
Protection in 80386DX
UQ: Explain the protection mechanism of 
X86 Intel  family microprocessor



Protection
⚫80386 DX has four levels of protection which 

isolate and protect user programs from each 
other and the operating system.

⚫It offers an additional type of protection on a 
page basis, when paging is enabled(using U/S 
and R/W fields)

⚫The four-level hierarchical privilege system is 
illustrated as follows:



Protection



Protection
⚫The privilege levels (PL) are numbered 0 

through 3. 
⚫Level 0 is the most privileged or trusted level.



Rules for Privileges
⚫Intel 386Dx controls access to both data and 

procedures according to the following rules:
(1) Data segment with privilege level 
p can be accessed only by the code 
executing at a privilege level atleast 
as privileged as p
    (E.g. Application programs are 
prevented from reading or changing 
OS Tables)



Rules for Privileges

(2) A code segment with a privilege level p can 
only be called by a task executing at the same 
or lesser privilege level than p 

(E.g. An Application Program may call 
an OS routine)



Privilege Level

⚫There are 3 different types of privilege level 
entering into the privilege level checks:
⚫Current Privilege Level (CPL)
⚫Descriptor Privilege Level (DPL)
⚫Requestor Privilege Level (RPL)



Current Privilege Level (CPL)
⚫CPL is stored in the selector of currently 

executing CS register
⚫It represents the privilege level(PL) of the 

currently executing task.
⚫It is also PL in the descriptor of the code 

segment.
⚫It is also designated as Task Privilege 

Level(TPL) 



Descriptor Privilege Level (DPL)

⚫It is the PL of the object which is being 
attempted to be accessed by the current task

⚫It is PL of target segment and is contained in 
the descriptor of the segment



Requestor Privilege Level (RPL)
⚫It is the lowest two bits of any selector.
⚫It can be used to weaken the CPL if desired.
⚫The Effective Privilege Level(EPL) is 

EPL = max (CPL,RPL) (here 
numbers)

⚫Thus the task becomes less privileged.



Restricting Access to Data 
⚫Assume that a task needs data from data 

segment.
⚫The privilege levels are checked at the time a 

selector for the target segment is loaded into 
the data segment register.

⚫Three privilege levels enter into privilege 
checking mechanism
⚫CPL
⚫RPL of the selector of target segment
⚫DPL of the descriptor of the target segment



Access is allowed only 
if  
DPL ≥ max (CPL,RPL)

Restricting Access to Data 



⚫A procedure can only access the data that is 
at the same or less privilege level (not 
numerically)

Restricting Access to Data 



Restricting Control Transfer
⚫Control transfer (except interrupts) are 

accomplished by JMP, CALL and RET 
instructions.

⚫The near forms of JMP and CALL transfer 
within current code segment and requires 
only limit checking

⚫The far forms of JMP and CALL refer to other 
segments and require privilege checking. 



Restricting Control Transfer
⚫The far JMP and CALL can be done in 2 ways:

1. Without Call Gate Descriptor
2. With Call Gate Descriptor 

 



Without Call Gate
⚫The processor permits a JMP or CALL directly 

to another segment only if 
1. DPL of the target segment = CPL of the 

calling segment
2. Conforming bit of the target code is set and 

DPL of the target segment ≤ CPL
⚫Confirming Segment: These segments may 

be called from various privilege levels but 
execute at the privilege level of the calling 
procedure. (e.g. math library)



Privilege Check for Control Transfer without 
gate



With Call Gate
⚫The far pointer of the control transfer 

instruction uses the selector part of the 
pointer and selects a gate. 

⚫The selector and offset fields of a gate form a 
pointer to the entry of a procedure.



With Call Gate



With Call Gate
⚫Four privilege levels are used to check the 

validity of the control transfer via a call gate:
1. CPL
2. RPL of the selector used to specify call gate
3. DPL of the gate descriptor
4. DPL of the descriptor of target segment.
⚫ Only CALL instruction can use gates to  

transfer to smaller privilege levels.



With Call Gate
⚫For a JMP instruction, the privilege rules are 
    MAX(CPL,RPL) ≤ gate DPL

target segment DPL = CPL(numerically)
⚫For a CALL instruction, the rules are

MAX(CPL,RPL) ≤ gate DPL
target segment DPL ≤  CPL(numerically)



Privilege Check via Call Gate



Unit IV
Protection  



Topics To Cover Part I 
protection

⚫ Need of Protection
⚫ Overview of 80386DX Protection 

Mechanisms
⚫ Segment Level Protection
⚫ Page Level Protection
⚫ Combining Segment and Page Level 

Protection. 



1.Need of Protection
⚫To help detect and identify bugs
⚫  The 80386 supports sophisticated applications that 

may consist of hundreds or thousands of program 
modules. 

⚫In such applications, the question is how bugs can 
be found and eliminated as quickly as possible and 
how their damage can be tightly confined. 

⚫To help debug applications faster and make them 
more robust in production, the 80386 contains 
mechanisms to verify memory accesses and 
instruction execution for conformance to protection 
criteria. 

⚫These mechanisms may be used or ignored, 
according to system design objectives.



2. Overview of 80386 Protection 
Mechanisms
Protection in the 80386 has five aspects:
1. Type checking
2. Limit checking
3. Restriction of addressable domain
4. Restriction of procedure entry points
5. Restriction of instruction set



⚫The protection hardware of the 80386 is an 
integral part of the memory management 
hardware. 

⚫Protection applies both to segment translation 
and to page translation.

⚫Each reference to memory is checked by the 
hardware to verify that it satisfies the protection 
criteria.

⚫ All these checks are made before the memory 
cycle is started

⚫Any violation prevents that cycle from starting 
and results in an exception. 

⚫Since the checks are performed concurrently 
with address formation, there is no performance 
penalty.



⚫Invalid attempts to access memory result in 
an exception.

⚫Protection violations that leads to exceptions



“Privilege” ?????
⚫The concept of "privilege" is central to 

several aspects of protection.
⚫Applied to procedures, privilege is the degree 

to which the procedure can be trusted not to 
make a mistake that might affect other 
procedures or data.

⚫Applied to data, privilege is the degree of 
protection that a data structure should have 
from less trusted procedures.



⚫The concept of privilege applies both to 
segment protection and to page protection.



3. Segment-Level Protection
All five aspects of protection apply to segment 
translation:
1. Type checking
2. Limit checking
3. Restriction of addressable domain
4. Restriction of procedure entry points
5. Restriction of instruction set



⚫The segment is the unit of protection, and 
segment descriptors store  protection 
parameters. 

⚫Protection checks are performed 
automatically by the CPU when the selector 
of a segment descriptor is loaded into a 
segment register and with every segment 
access. 

⚫Segment registers hold the protection 
parameters of the currently addressable 
segments.



3.1 Descriptors Store Protection Parameters

⚫Figure (Next slide) highlights the protection-
related fields of segment descriptors.

⚫The protection parameters are placed in the 
descriptor by systems software at the time a 
descriptor is created. 

⚫In general, applications programmers do not 
need to be concerned about protection 
parameters.



⚫When a program loads a selector into a segment 
register, the processor loads not only the base 
address of the segment but also protection 
information. 

⚫Each segment register has bits in the invisible 
portion for storing base, limit, type, and privilege 
level 

⚫That’s why, subsequent protection checks on the 
same segment do not consume additional clock 
cycles.













3.1.1 Type Checking

⚫The TYPE field of a descriptor has two functions:
1. It distinguishes among different descriptor 
formats.
2. It specifies the intended usage of a segment.
⚫Besides the descriptors for data and executable 

segments commonly used by applications 
programs, the 80386 has descriptors for special 
segments used by the operating system and for 
gates. 

⚫Table (Next) lists all the types defined for system 
segments and gates.





⚫The type fields of data and executable 
segment descriptors include bits  which 
further define the purpose of the segment:
⮚The writable bit in a data-segment 

descriptor specifies whether  instructions 
can write into the segment.

⮚The readable bit in an executable-segment 
descriptor  specifies  whether instructions 
are allowed to read from the segment (for 
example, to access constants that are 
stored with instructions). 



⚫A readable, executable segment may be read 
in two ways:

1. Via the CS register, by using a CS override 
prefix.
2. By loading a selector of the descriptor into a 
data-segment register (DS, ES, FS, or GS).



⚫Type checking can be used to detect 
programming errors that would attempt to 
use segments in ways not intended by the 
programmer. 

⚫The processor examines type information on 
two kinds of occasions:

1. When a selector of a descriptor is loaded 
into a segment register. 

2. When an instruction refers (implicitly or 
explicitly) to a segment register. 



1. When a selector of a descriptor is loaded into a 
segment register. Certain segment registers can 
contain only certain descriptor types
⚫The CS register can be loaded only with a 

selector of an executable segment.

⚫Selectors of executable segments that are not 
readable cannot be loaded into data-segment 
registers.

⚫Only selectors of writable data segments can 
be loaded into SS.



2. When an instruction refers (implicitly or 
explicitly) to a segment register. Certain segments 
can be used by instructions only in certain 
predefined ways

⚫No instruction may write into an executable 
segment.

⚫No instruction may write into a data segment 
if the writable bit is not set.

⚫No instruction may read an executable 
segment unless the readable bit is set.



3.1.2 Limit Checking
⚫The limit field of a segment descriptor is used 

by the processor to prevent programs from 
addressing outside the segment. 

⚫The processor's interpretation of the limit 
depends on the setting of the G (granularity) 
bit. 

⚫For data segments, the processor's 
interpretation of the limit depends also on the 
E-bit (expansion-direction bit) and the B-bit (big 
bit)

⚫Table next





⚫When G=0, the actual limit is the value of the 
20-bit limit field as it appears in the 
descriptor.

⚫In this case, the limit may range from 0 to 
0FFFFFH (220-1 or 1 MB). 

⚫When G=1, the processor appends 12 low-
order one-bits to the value in the limit field. 

⚫In this case the actual limit may range from 
0FFFH (212-1 or 4 kilobytes) to 
0FFFFFFFFH(232-1 or 4 GB).



⚫For all types of segments except expand-down data 
segments, the value of the limit is one less than the 
size (expressed in bytes) of the segment. 

⚫The processor causes a general-protection 
exception in any of these cases:

1. Attempt to access a memory byte at an address > 
limit.

2. Attempt to access a memory word at an address 
≥limit.

3. Attempt to access a memory doubleword at an   
address ≥(limit-2).



⚫For expand-down data segments, the limit has 
the same function but is interpreted 
differently. 

⚫In these cases the range of valid addresses is 
from  limit + 1 to either 64K or 232-1 (4 
Gbytes) depending on the B-bit. 

⚫An expand-down segment has maximum size 
when the limit is zero.

⚫The expand-down feature makes it possible to 
expand the size of a stack by copying it to a 
larger segment without needing also to 
update intrastack pointers.



⚫The limit field of descriptors for descriptor 
tables is used by the processor to prevent 
programs from selecting a table entry outside 
the descriptor table. 

⚫The limit of a descriptor table identifies the 
last valid byte of the last descriptor in the 
table. 

⚫Since each descriptor is eight bytes long, the 
limit value is N * 8 - 1 for a table that can 
contain up to N descriptors.



⚫Limit checking catches programming errors 
such as runaway subscripts and invalid 
pointer calculations. 

⚫Such errors are detected when they occur, so 
that identification of the cause is easier. 

⚫Without limit checking, such errors could 
corrupt other modules; the existence of such 
errors would not be discovered until later, 
when the corrupted module behaves 
incorrectly, and when identification of the 
cause is difficult.



3.1.3 Privilege Levels

⚫The concept of privilege is implemented by 
assigning a value from zero to three to key 
objects recognized by the processor. 

⚫This value is called the privilege level. 

⚫The value zero represents the greatest 
privilege, the value three represents the least 
privilege.



⚫The following processor-recognized objects 
contain privilege levels:

1. Descriptors contain a field called the descriptor 
privilege level (DPL).

2. Selectors contain a field called the requestor's 
privilege level (RPL). The RPL is intended to 
represent the privilege level of the procedure 
that originates a selector.

3. An internal processor register records the 
current privilege level (CPL). Normally the CPL 
is equal to the DPL of the segment that the 
processor is currently executing. CPL changes 
as control is transferred to segments with 
differing DPLs.



⚫The processor automatically evaluates the right 
of a procedure to access another segment by 
comparing the CPL to one or more other privilege 
levels.

⚫The evaluation is performed at the time the 
selector of a descriptor is loaded into a segment 
register. 

⚫The criteria used for evaluating access to data 
differs from that for evaluating transfers of 
control to executable segments:



⚫Diagram
⚫The levels of privilege can be interpreted as 

rings of protection. 
⚫The center is for the segments containing the 

most critical software, usually the kernel of 
the operating system. 

⚫Outer rings are for the segments of less 
critical software.





⚫It is not necessary to use all four privilege 
levels. 

⚫Existing software that was designed to use 
only one or two levels of privilege can simply 
ignore the other levels offered by the 80386. 

⚫A one-level system should use privilege level 
zero; a two-level system should use privilege 
levels zero and three.



3.2 Restricting Access to Data
⚫To address operands in memory, an 80386 program 

must load the selector of a data segment into a 
data-segment register (DS, ES, FS, GS, SS). 

⚫The processor automatically evaluates access to a 
data segment by comparing privilege levels. 

⚫The evaluation is performed at the time a selector 
for the descriptor of the target segment is loaded 
into the data-segment register.

⚫3 different privilege levels enter into this type of 
privilege check Diagram (Next) :

1. The CPL (current privilege level).
2. The RPL (requestor's privilege level) of the 
selector used to specify the target segment.
3. The DPL of the descriptor of the target segment.





⚫Instructions may load a data-segment register 
(and subsequently use the target segment) 
only if the DPL of the target segment is 
numerically greater than or equal to the 
maximum of the CPL and the selector's RPL. 

⚫In other words, a procedure can only access 
data that is at the same or less privileged 
level.



⚫The addressable domain of a task varies as CPL 
changes. 

1. When CPL is zero, data segments at all privilege 
levels are accessible 

2. when CPL is one, only data segments at privilege 
levels one through three are accessible 

3. when CPL is three, only data segments at 
privilege level three are accessible.

⚫  This property of the 80386 can be used, for 
example, to prevent applications procedures from 
reading or changing tables of the operating system.



Note
⚫Conforming Segment: These segments may 

be called from various privilege levels but 
execute at the privilege level of the calling 
procedure. (e.g. math library)



3.2.1 Accessing Data in Code Segments

⚫Less common than the use of data segments is the use 
of code segments to store data. 

⚫Code segments may legitimately hold constants; it is 
not possible to write to a segment described as a code 
segment. 

⚫The following methods of accessing data in code 
segments are possible:

1. Load a data-segment register  with a selector of a 
nonconforming, readable, executable segment.
2. Load a data-segment register with a selector of a 
conforming,
readable, executable segment.
3. Use a CS override prefix to read a readable, 
executable segment whose selector is already loaded in 
the CS register.



⚫The same rules as for access to data 
segments apply to case 1. 

⚫Case 2 is always valid because the privilege 
level of a segment whose conforming bit is 
set is effectively the same as CPL regardless 
of its DPL.

⚫ Case 3 always valid because the DPL of the 
code segment in CS is, by definition, equal to 
CPL.



3.3 Restricting Control Transfers

⚫ With the 80386, control transfers are accomplished by the 
instructions JMP, CALL, RET, INT, and IRET, as well as by 
the exception and interrupt mechanisms. 

⚫ Exceptions and interrupts are special cases
⚫  discussion of  JMP, CALL, and RET instructions (Here only)
⚫ The "near" forms of JMP, CALL, and RET transfer within the 

current code segment, and therefore are subject only to 
limit checking.

⚫  The processor ensures that the destination of the JMP, 
CALL, or RET instruction does not exceed the limit of the 
current executable segment. 

⚫ This limit is cached in the CS register; therefore, protection 
checks for near transfers require no extra clock cycles.



⚫The operands of the "far" forms of JMP and 
CALL refer to other segments

⚫So the processor performs privilege checking. 
⚫There are two ways a JMP or CALL can refer 

to another segment:
1. The operand selects the descriptor of 
another executable segment.
2. The operand selects a call gate descriptor.



⚫Diagram (Next)
⚫2 different privilege levels enter into a privilege 

check for a control transfer that does not use a call 
gate:

1. The CPL (current privilege level).
2. The DPL of the descriptor of the target segment.
⚫Normally the CPL is equal to the DPL of the 

segment that the processor is currently executing. 
⚫CPL may, however, be greater than DPL if the 

conforming bit is set in the descriptor of the 
current executable segment. 

⚫The processor keeps a record of the CPL cached in 
the CS register; this value can be different from the 
DPL in the descriptor of the code segment.





⚫The processor permits a JMP or CALL directly 
to another segment only if one of the 
following privilege rules is satisfied:

1. DPL of the target is equal to CPL.
OR

2. The conforming bit of the target code-
segment descriptor is set, and the DPL of the 
target is less than or equal to CPL.



⚫An executable segment whose descriptor has 
the conforming bit set is called a conforming 
segment. 

⚫The conforming-segment mechanism permits 
sharing of procedures that may be called from 
various privilege levels but should execute at 
the privilege level of the calling procedure. 

⚫Examples of such procedures include math 
libraries and some exception handlers. 

⚫When control is transferred to a conforming 
segment, the CPL does not change. 

⚫This is the only case when CPL may be unequal 
to the DPL of the current executable segment.



⚫Most code segments are not conforming. 
⚫The basic rules of privilege : for nonconforming 

segments, control can be transferred without a gate 
only to executable segments at the same level of 
privilege.

⚫  There is a need, however, to transfer control to 
(numerically) smaller privilege levels

⚫This need is met by the CALL instruction when used 
with call-gate descriptors,.

⚫  The JMP instruction may never transfer control to 
a  nonconforming segment whose DPL does not 
equal CPL.



3.4 Gate Descriptors Guard Procedure Entry 
Points
⚫To provide protection for control transfers 

among executable segments at different 
privilege levels, the 80386 uses gate 
descriptors. 

⚫There are four kinds of gate descriptors:
1. Call gates
2. Trap gates
3. Interrupt gates
4. Task gates



⚫Task gates are used for  task switching
⚫Trap gates and interrupt gates are used by 

exceptions and interrupts
⚫A call gate descriptor may reside in the GDT 

or in an LDT, but not in the IDT.



Call Gate
⚫A call gate has two primary functions:
1. To define an entry point of a procedure.
2. To specify the privilege level of the entry 
point.





⚫Call gate descriptors are used by call and 
jump instructions in the same manner as code 
segment descriptors. 

⚫When the hardware recognizes that the 
destination selector refers to a gate 
descriptor, the operation of the instruction is 
expanded as determined by the contents of 
the call gate.



⚫The selector and offset fields of a gate form a pointer 
to the entry point of a procedure. 

⚫A call gate guarantees that all transitions to another  
segment go to a valid entry point, rather than possibly 
into the middle of a procedure (or worse, into the 
middle of an instruction). 

⚫The far pointer operand of the control transfer 
instruction does not point to the segment and offset of 
the target instruction

⚫  rather, the selector part of the pointer selects a gate, 
and the offset is not used. 

⚫Diagram (next)





⚫Diagram (Next)
⚫ 4 different privilege levels are used to 

check the validity of a control transfer via 
a call gate:

1. The CPL (current privilege level).
2. The RPL (requestor's privilege level) of 
the selector used to specify the call gate.
3. The DPL of the gate descriptor.
4. The DPL of the descriptor of the target 
executable segment.





⚫The DPL field of the gate descriptor 
determines what privilege levels can use 
the gate.

⚫One code segment can have several 
procedures that are intended for use by 
different privilege levels.

⚫ For example, an operating system may 
have some services that are intended to be 
used by applications, whereas others may 
be intended only for use by other systems 
software.



Use of Gates
⚫Gates can be used for control transfers to 

numerically smaller privilege levels or to the 
same privilege level (though they are not 
necessary for transfers to the same level). 

⚫Only CALL instructions can use gates to transfer 
to smaller privilege levels. 

⚫A gate may be used by a JMP instruction only to 
transfer to an executable segment with the same 
privilege level or to a conforming segment.



⚫For a JMP instruction to a nonconforming 
segment, both of the following privilege rules 
must be satisfied : 

1. MAX (CPL,RPL) ≤ gate DPL
2. target segment DPL = CPL

⚫otherwise, a general protection exception 
results.



⚫For a CALL instruction (or for a JMP 
instruction to a conforming segment), both of 
the following privilege rules must be 
satisfied:

1. MAX (CPL,RPL) ≤ gate DPL
2. target segment DPL ≤ CPL

⚫otherwise, a general protection exception 
results.



3.4.1 Stack Switching

⚫If the destination code segment of the call 
gate is at a different privilege level than the 
CPL, an interlevel transfer is being 
requested.

⚫To maintain system integrity, each privilege 
level has a separate stack.

⚫These stacks assure sufficient stack space to 
process calls from less privileged levels.

⚫Without them, a trusted procedure would not 
work correctly if the calling procedure did 
not provide  sufficient space on the caller's 
stack.



⚫The processor locates these stacks via the task 
state segment 

⚫Diagram (next)
⚫Each task has a separate TSS, thereby permitting 

tasks to have separate stacks. 
⚫Systems software is responsible for creating TSSs 

and placing correct stack pointers in them. 
⚫The initial stack pointers in the TSS are strictly 

read-only values.
⚫  The processor never changes them during the 

course of execution.





⚫When a call gate is used to change privilege 
levels, a new stack is selected by loading a 
pointer value from the Task State Segment 
(TSS). 

⚫The processor uses the DPL of the target 
code segment (the new CPL) to index the 
initial stack pointer for PL 0, PL 1, or PL 2.



⚫The DPL of the new stack data segment must 
equal the new CPL

⚫if it does not, a stack exception occurs.
⚫ It is the responsibility of systems software to 

create stacks and stack-segment descriptors 
for all privilege levels that are used.

⚫ Each stack must contain enough space to 
hold the old SS:ESP, the return address, and 
all parameters and local variables that may 
be required to process a call.



⚫As with intralevel calls, parameters for the 
subroutine are placed on the stack.

⚫ To make privilege transitions transparent to 
the called procedure, the processor copies 
the parameters to the new stack. 

⚫The count field of a call gate tells the 
processor how many doublewords (up to 31) 
to copy from the caller's stack to the new 
stack. 

⚫If the count is zero, no parameters are 
copied.



⚫The processor performs the following stack-
related steps in executing an interlevel CALL :

1. The new stack is checked to assure that it is 
large enough to hold the parameters and 
linkages; if it is not, a stack fault occurs with an 
error code of 0.
2. The old value of the stack registers SS:ESP is 
pushed onto the new stack as two doublewords.
3. The parameters are copied.
4. A pointer to the instruction after the CALL 
instruction (the former value of CS:EIP) is 
pushed onto the new stack. The final value of 
SS:ESP points to this return pointer on the new 
stack.



⚫Diagram :Stack contents after a successful 
interlevel call.

⚫The TSS does not have a stack pointer for a 
privilege level 3 stack, because privilege level 3 
cannot be called by any procedure at any other 
privilege level.





⚫Procedures that may be called from another 
privilege level and that require more than the 
31 doublewords for parameters must use the 
saved SS:ESP link to access all parameters 
beyond the last doubleword copied.



⚫A call via a call gate does not check the 
values of the words copied onto the new 
stack. 

⚫The called procedure should check each 
parameter for validity. 



3.4.2 Returning from a Procedure

⚫The "near" forms of the RET instruction 
transfer control within the current code 
segment and therefore are subject only to limit 
checking. 

⚫The offset of the instruction following the 
corresponding CALL, is popped from the stack.

⚫The processor ensures that this offset does not 
exceed the limit of the current executable 
segment.



⚫The "far" form of the RET instruction pops 
the return pointer that was pushed onto the 
stack by a prior far CALL instruction. 

⚫Under normal conditions, the return pointer 
is valid, because of its relation to the prior 
CALL or INT. 

⚫However, the processor performs privilege 
checking because of the possibility that the 
current procedure altered the pointer or 
failed to properly maintain the stack. 

⚫The RPL of the CS selector popped off the 
stack by the return instruction identifies the 
privilege level of the calling procedure.



⚫An intersegment return instruction can 
change privilege levels, but only toward 
procedures of lesser privilege. 

⚫When the RET instruction encounters a saved 
CS value whose RPL is numerically greater 
than the CPL, an interlevel return occurs. 

⚫Steps: 



Interlevel Return Steps



Step 1
⚫The checks (Table) are made, and CS:EIP 

and SS:ESP are loaded with their former 
values that were saved on the stack.



Table 6-3. Interlevel Return Checks





Step 2
⚫The old SS:ESP (from the top of the current 

stack) value is adjusted by the number of 
bytes indicated in the RET instruction. 

⚫The resulting ESP value is not compared to 
the limit of the stack segment. 

⚫If ESP is beyond the limit, that fact is not 
recognized until the next stack operation. 

 Note: The SS:ESP value of the returning 
procedure is not preserved; normally, this value 
is the same as that contained in the TSS.



Step 3
⚫The contents of the DS, ES, FS, and GS segment 

registers are checked. 
⚫If any of these registers refer to segments whose 

DPL is greater than the new CPL (excluding 
conforming code segments), the segment register is 
loaded with the null selector (INDEX = 0, TI = 0).

⚫ The RET instruction itself does not signal 
exceptions in these cases; however, any subsequent 
memory reference that attempts to use a segment 
register that contains the null selector will cause a 
general protection exception. 

⚫This prevents less privileged code from accessing 
more privileged segments using selectors left in the 
segment registers by the more privileged 
procedure.



3.5 Some Instructions are Reserved for 
Operating System
⚫Instructions that have the power to affect the 

protection mechanism or to influence general 
system performance can only be executed by 
trusted procedures. 

⚫The 80386 has two classes of such 
instructions:

1. Privileged instructions:  used for system 
control.
2. Sensitive instructions:  used for I/O and I/O 
related  activities.



Class I: Privileged Instructions

⚫The instructions that affect system data 
structures can only be executed when CPL is 
zero. 

⚫If the CPU encounters one of these 
instructions when CPL  is greater than zero, 
it signals a general protection exception. 

⚫These instructions include:



CLTS Clear Task─Switched Flag

HLT Halt Processor

LGDT Load GDL Register

LIDT Load IDT Register

LLDT Load LDT Register

LMSW Load Machine Status Word

LTR Load Task Register

MOV to/from CRn Move to Control Register n

MOV to /from DRn Move to Debug Register n

MOV to/from TRn Move to Test Register n



Class II: Sensitive Instructions
⚫Instructions that deal with I/O need to be 

restricted but also need to be executed by 
procedures executing at privilege levels other 
than zero.



3.6 Instructions for Pointer Validation
⚫Pointer validation is an important part of 

locating programming errors. 
⚫Pointer validation is necessary for maintaining 

isolation between the privilege levels. 
⚫Pointer validation consists of the following 

steps:
1. Check if the supplier of the pointer is entitled 
to access the segment.
2. Check if the segment type is appropriate to its 
intended use.
3. Check if the pointer violates the segment limit.



⚫80386 processor automatically performs 
checks 2 and 3 during instruction execution

⚫ software must assist in performing the first 
check.

⚫The unprivileged instruction ARPL is 
provided for this purpose. 

⚫Software can also explicitly perform steps 2 
and 3 to check for potential violations. 

⚫The unprivileged instructions LAR, LSL, 
VERR, and VERW are provided for this 
purpose.



LAR : Load Access Rights

⚫Use:  to verify that a pointer refers to a 
segment of the proper privilege level and 
type. 

⚫one operand──a selector for a descriptor 
whose access rights are to be examined. 

⚫The descriptor must be visible at the 
privilege level which is the max(CPL,  
selector's RPL). 

⚫If the descriptor is visible, LAR obtains a 
masked form of the second doubleword of 
the descriptor, masks this value with 
00FxFF00H, stores the result into the 
specified 32-bit destination register, and sets 
the zero flag. 



LAR…….
⚫Once loaded, the access-rights bits can be 

tested. 
⚫All valid descriptor types can be tested by 

the LAR instruction. 
⚫If the RPL or CPL is greater than DPL, or 

if the selector is outside the table limit, no 
access-rights value is returned, and the 
zero flag is cleared. 

⚫Conforming code segments may be 
accessed from any privilege level.



LSL : Load Segment Limit
⚫Allows software to test the limit of a descriptor.
⚫If the descriptor denoted by the given selector (in 

memory or a register) is visible at the CPL, LSL 
loads the specified 32-bit register with a 32-bit, byte 
granular, unscrambled limit that is calculated from 
fragmented limit fields and the G-bit of that 
descriptor. 

⚫This can only be done for segments (data, code, task 
state, and local descriptor tables);  gate descriptors 
are inaccessible. 

⚫(Table (Next) lists in detail which types are valid and 
which are not. 

⚫Interpreting the limit is a function of the segment 
type. 

⚫For example, downward expandable data segments 
treat the limit differently than code segments do. 



Note
⚫For both LAR and LSL, the zero flag (ZF) 

is set if the loading was performed; 
otherwise, the ZF is cleared.





3.6.1 Descriptor Validation
⚫2 instructions : VERR and VERW
⚫To determine whether a selector points to a 

segment that can be read or written at the 
current privilege level. 

⚫Neither instruction causes a protection fault 
if the result is negative.



VERR : Verify for Reading
⚫To verify a segment for reading and to 

load ZF with 1 if that segment is readable 
from the current privilege level. 

⚫VERR checks that:
✔The selector points to a descriptor within 

the bounds of the GDT or LDT.
✔It denotes a code or data segment 

descriptor.
✔The segment is readable and of appropriate 

privilege level.



VERR….
⚫The privilege check for data segments and 

nonconforming code segments is that the DPL 
must be numerically greater than or equal to 
both the CPL and the selector's RPL. 

⚫Conforming segments are not checked for 
privilege level.



VERW : Verify for Writing
⚫provides the same capability as VERR for 

verifying writability. 
⚫VERW loads ZF if the result of the writability 

check is positive.
⚫ The instruction checks that the descriptor is 

within bounds, is a segment descriptor, is 
writable, and that its DPL is numerically 
greater or equal to both the CPL and the 
selector's RPL.

⚫ Code segments are never writable, conforming 
or not.



3.6.2 Pointer Integrity and RPL

⚫The Requestor's Privilege Level (RPL) feature 
can prevent inappropriate use of pointers 
that could corrupt the operation of more 
privileged code or data from a less privileged 
level.



ARPL :Adjust Requestor's Privilege Level

⚫adjusts the RPL field of a selector to become 
the larger of its original value and the value 
of the RPL field in a specified register. 

⚫The latter is normally loaded from the image 
of the caller's CS register which is on the 
stack. 

⚫If the adjustment changes the selector's RPL, 
ZF is set

⚫Otherwise, ZF is cleared.



How…..(Skip)
⚫To take advantage of the processor's checking of 

RPL, the called procedure need only ensure that 
all selectors passed to it have an RPL at least as 
high (numerically) as the original caller's CPL. 

⚫This action guarantees that selectors are not 
more trusted than their supplier. 

⚫If one of the selectors is used to access a segment 
that the caller would not be able to access 
directly, 

⚫i.e., the RPL is numerically greater than the DPL, 
then a protection fault will result when that 
selector is loaded into a segment register.



4. Page-Level Protection
⚫Two kinds of protection are related to pages:
1. Restriction of addressable domain.
2. Type checking.



4.1 Page-Table Entries Hold Protection Parameters

⚫Figure highlights the fields of PDEs and PTEs 
that control access to pages.



4.1.1 Restricting Addressable Domain

⚫The concept of privilege for pages is 
implemented by assigning each page to one 
of two levels:

1. Supervisor level (U/S=0) ── for the 
operating system and other systems 
software and related data.

OR
2. User level (U/S=1) ── for applications 
procedures and data.



⚫The current level (U or S) is related to CPL. 

⚫If CPL is 0, 1, or 2, the processor is executing 
at supervisor level. 

⚫If CPL is 3, the processor is executing at user 
level.



⚫When the processor is executing at 
supervisor level, all pages are addressable

⚫When the processor is executing at user 
level, only pages that belong to the user 
level are addressable.



4.1.2 Type Checking

⚫At the level of page addressing, two types are 
defined:

1. Read-only access (R/W=0)
2. Read/write access (R/W=1)
⚫When the processor is executing at supervisor 

level, all pages are both readable and writable. 
⚫When the processor is executing at user level:

⮚ only pages that belong to user level and are 
marked for read/write access are writable; 

⮚ pages that belong to supervisor level are neither 
readable nor writable from user level.



4.2 Combining Protection of Both Levels of 
Page Tables
⚫For any one page, the protection attributes of 

its page directory entry may differ from those 
of its page table entry. 

⚫The 80386 computes the effective protection 
attributes for a page by examining the 
protection attributes in both the directory 
and the page table. 

⚫Table (Next) 
⚫The effective protection provided by the 

possible combinations of protection attributes





4.3 Overrides to Page Protection

⚫Certain accesses are checked as if they 
are privilege-level 0 references, even if 
CPL = 3:

✔LDT, GDT, TSS, IDT references.

✔Access to inner stack during ring-crossing 
CALL/INT.



5. Combining Page and Segment 
Protection

⚫When paging is enabled, the 80386 first 
evaluates segment protection, then evaluates 
page protection.

⚫If the processor detects a protection violation 
at either the segment or the page level, the 
requested operation cannot proceed; a 
protection exception occurs instead.



PART II

MULTITASKING



Extra



Task 1 Task 2 Task 3 Task 1 Task 2 Task 4

Task 3 
completes

Task 4 beginsTask switch

Fig: Running Multiple Tasks Simultaneously

Time



⚫The x386 processor provides hardware support for 
multitasking. 

⚫A task is a program which is running, or waiting to 
run while another program is running. 

⚫A task is invoked by an interrupt, exception, jump, 
or call. 

⚫When one of these forms of transferring execution is 
used with a destination specified by an entry in one 
of the descriptor tables, this descriptor can be a type 
which causes a new task to begin execution after 
saving the state of the current task.

⚫There are two types of task-related descriptors 
which can occur in a descriptor table: task state 
segment descriptors and task gates.

⚫ When execution is passed to either kind of 
descriptor, a task switch occurs.



⚫A task switch is like a procedure call, but it 
saves more processor state information. 

⚫A task switch transfers execution to a 
completely new environment, the environment 
of a task.

⚫ This requires saving the contents of nearly all 
the processor registers, including the EFLAGS 
register and the segment registers. 

⚫Unlike procedures, tasks are not re-entrant. 
⚫A task switch does not push anything on the 

stack. 
⚫The processor state information is saved in a 

data structure in memory, called a task state 
segment.





⚫The processor state information needed to 
restore a task is saved in a type of segment, 
called a task state segment or TSS. 

⚫Figure :format of a TSS for tasks designed for 
32- bit CPUs.

⚫The fields of a TSS are divided into two main 
categories:

1. Dynamic fields the processor updates with 
each task switch.

2. Static fields the processor reads, but does not 
change.

TASK STATE SEGMENT



TSS DESCRIPTOR

⚫The task state segment, like all other 
segments, is defined by a descriptor. 

⚫The format of a TSS descriptor.
⚫The Base, Limit, and DPL fields and the 

Granularity bit and Present bit have functions 
similar to their use in data-segment 
descriptors.





⚫The Busy bit in the Type field indicates 
whether the task is busy. 

⚫A busy task is currently running or waiting to 
run. 

⚫A Type field with a value of 9 indicates an 
inactive task; a value of 11 (decimal) 
indicates a busy task. 

⚫Tasks are not recursive. 
⚫The processor uses the Busy bit to detect an 

attempt to call a task whose execution has 
been interrupted.



Extra Ends



multitasking

⚫Task State Segment
⚫ TSS Descriptor
⚫ Task Register
⚫ Task Gate Descriptor
⚫ Task Switching
⚫ Task Linking
⚫ Task Address Space. 



Multitasking……
⚫To provide efficient, protected multitasking, the 80386 

employs several special data structures. 
⚫ It does not use special instructions to control 

multitasking
⚫ It interprets ordinary control-transfer instructions 

differently when they refer to the special data 
structures.

⚫The registers and data structures that support 
multitasking are:

1. Task state segment
2. Task state segment descriptor
3. Task register
4. Task gate descriptor



Task MGMT Feature #1
⚫With these structures the 80386 can rapidly 

switch execution from one task to another, 
saving the context of the original task so that 
the task can be restarted later.



Task MGMT Feature #2
⚫Interrupts and exceptions can cause task 

switches (if needed in the system design). 
⚫The processor not only switches 

automatically to the task that handles the 
interrupt or exception, but it automatically 
switches back to the interrupted task when 
the interrupt or exception has been serviced. 

⚫Interrupt tasks may interrupt lower-priority 
interrupt tasks to any depth.



Task MGMT Feature #3
⚫With each switch to another task, the 80386 

can also switch to another LDT and to 
another page directory. 

⚫Thus each task can have a different logical-to-
linear mapping and a different linear-to-
physical mapping. 

⚫This is yet another protection feature, 
because tasks can be isolated and prevented 
from interfering with one another.



6. Task State Segment

⚫All the information the processor needs in 
order to manage a task is stored in a special 
type of segment, a task state segment (TSS). 

⚫Figure
⚫Format of a TSS for executing 80386 tasks



Diagram : 
80386 32-Bit Task State Segment





TSS Fields
⚫The fields of a TSS belong to two classes:
1. A dynamic set that the processor updates 

with each switch from the task.
2. A static set that the processor reads but 

does not change.



Dynamic Set
⚫This set includes the fields that store:
1. The general registers (EAX, ECX, EDX, EBX, 

ESP, EBP, ESI, EDI)
2. The segment registers (ES, CS, SS, DS, FS, 

GS)
3. The flags register (EFLAGS)
4.  The instruction pointer (EIP)
5. The selector of the TSS of the previously 

executing task (updated only when a return 
is expected)



Static Set
⚫This set includes the fields that store:
1. The selector of the task's LDT.
2. The register (PDBR) that contains the base 

address of the task's page directory (read 
only when paging is enabled).

3. Pointers to the stacks for privilege levels 0-
2.

4. The T-bit (debug trap bit) which causes the 
processor to raise a debug exception when a 
task switch occurs. 

5. The I/O map base



Bit map
⚫The base address for the I/O permission 

bit  map and interrupt redirection bitmap. 
⚫If present, these maps are stored in the 

TSS at higher addresses. 
⚫The base address points to the beginning 

of the I/O map and the end of the 32-byte 
interrupt map.



Dynamic set 
⮚ That where processor updates 

with each switch from the 
task. 

⮚ This set includes the fields that 
store:

•  The general registers (EAX, ECX, 
EDX, EBX, ESP, EBP, ESI, EDI).

• The segment registers (ES, CS, SS, 
DS, FS, GS).

• The flags register (EFLAGS).
• The instruction pointer (EIP).
• The selector of the TSS of the 

previously executing task (updated 
only when a return is expected).

Static set
⮚  It is that where processor reads 

but does not change. 
⮚ This set includes the fields that 

store:
•  The selector of the task's LDT.
•  The register (PDBR) that contains the 

base address of the task's page 
directory (read only when paging is 
enabled).

• Pointers to the stacks for privilege 
levels 0-2.

•  The T-bit (debug trap bit) which 
causes the processor to raise a debug 
exception

• The I/O map base

Task State Segment (TSS)
Two classes of TSS 
format



link
ESP0

SS0
ESP1

SS1
ESP2

SS2
PTDB
EIP

ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0

ES
CS
SS
DS
FS
GS

LDTR
IOMAP TRAP

EFLAGS
EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

I/O permission bitmap

= field is ‘static’

= field is ‘Dynamic’

= field is ‘reserved’

0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100

32-bits

Fig. 1 :Task state 
segment



⚫Task state segments may reside anywhere in 
the linear space. 

⚫The only case that requires caution is :
⚫when the TSS spans a page boundary and 

the higher-addressed page is not present. 
⚫In this case, the processor raises an exception 

if it encounters the not-present page while 
reading the TSS during a task switch.



⚫Such an exception can be avoided by either of 
two strategies:

1. By allocating the TSS so that it does not 
cross a page boundary.
2. By ensuring that both pages are either both 
present or both not-present at the time of a 
task switch. If both pages are not-present, then 
the page-fault handler must make both pages 
present before restarting the instruction that 
caused the task switch.



7. TSS Descriptor

⚫The task state segment, like all other 
segments, is defined by a descriptor. 

⚫Figure (Next) :the format of a TSS descriptor 
⚫The B-bit in the type field indicates whether 

the task is busy. 
⚫A type code of 9 indicates a non-busy task; a 

type code of 11 indicates a busy task.
⚫Tasks are not reentrant. 
⚫The B-bit allows the processor to detect an 

attempt to switch to a task that is already 
busy.





Fields of TSS Descriptor
⚫The BASE, LIMIT, and DPL fields and the G-bit and 

P-bit have functions similar to their counterparts in 
data-segment descriptors. 

⚫The LIMIT field, must have a value equal to or 
greater than 103. 

⚫An attempt to switch to a task whose TSS 
descriptor has a limit less that 103 causes an 
exception. 

⚫A larger limit is permissible, and a larger limit is 
required if an I/O permission map is present. 

⚫A larger limit may also be convenient for systems 
software if additional data is stored in the same 
segment as the TSS.



⚫A procedure that has access to a TSS 
descriptor can cause a task switch. 

⚫In most systems the DPL fields of TSS 
descriptors should be set to zero, so that only 
trusted software has the right to perform task 
switching.



⚫Having access to a TSS-descriptor does not 
give a procedure the right to read or modify a 
TSS. 

⚫Reading and modification can be 
accomplished only with another descriptor 
that redefines the TSS as a data segment. 

⚫An attempt to load a TSS descriptor into any 
of the segment registers (CS, SS, DS, ES, FS, 
GS) causes an exception.



⚫TSS descriptors may reside only in the GDT. 

⚫An attempt to identify a TSS with a selector 
that has TI=1 (indicating the current LDT) 
results in an exception.



8.TR
⚫TSS descriptors may only be loaded into GDT.

⚫When multiple TSS descriptors exist in GDT, 
the TSS currently in use is accessed through 
the use of the Task Register.

⚫TR is used as an index pointer into the GDT to 
locate a TSS descriptor.



TR…..
⚫The task register (TR) identifies the currently 

executing task by pointing to the TSS. 

⚫Figure (Next):
the path by which the processor accesses 

the current TSS







TASK REGISTER
⚫The task register (TR) is used to 
find the current TSS. 
⚫The task register has :

•a visible part (i.e., a part which can be 
read and changed by software), 

•an invisible part (i.e., a part maintained 
by the processor and inaccessible to 
software). 



⚫The selector in the visible portion indexes 
to a TSS descriptor in the GDT.

⚫ The processor uses the invisible portion 
of the TR register to retain the base and 
limit values from the TSS descriptor.

⚫ Keeping these values in a register makes 
execution of the task more efficient, 
because the processor does not need to 
fetch these values from memory to 
reference the TSS of the current task.



⚫The LTR and STR instructions are used to 
modify and read the visible portion of the task 
register. 

⚫Both instructions take one operand, a 16-bit 
segment selector located in memory or a 
general register.



LTR : Load task register
⚫Loads the visible portion of the task register 

with the selector operand, which must 
select a TSS descriptor in the GDT.

⚫LTR also loads the invisible portion with 
information from the TSS descriptor 
selected by the operand. 

⚫LTR is a privileged instruction; it may be 
executed only when CPL is zero.

⚫generally use during system initialization to 
give an initial value to the task register 

⚫Then, contents of TR are changed by task 
switch operations.



STR : Store task register
⚫stores the visible portion of the task 

register in a general register or 
memory word. 

⚫STR is not privileged.



9.Task Gate Descriptor

⚫A task gate descriptor provides an 
indirect, protected reference to a TSS.

⚫Figure (Next) :the format of a task gate
⚫The SELECTOR field of a task gate must 

refer to a TSS descriptor. 
⚫The value of the RPL in this selector is not 

used by the processor.





⚫The DPL field of a task gate controls the right 
to use the descriptor to cause a task switch. 

⚫A procedure may not select a task gate 
descriptor unless the maximum of the selector's 
RPL and the CPL of the procedure is 
numerically less than or equal to the DPL of the 
descriptor. 

⚫This constraint prevents untrusted procedures 
from causing a task switch. 

⚫Note : when a task gate is used, the DPL of the 
target TSS descriptor is not used for privilege 
checking.



⚫A procedure that has access to a task gate 
has the power to cause a task switch, just as 
a procedure that has access to a TSS 
descriptor. 

⚫The 80386 has task gates in addition to TSS 
descriptors to satisfy three needs:

1. The need for a task to have a single busy bit.
2. The need to provide selective access to 

tasks.
3. The need for an interrupt or exception to 

cause a task switch.



Need #1
To have a single busy bit  for a task: 
⚫Because the busy-bit is stored in the TSS 

descriptor, each task should have only one 
such descriptor. 

⚫There may, however, be several task gates 
that select the single TSS descriptor.



Need #2
To provide selective access to tasks: 
⚫Task gates fulfill this need, because they can 

reside in LDTs and can have a DPL that is 
different from the TSS descriptor's DPL. 

⚫A procedure that does not have sufficient 
privilege to use the TSS descriptor in the GDT 
(which usually has a DPL of 0) can still switch to 
another task if it has access to a task gate for 
that task in its LDT. 

⚫With task gates, systems software can limit the 
right to cause task switches to specific tasks.



Need #3
The need for an interrupt or exception to cause a 
task switch: 
⚫Task gates may also reside in the IDT, making it 

possible for interrupts and exceptions to cause 
task switching. 

⚫When interrupt or exception vectors to an IDT 
entry that contains a task gate, the 80386 
switches to the indicated task. 

⚫Thus, all tasks in the system can benefit from the 
protection afforded by isolation from interrupt 
tasks.



Figure :
How both a task gate in an LDT 
and a task gate in the IDT can 

identify the same task





10. Task Switching
⚫The 80386 switches execution to another task 

in any of four cases:
1. The current task executes a JMP or CALL 
that refers to a TSS descriptor.
2. The current task executes a JMP or CALL 
that refers to a task gate.
3. An interrupt or exception vectors to a task 
gate in the IDT.
4. The current task executes an IRET when the 
NT flag is set.



⚫JMP, CALL, IRET, interrupts, and exceptions 
are all ordinary mechanisms of the 80386 
that can be used in circumstances that do not 
require a task switch. 

⚫Either the type of descriptor referenced or 
the NT (nested task) bit in the flag word 
distinguishes between the standard 
mechanism and the variant that causes a task 
switch.



⚫To cause a task switch, a JMP or CALL 
instruction can refer either to a TSS 
descriptor or to a task gate. 

⚫The effect is the same in either case: the 
80386 switches to the indicated task.

⚫An exception or interrupt causes a task 
switch when it vectors to a task gate in the 
IDT.

⚫ If it vectors to an interrupt or trap gate in 
the IDT, a task switch does not occur.



⚫Whether invoked as a task or as a procedure 
of the interrupted task, an interrupt handler 
always returns control to the interrupted 
procedure in the interrupted task. 

⚫If the NT flag is set, however, the handler is 
an interrupt task, and the IRET switches back 
to the interrupted task.



When a task switch is called, the following steps take place:

1.The new TSS descriptor or task gate must have 
sufficient privilege to allow a task switch. 

2.The new TSS descriptor must have its present bit set 
and have a valid limit field.

3.The state of the current task(also called its context) is 
saved. 

4.The TR is loaded with the selector of the new TSS 
descriptor.

5.The state of the new task is loaded from its TSS and 
execution is resumed.



Step 1
⚫ Checking that the current task is allowed to switch to the 

designated task. 
⚫ Data-access privilege rules apply in the case of JMP or CALL 

instructions. 
⚫ The DPL of the TSS descriptor or task gate must be less than 

or equal to the maximum of CPL and the RPL of the gate 
selector.

⚫ Exceptions, interrupts, and IRETs are permitted to switch 
tasks regardless of the DPL of the target task gate or TSS 
descriptor.

⚫The DPL, CPL, and RPL values are compared before any 
further processing takes place.

⚫  Interrupts and exceptions do not force protection 
checking.



Step 2
⚫Checking that the TSS descriptor of the new 

task is marked present and has a valid limit. 
⚫Any errors up to this point occur in the 

context of the outgoing task. 
⚫Errors are restartable and can be handled in 

a way that is transparent to applications 
procedures.



Step 3
⚫Saving the state of the current task. 

⚫This involves copying the contents of all 
processor registers into the TSS for the current 
task.

⚫The processor finds the base address of the current 
TSS cached in the task register. 

⚫It copies the registers into the current TSS (EAX, 
ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, 
FS, GS, and the flag register). 

⚫The EIP field of the TSS points to the instruction 
after the one that caused the task switch.



Step 4
⚫Loading the task register with :
✔the selector of the incoming task's TSS 

descriptor, 
✔marking the incoming task's TSS descriptor 

as busy, and 
✔setting the TS (task switched) bit of the MSW, 

as is the busy bit in the new TSS descriptor.

⚫The selector is either the operand of a control 
transfer instruction or is taken from a task 
gate.



Step 5
⚫Loading the incoming task's state from its TSS 

and resuming execution.
⚫The registers loaded are the LDT register; the 

flag register; the general registers EIP, EAX, 
ECX, EDX, EBX, ESP, EBP, ESI, EDI; the 
segment registers ES, CS, SS, DS, FS, and GS; 
and PDBR.

⚫Any errors detected in this step occur in the 
context of the incoming task. 

⚫To an exception handler, it appears that the 
first instruction of the new task has not yet 
executed.



⚫The privilege level at which the old task 
was running has no relation to the 
privilege level of the new task. 

⚫Because the tasks are isolated by their 
separate address spaces and task state 
segments, and because privilege rules 
control access to a TSS, no privilege 
checks are needed to perform a task 
switch. 

⚫The new task begins executing at the 
privilege level indicated by the RPL of the 
new contents of the CS register, which are 
loaded from the TSS.



Note:
⚫The state of the outgoing task is always saved 

when a task switch occurs. 
⚫If execution of that task is resumed, it starts 

after the instruction that caused the task 
switch. 

⚫The registers are restored to the values they 
held when the task stopped executing.



11. Task Linking

⚫The back-link field of the TSS and the NT 
(nested task) bit of the flag word together allow 
the 80386 to automatically return to a task that 
CALLed another task or was interrupted by 
another task. 

⚫When a CALL instruction, an interrupt 
instruction, an external interrupt, or an 
exception causes a switch to a new task, the 
80386 automatically fills the back-link of the 
new TSS with the selector of the outgoing 
task's TSS and, at the same time, sets the NT 
bit in the new task's flag register. 



⚫The NT flag indicates whether the back-link 
field is valid. 

⚫The new task releases control by executing 
an IRET instruction.

⚫When interpreting an IRET, the 80386 
examines the NT flag. 

⚫If NT is set, the 80386 switches back to the 
task selected by the back-link field. 

⚫Table (Next) summarizes the uses of these 
fields.





Busy Bit Prevents Loops
⚫The Busy bit of the TSS descriptor prevents re-

entrant task switching. 
⚫There is only one saved task context, the 

context saved in the TSS, therefore a task only 
may be called once before it terminates.

⚫ The chain of suspended tasks may grow to 
any length, due to multiple interrupts, 
exceptions, jumps, and calls. 

⚫The Busy bit prevents a task from being called 
if it is in this chain. 

⚫A re-entrant task switch would overwrite the 
old TSS for the task, which would break the 
chain.



⚫The processor manages the Busy bit as follows:
1. When switching to a task, the processor sets the 

Busy bit of the new task.

2. When switching from a task, the processor clears the 
Busy bit of the old task if that task is not to be placed in 
the chain (i.e., the instruction causing the task switch is 
a JMP or IRET instruction). If the task is placed in the 
chain, its Busy bit remains set.

3. When switching to a task, the processor generates a 
general-protection exception if the Busy bit of the new 
task already is set.
⚫In this way, the processor prevents a task from 

switching to itself or to any task in the chain, which 
prevents re-entrant task switching.



⚫The busy bit is effective even in 
multiprocessor configurations, because  the 
processor automatically asserts a bus lock 
when it sets or clears the busy bit. 

⚫This action ensures that two processors do 
not invoke the same task at the same time.



Modifying Task Linkages
⚫Any modification of the linkage order of tasks 

should be accomplished only by software that 
can be trusted to correctly update the back-
link and the busy-bit. 

⚫Such changes may be needed to resume an 
interrupted task before the task that 
interrupted it. 

⚫Trusted software that removes a task from the 
back-link chain must follow one of the 
following policies:

1. First change the back-link field in the TSS of the interrupting 
task, then clear the busy-bit in the TSS descriptor of the task 
removed from the list.

2. Ensure that no interrupts occur between updating the back-
link chain and the busy bit.



12. Task Addressing Space
⚫The LDT selector and PDBR fields of the TSS 

give software systems designers flexibility in 
utilization of segment and page mapping 
features of the 80386. 

⚫By appropriate choice of the segment and 
page mappings for each task:
⮚tasks may share address spaces, 
⮚may have address spaces that are largely 

distinct from one another, 
OR 

⮚may have any degree of sharing between 
these two extremes.



⚫The ability for tasks to have distinct address spaces 
is an important aspect of 80386 protection. 

⚫A module in one task cannot interfere with a 
module in another task if the modules do not have 
access to the same address spaces. 

⚫The flexible memory management features of the 
80386 allow systems designers to assign areas of 
shared address space to those modules of different 
tasks that are designed to cooperate with each 
other.



Task Linear-to-Physical Space 
Mapping

⚫The choices for arranging the linear-
to-physical mappings of tasks fall 
into two general classes:

1. One linear-to-physical mapping 
shared among all tasks.

2. Several partially overlapping linear-
to-physical mappings.



1. One linear-to-physical mapping 
shared among all tasks:

⚫When paging is not enabled, this is the only 
possibility.

⚫Without page tables, all linear addresses map 
to the same physical addresses.

⚫When paging is enabled, this style of linear-to-
physical mapping results from using one page 
directory for all tasks. 

⚫The linear space utilized may exceed the 
physical space available if the OS also 
implements page-level virtual memory.





2. Several partially overlapping linear-to-
physical mappings.

⚫This style is implemented by using a different 
page directory for each task. 

⚫Because the PDBR (page directory base 
register) is loaded from the TSS with each 
task switch, each task may have a different 
page directory.





Theoretically,
⚫The linear address spaces of different tasks 

may map to
⚫completely distinct physical addresses. 
⚫If the entries of different page directories 

point to different page tables and the page 
tables point to different pages of physical 
memory, then the tasks do not share any 
physical addresses.



Practically,
⚫Some portion of the linear address spaces of all 

tasks must map to the same physical addresses. 
⚫The TSSs must lie in a common space so that the 

mapping of TSS addresses does not change while 
the processor is reading and updating the TSSs 
during a task switch. 

⚫The linear space mapped by the GDT should also be 
mapped to a common physical space;

⚫otherwise, the purpose of the GDT is defeated.
⚫Figure :how the linear spaces of two tasks can 

overlap in the physical space by sharing page 
tables.





Task Logical Address Space

⚫By itself, a common  linear-to-physical space 
mapping does not enable sharing of data 
among tasks. 

⚫To share data, tasks must also have a 
common logical-to-linear space mapping; i.e., 
they must also have access to descriptors that 
point into a shared linear address space.



Logical-to- Physical Address Space Mapping

⚫There are three ways to create common 
logical-to-physical address-space mappings:

1. Via the GDT.
2. By sharing LDTs.
3. By descriptor aliases in LDTs.
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