 8-bit byte.
All bits are considered in determining

magnitude of the number.
The value range of an 8-bit ordinal number is 0-

255; 16 bits can represent values from 0
through 65,535; 32 bits can represent values
from 0 through 232-1.

Near Pointer
A 32-bit logical address.
A near pointer is an offset within a segment.
Near pointers are used in either a flat or a

segmented model of memory organization.

Far Pointer
A 48-bit logical address of two components
1. a 16-bit segment selector component and
2. a 32-bit offset component
 Far pointers are used by applications

programmers only when systems designers choose
a segmented memory organization.

String:
A contiguous sequence of bytes, words, or

doublewords.
 A string may contain from zero bytes to 232-1

bytes (4 gigabytes).
Bit field:
A contiguous sequence of bits.
A bit field may begin at any bit position of any byte

and may contain up to 32 bits.
Bit string:
A contiguous sequence of bits. A bit string may

begin at any bit position of any byte and may
contain up to 232-1 bits.

BCD
A byte (unpacked) representation of a decimal digit

in the range 0 through 9.
Unpacked decimal numbers are stored as unsigned

byte quantities.
One digit is stored in each byte.
The magnitude of the number is determined from

the low-order half-byte; hexadecimal values 0-9 are
valid and are interpreted as decimal numbers.

The high-order half-byte must be zero for
multiplication and division; it may contain any
value for addition and subtraction.

Packed BCD
A byte (packed) representation of two decimal

digits
Each in the range 0 through 9
One digit is stored in each half-byte.
The digit in the high-order half-byte is the most

significant.
Values 0-9 are valid in each half-byte.
The range of a packed decimal byte is 0-99.

Unit I Part II
Applications Instruction Set

Few Instruction Types
Data Movement Instructions
Binary Arithmetic Instructions
Decimal Arithmetic Instructions
Logical Instructions
Control Transfer Instructions
String and Character Transfer Instructions
Instructions for Block Structured Language
Flag Control Instructions
Coprocessor Interface Instructions
Segment Register Instructions
 Miscellaneous Instructions.

Data Movement Instructions

provide convenient methods for moving bytes,
words, or doublewords of data between memory
and the registers of the base architecture

Types:
1. General-purpose data movement instructions.
2. Stack manipulation instructions.
3. Type-conversion instructions.

MOV
Transfers a byte, word, or doubleword from the source

operand to the destination operand

1. To a register from memory
2. To memory from a register
3. Between general registers
4. Immediate data to a register
5. Immediate data to a memory
cannot move from memory to memory or from

segment register to segment register
Exception: string move instruction MOVS

XCHG
Swaps the contents of two operands.
Takes the place of three MOV instructions
Does not require a temporary location to save the

contents of one operand while load the other is being
loaded

Useful for implementing semaphores or similar data
structures for process synchronization

Can swap two byte /word / doubleword operands
 The operands for the XCHG instruction may be two

register operands, or a register operand with a memory
operand.

When used with a memory operand, XCHG automatically
activates the LOCK signal.

Stack Manipulation Instructions
Push
Pop

Push
Function:
1. To decrement the stack pointer (ESP)
2. then to transfer the source operand to the top of

stack indicated by ESP
Use
1. to place parameters on the stack before calling a

procedure
2. To store temporary variables on the stack
Operands
memory operands, immediate operands, and

register operands (including segment registers)

PUSH

PUSHA
Push all registers
Function
To save the contents of 8 general registers on the stack
Use
To simplify procedure calls by reducing the number of

instructions required to retain the contents of the general
registers for use in a procedure

Order
general registers : EAX, ECX,EDX, EBX, the initial value of

ESP before EAX was pushed, EBP, ESI, and EDI
complemented by the POPA

PUSHA

POP
Function
1. To transfer the word or doubleword at the current

top of stack (indicated by ESP) to the destination
operand,

2. then to increment ESP to point to the new top of
stack

To move information from the stack to a general
register, or to memory

POP

POPA
Pop All Registers
to restore the registers saved on the stack by

PUSHA
Exception: it ignores the saved value of ESP

 POPA

Type Conversion Instructions
To convert bytes into words, words into

doublewords, and doublewords into 64-bit items
(quad-words)

useful for converting signed integers
automatically fill the extra bits of the larger item

with the value of the sign bit of the smaller item

This kind of conversion, is called sign extension.

Sign Extension

Classes of type conversion
instructions
1. The forms CWD, CDQ, CBW, and CWDE which

operate only on data in the EAX register

1. The forms MOVSX and MOVZX, which permit one
operand to be in any general register while
permitting the other operand to be in memory or
in a register.

CWD and CDQ
CWD (Convert Word to Doubleword) and CDQ

(Convert Doubleword to Quad-Word) double the
size of the source operand.

CWD extends the sign of the word in register AX
throughout register DX.

CDQ extends the sign of the doubleword in EAX
throughout EDX.

CWD can be used to produce a doubleword
dividend from a word before a word division, and
CDQ can be used to produce a quad-word dividend
from a doubleword before doubleword division.

Binary Arithmetic Instructions
The arithmetic instructions of the 80386 processor

simplify the manipulation of numeric data that is
encoded in binary.

Standard add, subtract, multiply, and divide as well
as increment, decrement, compare, and change
sign

 Both signed and unsigned binary integers are
supported.

The binary arithmetic instructions may also be
used as one step in the process of performing
arithmetic on decimal integers.

Many of the arithmetic instructions operate on both
signed and unsigned integers.

Effect: processor update the flags ZF, CF, SF, and
OF in such a manner that subsequent instructions
can interpret the results of the arithmetic as either
signed or unsigned.

CF contains information relevant to unsigned
integers

 SF and OF contain information relevant to signed
integers

 ZF is relevant to both signed and unsigned
integers

 ZF is set when all bits of the result are zero.

If the integer is unsigned, CF may be tested after
one of these arithmetic operations to determine
whether the operation required a carry or borrow of
a one-bit in the high-order position of the
destination operand.

CF is set if a one-bit was carried out of the high-
order position (addition instructions ADD, ADC,
AAA, and DAA) or if a one-bit was carried (i.e.
borrowed) into the high-order bit (subtraction
instructions SUB, SBB, AAS,DAS, CMP, and NEG).

If the integer is signed, both SF and OF should be tested.
SF always has the same value as the sign bit of the result.
 The most significant bit of a signed integer is the bit next to

the sign──bit 6 of a byte, bit 14 of a word, or bit 30 of a
doubleword.

OF is set in either of these cases:
1. A one-bit was carried out of the MSB into the sign bit but no

one bit was carried out of the sign bit (addition instructions
ADD, ADC, INC,AAA, and DAA), i.e. the result was greater
than the greatest positive number that could be contained
in the destination operand.

2. A one-bit was carried from the sign bit into the MSB but no
one bit was carried into the sign bit (subtraction instructions
SUB, SBB, DEC,AAS, DAS, CMP, and NEG), i.e. the result was
smaller that the smallest negative number that could be
contained in the destination operand.

Note
These status flags are tested by executing one of

the two families of conditional instructions:
1. Jcc (jump on condition cc)
2. SETcc (byte set on condition).

Addition and Subtraction Instructions
1. ADD
2. ADC
3. INC
4. SUB
5. SBB
6. DEC

1.ADD
Add Integers
to replace the destination operand with the

sum of the source and destination operands.
Sets CF if overflow.

2.ADC
Add Integers with Carry
To sum the operands, adds one if CF is set,

and replaces the destination operand with the
result.

 If CF is cleared, ADC performs the same
operation as the ADD instruction.

An ADD followed by multiple ADC instructions
can be used to add numbers longer than 32
bits.

3.INC
Increment
To add one to the destination operand
 INC does not affect CF.
Use ADD with an immediate value of 1 if an

increment that updates carry (CF) is needed.

4.SUB
Subtract Integers
To subtract the source operand from the

destination operand and replaces the destination
operand with the result.

 If a borrow is required, the CF is set.
The operands may be signed or unsigned bytes,

words, or doublewords.

5.SBB
Subtract Integers with Borrow
To subtract the source operand from the

destination operand, subtracts 1 if CF is set, and
returns the result to the destination operand.

 If CF is cleared, SBB performs the same operation
as SUB.

SUB followed by multiple SBB instructions may be
used to subtract numbers longer than 32 bits.

If CF is cleared, SBB performs the same operation
as SUB.

6.DEC
Decrement
to subtract 1 from the destination operand
DEC does not update CF.
Use SUB with an immediate value of 1 to perform a

decrement that affects carry.

Comparison and Sign Change Instruction

CMP (Compare) subtracts the source operand from
the destination operand.

It updates OF, SF, ZF, AF, PF, and CF but does not
alter the source and destination operands.

A subsequent Jcc or SETcc instruction can test the
appropriate flags.

NEG (Negate) subtracts a signed integer operand
from zero.

The effect of NEG is to reverse the sign of the
operand from positive to negative or from negative
to positive.

Multiplication
Instructions
The 80386 has separate multiply instructions for

unsigned and signed operands.
MUL operates on unsigned numbers, while IMUL

operates on signed integers as well as unsigned.

MUL
Unsigned Integer Multiply
 performs an unsigned multiplication of the source operand and

the accumulator.
If the source is a byte, the processor multiplies it by the

contents of AL and returns the double-length result to AH and
AL.

 If the source operand is a word, the processor multiplies it by
the contents of AX and returns the double-length result to DX
and AX.

If the source operand is a doubleword, the processor multiplies
it by the contents of EAX and returns the 64-bit result in EDX
and EAX.

MUL sets CF and OF when the upper half of the result is
nonzero; otherwise, they are cleared.

IMUL (Signed Integer Multiply)
 performs a signed multiplication operation.
 IMUL has three variations:

1. A one-operand form: The operand may be a byte, word, or
doubleword located in memory or in a general register. This instruction
uses EAX and EDX as implicit operands in the same way as the MUL
instruction.

2. A two-operand form. One of the source operands may be in any
general register while the other may be either in memory or in a general
register. The product replaces the general-register operand.

3. A three-operand form; two are source and one is the destination
operand. One of the source operands is an immediate value stored in
the instruction; the second may be in memory or in any general
register. The product may be stored in any general register. The
immediate operand is treated as signed. If the immediate operand is a
byte, the processor automatically sign-extends it to the size of the
second operand before performing the multiplication.

The MUL/IMUL Instruction
2 instructions for multiplying binary data.
MUL (Multiply) instruction handles unsigned data
IMUL (Integer Multiply) handles signed data
Both instructions affect the Carry and Overflow flag.
SYNTAX:

MUL multiplier
 IMUL multiplier

Multiplicand in both cases will be in an accumulator,
depending upon the size of the multiplicand and the
multiplier and the generated product is also stored in two
registers depending upon the size of the operands.

3 cases:

Summary

Division Instructions

The 80386 has separate division instructions for
unsigned and signed operands.

 DIV operates on unsigned numbers, while IDIV
operates on signed integers as well as unsigned.

In either case, an exception (interrupt zero) occurs
if the divisor is zero or if the quotient is too large
for AL, AX, or EAX.

DIV (Unsigned Integer Divide)
 performs an unsigned division of the accumulator by the source operand.
 The dividend (the accumulator) is twice the size of the divisor (the source

operand); the quotient and remainder have the same size as the divisor.
 Non-integral quotients are truncated to integers toward 0.
 The remainder is always less than the divisor.
 For unsigned byte division, the largest quotient is 255.
 For unsigned word division, the largest quotient is 65,535.
 For unsigned doubleword division the largest quotient is 232-1.

Size of Source
Operand
(divisor)

 Dividend Quotient Remainder

Byte AX AL AH

Word DX:AX AX DX

Doubleword EDX:EAX EAX EDX

The DIV/IDIV Instructions

The division operation generates two elements - a
quotient and a remainder.

In case of multiplication, overflow does not occur
because double-length registers are used to keep
the product.

However, in case of division, overflow may occur.
 The processor generates an interrupt if overflow

occurs.
DIV (Divide) instruction for unsigned data
 IDIV (Integer Divide) for signed data.

SYNTAX:
DIV/IDIV divisor

The dividend is in an accumulator.
Both the instructions can work with 8-bit, 16-bit or

32-bit operands.
 The operation affects all six status flags.
3 cases

Decimal Arithmetic
Instructions
Packed BCD Adjustment Instructions
1. DAA
2. DAS
Unpacked BCD Adjustment Instructions
1. AAA
2. AAS
3. AAM
4. AAD

Logical Instructions

The group of logical instructions includes:
● The Boolean operation instructions
● Bit test and modify instructions
● Bit scan instructions
● Rotate and shift instructions
● Byte set on condition

Bit Test and Modify
Instructions

This group of instructions operates on a single bit
which can be in memory or in a general register.

The location of the bit is specified as an offset from
the low-order end of the operand.

The value of the offset either may be given by an
immediate byte in the instruction or may be
contained in a general register.

These instructions first assign the value of the
selected bit to CF, the carry flag.

Then a new value is assigned to the selected bit,
as determined by the operation.

OF, SF, ZF, AF, PF are left in an undefined state.

Bit Test and Modify Instruction

BT (Bit Test) – reports the status of a bit in the operand by setting
or clearing CF to match it. The operand under test may be either a
register or a memory location. The second operand specifies
which bit in the first operand to test.

Example

BT EAX, 5 ; test bit 5 of EAX
JC foo : jump if bit 5 was set

Bit Test and Modify Instruction
BTC (Bit Test & Complement) – It operates exactly like the
BT, except that the bit being tested is inverted after the test
is performed, and its condition is saved in CF.

Example

BTC EAX, 9 ; test & invert bit 9
JC foo : jump if bit used to be 1

Bit Test and Modify Instruction
BTR (Bit Test & Reset) – the BTR instruction operates exactly like the BTC
instruction, except that it always clears the bit being tested.

Example

BTR EAX , 0 ; test & clear bit 0
JC foo : jump if it was set

BTS (Bit Test & Set) – The BTS instruction operates exactly like the
BTC instruction, except that it always sets the bit being tested.

Example

BTR DWORD PTR DS:[840621], 3 ; test & set bit 3
JC foo : jump if it was set

Bit Test & Modify Instructions

Bit Scan Instructions
scan a word/doubleword for a one-bit and store the

index of the first set bit into a register.
The bit string being scanned may be either in a

register or in memory.
The ZF flag is set if the entire word is zero (no set

bits are found)
ZF is cleared if a one-bit is found.
If no set bit is found, the value of the destination

register is undefined.

1. BSF (Bit Scan Forward) scans from low-order to
high-order (starting from bit index zero).

1. BSR (Bit Scan Reverse) scans from high-order to
low-order (starting from bit index 15 of a word or
index 31 of a doubleword).

Logical Instructions

The processor instruction set provides the instructions
AND, OR, XOR, TEST and NOT Boolean logic, which tests,
sets and clears the bits according to the need of the
program.

The format for these instructions:
 AND : AND operand1, operand2
 OR: OR operand1, operand2
 XOR: XOR operand1, operand2
 TEST: TEST operand1, operand2
 NOT: NOT operand1

The AND Instruction

The AND instruction is used for supporting logical
expressions by performing bitwise AND operation.

The bitwise AND operation returns 1, if the matching
bits from both the operands are 1, otherwise it returns
0. For example:

Operand1: 0101
Operand2: 0011

After AND -> Operand1: 0001

The AND operation can be used for clearing
one or more bits.

 For example the BL register contains 0011
1010.

If we need to clear the high order bits to zero,
we AND it with 0FH.
AND BL, 0FH ; This sets BL to 0000 1010

The OR Instruction
The OR instruction is used for supporting logical

expression by performing bitwise OR operation.
The bitwise OR operator returns 1, if the matching

bits from either or both operands are one.
It returns 0, if both the bits are zero.
For example,

 Operand1: 0101
 Operand2: 0011

After OR -> Operand1: 0111

The OR operation can be used for setting one or
more bits.

For example, let us assume the AL register
contains 0011 1010, we need to set the four low
order bits, we can OR it with a value 0000 1111,
i.e., FH.
OR BL, 0FH ; This sets BL to 0011 1111

The XOR Instruction

The XOR instruction implements the bitwise XOR
operation.

The XOR operation sets the resultant bit to 1, if
and only if the bits from the operands are different.

 If the bits from the operands are same (both 0 or
both 1), the resultant bit is cleared to 0.

For example,

 Operand1: 0101
 Operand2: 0011

After XOR -> Operand1: 0110
XORing an operand with itself changes the operand

to 0.
This is used to clear a register.

XOR EAX, EAX

The TEST Instruction

The TEST instruction works same as the AND
operation, but unlike AND instruction, it does not
change the first operand.

So, if we need to check whether a number in a
register is even or odd, we can also do this using
the TEST instruction without changing the original
number.

TEST AL, 01H
JZ EVEN_NUMBER

The NOT Instruction

The NOT instruction implements the bitwise NOT
operation.

NOT operation reverses the bits in an operand.
The operand could be either in a register or in the

memory.
For example,

 Operand1: 0101 0011
After NOT -> Operand1: 1010 1100

The CMP Instruction

This instruction basically subtracts one operand
from the other for comparing whether the
operands are equal or not.

It does not disturb the destination or source
operands.

Non destructive subtraction
 It is used along with the conditional jump

instruction for decision making.

Assembly Conditions
Conditional execution in assembly language is

accomplished by several looping and branching
instructions.

These instructions can change the flow of control in a
program.

Conditional execution is observed in two scenarios:

SYNTAX
CMP destination, source

The CMP instruction compares two operands.
It is generally used in conditional execution.
CMP compares two numeric data fields.

CMP……
The destination operand could be either in

register or in memory.
 The source operand could be a constant

(immediate) data, register or memory.
EXAMPLE:

cmp dx, 00 ; Compare the DX value
;with zero

je L7 ; If yes, then jump to label L7
.
.

L7: ...

CMP is often used for comparing whether a counter
value has reached the number of time a loop needs
to be run.

Consider the following typical condition:

Unconditional Jump

This is performed by the JMP instruction.
Conditional execution often involves a transfer of

control to the address of an instruction that does
not follow the currently executing instruction.

Transfer of control may be forward to execute a
new set of instructions, or backward to re-execute
the same steps.

SYNTAX:
jmp label

The jmp instruction provides a label name where
the flow of control is transferred immediately.

EXAMPLE

Conditional Jump

If some specified condition is satisfied in
conditional jump, the control flow is transferred to
a target instruction.

There are numerous conditional jump instructions,
depending upon the condition and data.

Conditional Jump
Following are the conditional jump instructions used on

signed data used for arithmetic operations:

Following are the conditional jump instructions used on
unsigned data used for logical operations:

The following conditional jump instructions have
special uses and check the value of flags:

The syntax for the J<condition> set of instructions:
Example,

Example
Write a program to display the largest of three

variables. [The variables need to be double-digit
variables. The three variables num1, num2 and
num3 have values 47, 22 and 31 respectively]

Assembly Loops
The JMP instruction can be used for implementing

loops.
Example, the following code snippet can be used for

executing the loop-body 10 times.

Assembly Loops
The processor instruction set includes a group of

loop instructions for implementing iteration.
 The basic LOOP instruction has the following

syntax:
loop label

Where, label is the target label that identifies the
target instruction as in the jump instructions.

The loop instruction assumes that the ECX
register contains the loop count.

 When the loop instruction is executed, the ECX
register is decremented and the control jumps to
the target label, until the ECX register value, i.e.,
the counter reaches the value zero.

Assembly Loops
The above code snippet could be written as:

Example

Write a program to print the number 1 to 9 on the
screen.

Assembly Numbers
Numerical data is generally represented in binary

system.
Arithmetic instructions operate on binary data.
When numbers are displayed on screen or entered

from keyboard, they are in ASCII form.
Common Practice: Converting input data in ASCII

form to binary for arithmetic calculations and
converting the result back to binary.

Decimal Number
Representation
Decimal numbers can be represented in two forms:
1. ASCII form
2. BCD or Binary Coded Decimal form

ASCII Representation

In ASCII representation, decimal numbers are stored
as string of ASCII characters.

For example, the decimal value 1234 is stored as:

Where, 31H is ASCII value for 1,
32H is ASCII value for 2, and so on.

There are the following four instructions for processing
numbers in ASCII representation:

1. AAA - ASCII Adjust After Addition
2. AAS - ASCII Adjust After Subtraction
3. AAM - ASCII Adjust After Multiplication
4. AAD - ASCII Adjust Before Division

These instructions do not take any operands and
assumes the required operand to be in the AL register.

Use AAA only after executing the form of
an add instruction that stores a two-BCD-digit byte
result in the AL register.

AAA then adjusts AL to contain the correct decimal
result.

The top nibble of AL is set to 0.
 To convert AL to an ASCII result, follow

the AAA instruction with:
or %AL, 0x30

How AAA handles a carry

Carry Action
Decimal Carry AH + 1; CF and AF set to 1

No Decimal Carry AH unchanged; CF and AF
cleared to 0

BCD Representation

There are two types of BCD representation:
1. Unpacked BCD representation
2. Packed BCD representation

In unpacked BCD representation, each byte stores
the binary equivalent of a decimal digit.

 For example, the number 1234 is stored as:

Unpacked BCD
There are two instructions for processing these

numbers:
1. AAM - ASCII Adjust After Multiplication
2. AAD - ASCII Adjust Before Division

The four ASCII adjust instructions, AAA, AAS, AAM
and AAD can also be used with unpacked BCD
representation.

Packed BCD
In packed BCD representation, each digit is

stored using four bits.
Two decimal digits are packed into a byte.
For example, the number 1234 is stored as:

• There are two instructions for processing these numbers:
1. DAA - Decimal Adjust After Addition
2. DAS - decimal Adjust After Subtraction

• There is no support for multiplication and division in packed BCD
representation.

Assembly Strings
We specify the length of the string by either of the

two ways:
1. Explicitly storing string length
2. Using a sentinel character

We can store the string length explicitly by using
the $ location counter symbol, that represents the
current value of the location counter.

Example
msg db 'Hello, world!', 0xa ; string
len equ $ - msg ;length of string

$ points to the byte after the last character of the
string variable msg.

 Therefore, $-msg gives the length of the string.
We can also write

msg db 'Hello world!', 0xa ; string
len equ 13 ;length of string

Alternatively, we can store strings with a trailing
sentinel character to delimit a string instead of
storing the string length explicitly.

The sentinel character should be a special
character that does not appear within a string.

For example:
message DB ‘HELLO WORLD!', 0

String Instructions
Each string instruction may require a source operand,

a destination operand, or both.
For 32-bit segments, string instructions use ESI and

EDI registers to point to the source and destination
operands, respectively.

For 16-bit segments, however, the SI and the DI
registers are used to point to the source and
destination respectively.

String Instructions
There are five basic instructions for processing strings. They are:
1. MOVS - This instruction moves 1 Byte, Word or Doubleword of

data from memory location to another.
2. LODS - This instruction loads from memory. If the operand is of

one byte, it is loaded into the AL register, if the operand is one
word, it is loaded into the AX register and a doubleword is
loaded into the EAX register.

3. STOS - This instruction stores data from register (AL, AX, or
EAX) to memory.

4. CMPS - This instruction compares two data items in memory.
Data could be of a byte size, word or doubleword.

5. SCAS - This instruction compares the contents of a register (AL,
AX or EAX) with the contents of an item in memory.

Each of the above instruction has a byte,
word and doubleword version and string
instructions can be repeated by using a
repetition prefix.

String Instructions
These instructions use the ES:DI and DS:SI pair of

registers, where DI and SI registers contain valid offset
addresses that refers to bytes stored in memory.

SI is normally associated with DS (data segment) and DI is
always associated with ES (extra segment).

The DS:SI (or ESI) and ES:DI (or EDI) registers point to the
source and destination operands respectively.

The source operand is assumed to be at DS:SI (or ESI) and
the destination operand at ES:DI (or EDI) in memory.

For 16-bit addresses the SI and DI registers are used and
for 32-bit addresses the ESI and EDI registers are used.

The following table provides various versions of
string instructions and the assumed space of the
operands.

SI

MOVS
The MOVS instruction is used to copy a data item

(byte, word or doubleword) from the source string
to the destination string.

The source string is pointed by DS:SI and the
destination string is pointed by ES:DI.

LODS

STOS

The STOS instruction copies the data item from AL
(for bytes - STOSB), AX (for words - STOSW) or EAX
(for doublewords - STOSD) to the destination string,
pointed to by ES:DI in memory.

CMPS

The CMPS instruction compares two strings.
This instruction compares two data items of one

byte, word or doubleword, pointed to by the DS:SI
and ES:DI registers and sets the flags accordingly.

Use of the conditional jump instructions along with
this instruction also possible.

SCAS

The SCAS instruction is used for searching a
particular character or set of characters in a string.

 The data item to be searched should be in AL (for
SCASB), AX (for SCASW) or EAX (for SCASD)
registers. The string to be searched should be in
memory and pointed by the ES:DI (or EDI) register.

Repetition Prefixes
The REP prefix, when set before a string instruction, for

example - REP MOVSB, causes repetition of the instruction
based on a counter placed at the CX register.

REP executes the instruction, decreases CX by 1, and checks
whether CX is zero. It repeats the instruction processing until
CX is zero.

The Direction Flag (DF) determines the direction of the
operation.

 Use CLD (Clear Direction Flag, DF = 0) to make the
operation left to right.

Use STD (Set Direction Flag, DF = 1) to make the operation
right to left.

REP Variants
The REP prefix also has the following variations:
1. REP: it is the unconditional repeat. It repeats the

operation until CX is zero.
2. REPE or REPZ: It is conditional repeat. It repeats

the operation while the zero flag indicate
equal/zero. It stops when the ZF indicates not
equal/zero or when CX is zero.

3. REPNE or REPNZ: It is also conditional repeat. It
repeats the operation while the zero flag indicate
not equal/not zero. It stops when the ZF indicates
equal/zero or when CX is decremented to zero.

Assembly Arrays
To define a one dimensional array
Use of the data definition directives
 To define a one dimensional array of numbers:
 NUMBERS DW 34, 45, 56, 67, 75, 89
This allocates 2x6 = 12 bytes of consecutive

memory space.
The symbolic address of the first number will be

NUMBERS and that of the second number will be
NUMBERS + 2 and so on.

Define An Array
We can define an array named ARR of size 8, and initialize all

the values with zero, as:
 ARR DW 0

DW 0
DW 0
DW 0
DW 0
DW 0
DW 0
DW 0

Which, can be abbreviated as:
ARR DW 0, 0 , 0 , 0 , 0 , 0 , 0 , 0

Any Shortcut??????

ARR TIMES 8 DW 0
Restriction: The TIMES directive can also be used

for multiple initializations to the same value

Assembly Procedures
Procedures are identified by a name.
Following this name, the body of the procedure is

described, which perform a well-defined job.
End of the procedure is indicated by a return

statement.
Syntax to define a procedure:

The procedure is called from another function by
using the CALL instruction.

The CALL instruction should have the name of the
called procedure as argument :
CALL proc_name

The called procedure returns the control to the
calling procedure by using the RET instruction.

Stacks Data Structure
An array-like data structure in the memory
Data can be stored and removed
‘top' of the stack
PUSH and POP operations
LIFO data structure, i.e., the data stored first is retrieved

last.
Assembly language provides two instructions for stack

operations: PUSH and POP.
Syntax:

PUSH operand

POP address/register

Shift and Rotate
Instructions

The shift and rotate instructions reposition the bits
within the specified operand.

These instructions fall into the following classes:
● Shift instructions
● Double shift instructions
● Rotate instructions

Shift Instructions
The bits in bytes, words, and doublewords may be

shifted arithmetically or logically.
Depending on the value of a specified count, bits

can be shifted up to 31 places.
To specify the count in one of three ways:
1. To specify the count implicitly as a single shift
2. To specify the count as an immediate value
3. To specify the count as the value contained in CL.

This form allows the shift count to be a variable
that the program supplies during execution.Only
the low order 5 bits of CL are used.

CF always contains the value of the last bit shifted
out of the destination operand.

In a single-bit shift, OF is set if the value of the
high-order (sign) bit was changed by the operation.
Otherwise, OF is cleared.

 Following a multibit shift the content of OF is
always undefined.

The shift instructions provide a convenient way to
accomplish division or multiplication by binary
power.

Note : division of signed numbers by shifting right is
not the same of division performed by the IDIV
instruction.

SAL & SHL
Shift Arithmetic Left
shifts the destination byte, word, or doubleword

operand left by one or by the number of bits
specified in the count operand (an immediate value
or the value contained in CL)

 The processor shifts zeros in from the right (low-
order) side of the operand as bits exit from the left
(high-order) side.

SHL (Shift Logical Left) is a synonym for SAL

SHL
Synonym SAL
shifts the bits in the register or memory operand to

the left by the specified number of bit positions
CF receives the last bit shifted out of the left of the

operand.
SHL shifts in zeros to fill the vacated bit locations.
These instructions operate on byte, word, and

doubleword operands.

SHR
Shift Logical Right
Shifts the destination byte, word, or doubleword operand right

by one or by the number of bits specified in the count operand
Count: an immediate value or the value contained in CL.
The processor shifts zeros in from the left side of the operand

as bits exit from the right side.
SHR shifts the bits of the register or memory operand to the

right by the specified number of bit positions.
CF receives the last bit shifted out of the right of the operand.
SHR shifts in zeros to fill the vacated bit locations.

Shift and Rotate Instruction

 Shift Logical Right

SAR
Shift Arithmetic Right
Shifts the destination byte, word, or doubleword operand to

the right by one or by the number of bits specified in the
count operand

Count :an immediate value or the value contained in CL
The processor preserves the sign of the operand by shifting

in zeros on the left (high-order) side if the value is positive
or by shifting by ones if the value is negative.

SAR preserves the sign of the register or memory operand
as it shifts the operand to the right by the specified number
of bit positions.

CF receives the last bit shifted out of the right of the
operand.

Shift and Rotate Instruction

 Shift Arithmetic Right

 logical shifts move 0 in
the rightmost bit for a
logical left shift;

 0 to the leftmost bit
position for a logical right
shift

 arithmetic right shift
copies the sign-bit
through the number

 logical right shift copies a
0 through the number.

Double-Shift Instructions

These instructions provide the basic operations
needed to implement operations on long unaligned
bit strings.

The double shifts operate either on word or
doubleword operands, as follows:

1. Taking two word operands as input and producing
a one-word output.
2. Taking two doubleword operands as input and
producing a doubleword output.

Of the two input operands, one may either be in a
general register or in memory

the other may only be in a general register.
The results replace the memory or register

operand.
 The number of bits to be shifted is specified either

in the CL register or in an immediate byte of the
instruction.

Bits are shifted from the register operand into the
memory or register operand.

CF is set to the value of the last bit shifted out of
the destination operand.

 SF, ZF, and PF are set according to the value of
the result.

OF and AF are left undefined.

SHLD
Shift Left Double
shifts bits of the R/M field to the left, while shifting

high-order bits from the Reg field into the R/M field
on the right

The result is stored back into the R/M operand.
The Reg field is not modified.

SHRD
Shift Right Double
shifts bits of the R/M field to the right, while

shifting low-order bits from the Reg field into the
R/M field on the left

 The result is stored back into the R/M operand.
 The Reg field is not modified.

Rotate Instructions
Allow bits in bytes, words, and doublewords to be rotated
 Bits rotated out of an operand are not lost as in a shift,

but are "circled" back into the other "end" of the
operand.

Rotates affect only the carry and overflow flags.
CF may act as an extension of the operand in two of the

rotate instructions, allowing a bit to be isolated and then
tested by a conditional jump instruction (JC /JNC).

 CF always contains the value of the last bit rotated out,
even if the instruction does not use this bit as an
extension of the rotated operand.

In single-bit rotates, OF is set if the operation
changes the high-order (sign) bit of the destination
operand.

If the sign bit retains its original value, OF is
cleared.

On multibit rotates, the value of OF is always
undefined.

ROL
Rotate Left
rotates the byte, word, or doubleword destination

operand left by one or by the number of bits
specified in the count operand

Count : immediate value / value contained in CL
 For each rotation specified, the high-order bit that

exits from the left of the operand returns at the
right to become the new low-order bit of the
operand.

ROR
Rotate Right
rotates the byte, word, or doubleword destination

operand right by one or by the number of bits
specified in the count operand

Count : immediate value / value contained in CL
 For each rotation specified, the low-order bit that

exits from the right of the operand returns at the
left to become the new high-order bit of the
operand.

RCL (Rotate Through Carry
Left)
rotates bits in the byte, word, or doubleword destination

operand left by one or by the number of bits specified in
the count operand (an immediate value or the value
contained in CL)

differs from ROL
treats CF as a high-order one-bit extension of the

destination operand
Each high-order bit that exits from the left side of the

operand moves to CF before it returns to the
operand as the low-order bit on the next rotation cycle.

AAA ------ ASCII Adjust after Addition.
DAA ------- Decimal Adjust AL after Addition

Corrects result in AH and AL after addition when working with BCD values.
Mov AX,0009h
Mov BX ,0006h
Add AX, BX ; result AX =0fH (Ah =00 ,Al =0f)
AAA (DAA) ; now Ax =0105 h (Ah =01 ,Al =05)
AAD- ASCII Adjust before Division.
Prepares two BCD values for division.
Mov BX,0003h
Mov AX, 0105h ; now Ax =0105 h (Ah =01 ,Al =05)
AAD ; result AX =0fH (Ah =00 ,Al =0f)
Div BX ; AX/BX

AAM -----ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.

Mov AX,0003h
Mov BX ,0005h
MUL AX, BX ; result AX =0fH (Ah =00 ,Al =0f)
AAM ; now Ax =0105 h (Ah =01 ,Al =05)

AAS --------ASCII Adjust after Subtraction.
DAS ---- Decimal Adjust AL after Subtraction
Corrects result in AH and AL after subtraction when working with BCD values.

MOV AX, 02FFh ; AH = 02, AL = 0FFh
 AAS ; AH = 01, AL = 09

ARPL -- Adjust RPL Field of Selector
ARPL DEST , SRC

 IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC
 THEN ZF := 1;
 RPL bits(0,1) of DEST := RPL bits(0,1) of SRC;
 ELSE ZF := 0;
 ENF IF;

The ARPL instruction has two operands. The first operand is a 16-bit memory variable or word register
that contains the value of a selector. The second operand is a word register. If the RPL field ("requested
privilege level"--bottom two bits) of the first operand is less than the RPL field of the second operand, the
zero flag is set to 1 and the RPL field of the first operand is increased to match the second operand.
Otherwise, the zero flag is set to 0 and no change is made to the first operand.ARPL appears in operating
system software, not in application programs. It is used to guarantee that a selector parameter to a
subroutine does not request more privilege than the caller is allowed. The second operand of ARPL is
normally a register that contains the CS selector value of the caller.

VERR, VERW -- Verify a
Segment for Reading
or Writing

VERR eax ; Set ZF=1 if segment can be read,
 selector in eax
VERW eax ;Set ZF=1 if segment can be written,
 selector in eax

BOUND -- Check Array Index Against Bounds

Bound eax,fffffff1h

If eax > fffffff1h then it call interrupt 5

BOUND ensures that a signed array index is within the limits specified by a block of
memory consisting of an upper and a lower bound. Each bound uses one word for an
operand-size attribute of 16 bits and a doubleword for an operand-size attribute of 32
bits. The first operand (a register) must be greater than or equal to the first bound in
memory (lower bound), and less than or equal to the second bound in memory (upper
bound). If the register is not within bounds, an Interrupt 5 occurs; the return EIP points to
the BOUND instruction.The bounds limit data structure is usually placed just before the
array itself, making the limits addressable via a constant offset from the beginning of the
array.

I/O Port data transfer
IN Input from Port
OUT Output to Port
 IN al, DX Input from port DX into AL
 Out al, DX output from AL to port DX

 INS/INSB/INSW/INSD -- Input from Port to String

 INS al, DX Input byte from port DX into AL
 INS ax,DX Input word from port DX into AX
 INS eax, DX Input dword from port DX into EAX
 INSB al, DX Input byte from port DX into AL
 INSW ax, DX Input word from port DX into AX
 INSD eax, DX Input dword from port DX into EAX

Flag manipulation
instruction

STC -- Set Carry Flag
STD -- Set Direction Flag
STI -- Set Interrupt Flag
CLC -- Clear Carry Flag
CLD -- Clear Direction Flag
CLI -- Clear Interrupt Flag
 CMC -- Complement Carry Flag

SAHF -- Store AH into Flags
LAHF --- Load Flags into AH Register

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179

