
Protection in 80386DX
UQ: Explain the protection mechanism of
X86 Intel family microprocessor

Protection
⚫80386 DX has four levels of protection which

isolate and protect user programs from each
other and the operating system.

⚫It offers an additional type of protection on a
page basis, when paging is enabled(using U/S
and R/W fields)

⚫The four-level hierarchical privilege system is
illustrated as follows:

Protection

Protection
⚫The privilege levels (PL) are numbered 0

through 3.
⚫Level 0 is the most privileged or trusted level.

Rules for Privileges
⚫Intel 386Dx controls access to both data and

procedures according to the following rules:
(1) Data segment with privilege level
p can be accessed only by the code
executing at a privilege level atleast
as privileged as p
 (E.g. Application programs are
prevented from reading or changing
OS Tables)

Rules for Privileges

(2) A code segment with a privilege level p can
only be called by a task executing at the same
or lesser privilege level than p

(E.g. An Application Program may call
an OS routine)

Privilege Level

⚫There are 3 different types of privilege level
entering into the privilege level checks:
⚫Current Privilege Level (CPL)
⚫Descriptor Privilege Level (DPL)
⚫Requestor Privilege Level (RPL)

Current Privilege Level (CPL)
⚫CPL is stored in the selector of currently

executing CS register
⚫It represents the privilege level(PL) of the

currently executing task.
⚫It is also PL in the descriptor of the code

segment.
⚫It is also designated as Task Privilege

Level(TPL)

Descriptor Privilege Level (DPL)

⚫It is the PL of the object which is being
attempted to be accessed by the current task

⚫It is PL of target segment and is contained in
the descriptor of the segment

Requestor Privilege Level (RPL)
⚫It is the lowest two bits of any selector.
⚫It can be used to weaken the CPL if desired.
⚫The Effective Privilege Level(EPL) is

EPL = max (CPL,RPL) (here
numbers)

⚫Thus the task becomes less privileged.

Restricting Access to Data
⚫Assume that a task needs data from data

segment.
⚫The privilege levels are checked at the time a

selector for the target segment is loaded into
the data segment register.

⚫Three privilege levels enter into privilege
checking mechanism
⚫CPL
⚫RPL of the selector of target segment
⚫DPL of the descriptor of the target segment

Access is allowed only
if
DPL ≥ max (CPL,RPL)

Restricting Access to Data

⚫A procedure can only access the data that is
at the same or less privilege level (not
numerically)

Restricting Access to Data

Restricting Control Transfer
⚫Control transfer (except interrupts) are

accomplished by JMP, CALL and RET
instructions.

⚫The near forms of JMP and CALL transfer
within current code segment and requires
only limit checking

⚫The far forms of JMP and CALL refer to other
segments and require privilege checking.

Restricting Control Transfer
⚫The far JMP and CALL can be done in 2 ways:

1. Without Call Gate Descriptor
2. With Call Gate Descriptor

Without Call Gate
⚫The processor permits a JMP or CALL directly

to another segment only if
1. DPL of the target segment = CPL of the

calling segment
2. Conforming bit of the target code is set and

DPL of the target segment ≤ CPL
⚫Confirming Segment: These segments may

be called from various privilege levels but
execute at the privilege level of the calling
procedure. (e.g. math library)

Privilege Check for Control Transfer without
gate

With Call Gate
⚫The far pointer of the control transfer

instruction uses the selector part of the
pointer and selects a gate.

⚫The selector and offset fields of a gate form a
pointer to the entry of a procedure.

With Call Gate

With Call Gate
⚫Four privilege levels are used to check the

validity of the control transfer via a call gate:
1. CPL
2. RPL of the selector used to specify call gate
3. DPL of the gate descriptor
4. DPL of the descriptor of target segment.
⚫ Only CALL instruction can use gates to

transfer to smaller privilege levels.

With Call Gate
⚫For a JMP instruction, the privilege rules are
 MAX(CPL,RPL) ≤ gate DPL

target segment DPL = CPL(numerically)
⚫For a CALL instruction, the rules are

MAX(CPL,RPL) ≤ gate DPL
target segment DPL ≤ CPL(numerically)

Privilege Check via Call Gate

Unit IV
Protection

Topics To Cover Part I
protection

⚫ Need of Protection
⚫ Overview of 80386DX Protection

Mechanisms
⚫ Segment Level Protection
⚫ Page Level Protection
⚫ Combining Segment and Page Level

Protection.

1.Need of Protection
⚫To help detect and identify bugs
⚫ The 80386 supports sophisticated applications that

may consist of hundreds or thousands of program
modules.

⚫In such applications, the question is how bugs can
be found and eliminated as quickly as possible and
how their damage can be tightly confined.

⚫To help debug applications faster and make them
more robust in production, the 80386 contains
mechanisms to verify memory accesses and
instruction execution for conformance to protection
criteria.

⚫These mechanisms may be used or ignored,
according to system design objectives.

2. Overview of 80386 Protection
Mechanisms
Protection in the 80386 has five aspects:
1. Type checking
2. Limit checking
3. Restriction of addressable domain
4. Restriction of procedure entry points
5. Restriction of instruction set

⚫The protection hardware of the 80386 is an
integral part of the memory management
hardware.

⚫Protection applies both to segment translation
and to page translation.

⚫Each reference to memory is checked by the
hardware to verify that it satisfies the protection
criteria.

⚫ All these checks are made before the memory
cycle is started

⚫Any violation prevents that cycle from starting
and results in an exception.

⚫Since the checks are performed concurrently
with address formation, there is no performance
penalty.

⚫Invalid attempts to access memory result in
an exception.

⚫Protection violations that leads to exceptions

“Privilege” ?????
⚫The concept of "privilege" is central to

several aspects of protection.
⚫Applied to procedures, privilege is the degree

to which the procedure can be trusted not to
make a mistake that might affect other
procedures or data.

⚫Applied to data, privilege is the degree of
protection that a data structure should have
from less trusted procedures.

⚫The concept of privilege applies both to
segment protection and to page protection.

3. Segment-Level Protection
All five aspects of protection apply to segment
translation:
1. Type checking
2. Limit checking
3. Restriction of addressable domain
4. Restriction of procedure entry points
5. Restriction of instruction set

⚫The segment is the unit of protection, and
segment descriptors store protection
parameters.

⚫Protection checks are performed
automatically by the CPU when the selector
of a segment descriptor is loaded into a
segment register and with every segment
access.

⚫Segment registers hold the protection
parameters of the currently addressable
segments.

3.1 Descriptors Store Protection Parameters

⚫Figure (Next slide) highlights the protection-
related fields of segment descriptors.

⚫The protection parameters are placed in the
descriptor by systems software at the time a
descriptor is created.

⚫In general, applications programmers do not
need to be concerned about protection
parameters.

⚫When a program loads a selector into a segment
register, the processor loads not only the base
address of the segment but also protection
information.

⚫Each segment register has bits in the invisible
portion for storing base, limit, type, and privilege
level

⚫That’s why, subsequent protection checks on the
same segment do not consume additional clock
cycles.

3.1.1 Type Checking

⚫The TYPE field of a descriptor has two functions:
1. It distinguishes among different descriptor
formats.
2. It specifies the intended usage of a segment.
⚫Besides the descriptors for data and executable

segments commonly used by applications
programs, the 80386 has descriptors for special
segments used by the operating system and for
gates.

⚫Table (Next) lists all the types defined for system
segments and gates.

⚫The type fields of data and executable
segment descriptors include bits which
further define the purpose of the segment:
⮚The writable bit in a data-segment

descriptor specifies whether instructions
can write into the segment.

⮚The readable bit in an executable-segment
descriptor specifies whether instructions
are allowed to read from the segment (for
example, to access constants that are
stored with instructions).

⚫A readable, executable segment may be read
in two ways:

1. Via the CS register, by using a CS override
prefix.
2. By loading a selector of the descriptor into a
data-segment register (DS, ES, FS, or GS).

⚫Type checking can be used to detect
programming errors that would attempt to
use segments in ways not intended by the
programmer.

⚫The processor examines type information on
two kinds of occasions:

1. When a selector of a descriptor is loaded
into a segment register.

2. When an instruction refers (implicitly or
explicitly) to a segment register.

1. When a selector of a descriptor is loaded into a
segment register. Certain segment registers can
contain only certain descriptor types
⚫The CS register can be loaded only with a

selector of an executable segment.

⚫Selectors of executable segments that are not
readable cannot be loaded into data-segment
registers.

⚫Only selectors of writable data segments can
be loaded into SS.

2. When an instruction refers (implicitly or
explicitly) to a segment register. Certain segments
can be used by instructions only in certain
predefined ways

⚫No instruction may write into an executable
segment.

⚫No instruction may write into a data segment
if the writable bit is not set.

⚫No instruction may read an executable
segment unless the readable bit is set.

3.1.2 Limit Checking
⚫The limit field of a segment descriptor is used

by the processor to prevent programs from
addressing outside the segment.

⚫The processor's interpretation of the limit
depends on the setting of the G (granularity)
bit.

⚫For data segments, the processor's
interpretation of the limit depends also on the
E-bit (expansion-direction bit) and the B-bit (big
bit)

⚫Table next

⚫When G=0, the actual limit is the value of the
20-bit limit field as it appears in the
descriptor.

⚫In this case, the limit may range from 0 to
0FFFFFH (220-1 or 1 MB).

⚫When G=1, the processor appends 12 low-
order one-bits to the value in the limit field.

⚫In this case the actual limit may range from
0FFFH (212-1 or 4 kilobytes) to
0FFFFFFFFH(232-1 or 4 GB).

⚫For all types of segments except expand-down data
segments, the value of the limit is one less than the
size (expressed in bytes) of the segment.

⚫The processor causes a general-protection
exception in any of these cases:

1. Attempt to access a memory byte at an address >
limit.

2. Attempt to access a memory word at an address
≥limit.

3. Attempt to access a memory doubleword at an
address ≥(limit-2).

⚫For expand-down data segments, the limit has
the same function but is interpreted
differently.

⚫In these cases the range of valid addresses is
from limit + 1 to either 64K or 232-1 (4
Gbytes) depending on the B-bit.

⚫An expand-down segment has maximum size
when the limit is zero.

⚫The expand-down feature makes it possible to
expand the size of a stack by copying it to a
larger segment without needing also to
update intrastack pointers.

⚫The limit field of descriptors for descriptor
tables is used by the processor to prevent
programs from selecting a table entry outside
the descriptor table.

⚫The limit of a descriptor table identifies the
last valid byte of the last descriptor in the
table.

⚫Since each descriptor is eight bytes long, the
limit value is N * 8 - 1 for a table that can
contain up to N descriptors.

⚫Limit checking catches programming errors
such as runaway subscripts and invalid
pointer calculations.

⚫Such errors are detected when they occur, so
that identification of the cause is easier.

⚫Without limit checking, such errors could
corrupt other modules; the existence of such
errors would not be discovered until later,
when the corrupted module behaves
incorrectly, and when identification of the
cause is difficult.

3.1.3 Privilege Levels

⚫The concept of privilege is implemented by
assigning a value from zero to three to key
objects recognized by the processor.

⚫This value is called the privilege level.

⚫The value zero represents the greatest
privilege, the value three represents the least
privilege.

⚫The following processor-recognized objects
contain privilege levels:

1. Descriptors contain a field called the descriptor
privilege level (DPL).

2. Selectors contain a field called the requestor's
privilege level (RPL). The RPL is intended to
represent the privilege level of the procedure
that originates a selector.

3. An internal processor register records the
current privilege level (CPL). Normally the CPL
is equal to the DPL of the segment that the
processor is currently executing. CPL changes
as control is transferred to segments with
differing DPLs.

⚫The processor automatically evaluates the right
of a procedure to access another segment by
comparing the CPL to one or more other privilege
levels.

⚫The evaluation is performed at the time the
selector of a descriptor is loaded into a segment
register.

⚫The criteria used for evaluating access to data
differs from that for evaluating transfers of
control to executable segments:

⚫Diagram
⚫The levels of privilege can be interpreted as

rings of protection.
⚫The center is for the segments containing the

most critical software, usually the kernel of
the operating system.

⚫Outer rings are for the segments of less
critical software.

⚫It is not necessary to use all four privilege
levels.

⚫Existing software that was designed to use
only one or two levels of privilege can simply
ignore the other levels offered by the 80386.

⚫A one-level system should use privilege level
zero; a two-level system should use privilege
levels zero and three.

3.2 Restricting Access to Data
⚫To address operands in memory, an 80386 program

must load the selector of a data segment into a
data-segment register (DS, ES, FS, GS, SS).

⚫The processor automatically evaluates access to a
data segment by comparing privilege levels.

⚫The evaluation is performed at the time a selector
for the descriptor of the target segment is loaded
into the data-segment register.

⚫3 different privilege levels enter into this type of
privilege check Diagram (Next) :

1. The CPL (current privilege level).
2. The RPL (requestor's privilege level) of the
selector used to specify the target segment.
3. The DPL of the descriptor of the target segment.

⚫Instructions may load a data-segment register
(and subsequently use the target segment)
only if the DPL of the target segment is
numerically greater than or equal to the
maximum of the CPL and the selector's RPL.

⚫In other words, a procedure can only access
data that is at the same or less privileged
level.

⚫The addressable domain of a task varies as CPL
changes.

1. When CPL is zero, data segments at all privilege
levels are accessible

2. when CPL is one, only data segments at privilege
levels one through three are accessible

3. when CPL is three, only data segments at
privilege level three are accessible.

⚫ This property of the 80386 can be used, for
example, to prevent applications procedures from
reading or changing tables of the operating system.

Note
⚫Conforming Segment: These segments may

be called from various privilege levels but
execute at the privilege level of the calling
procedure. (e.g. math library)

3.2.1 Accessing Data in Code Segments

⚫Less common than the use of data segments is the use
of code segments to store data.

⚫Code segments may legitimately hold constants; it is
not possible to write to a segment described as a code
segment.

⚫The following methods of accessing data in code
segments are possible:

1. Load a data-segment register with a selector of a
nonconforming, readable, executable segment.
2. Load a data-segment register with a selector of a
conforming,
readable, executable segment.
3. Use a CS override prefix to read a readable,
executable segment whose selector is already loaded in
the CS register.

⚫The same rules as for access to data
segments apply to case 1.

⚫Case 2 is always valid because the privilege
level of a segment whose conforming bit is
set is effectively the same as CPL regardless
of its DPL.

⚫ Case 3 always valid because the DPL of the
code segment in CS is, by definition, equal to
CPL.

3.3 Restricting Control Transfers

⚫ With the 80386, control transfers are accomplished by the
instructions JMP, CALL, RET, INT, and IRET, as well as by
the exception and interrupt mechanisms.

⚫ Exceptions and interrupts are special cases
⚫ discussion of JMP, CALL, and RET instructions (Here only)
⚫ The "near" forms of JMP, CALL, and RET transfer within the

current code segment, and therefore are subject only to
limit checking.

⚫ The processor ensures that the destination of the JMP,
CALL, or RET instruction does not exceed the limit of the
current executable segment.

⚫ This limit is cached in the CS register; therefore, protection
checks for near transfers require no extra clock cycles.

⚫The operands of the "far" forms of JMP and
CALL refer to other segments

⚫So the processor performs privilege checking.
⚫There are two ways a JMP or CALL can refer

to another segment:
1. The operand selects the descriptor of
another executable segment.
2. The operand selects a call gate descriptor.

⚫Diagram (Next)
⚫2 different privilege levels enter into a privilege

check for a control transfer that does not use a call
gate:

1. The CPL (current privilege level).
2. The DPL of the descriptor of the target segment.
⚫Normally the CPL is equal to the DPL of the

segment that the processor is currently executing.
⚫CPL may, however, be greater than DPL if the

conforming bit is set in the descriptor of the
current executable segment.

⚫The processor keeps a record of the CPL cached in
the CS register; this value can be different from the
DPL in the descriptor of the code segment.

⚫The processor permits a JMP or CALL directly
to another segment only if one of the
following privilege rules is satisfied:

1. DPL of the target is equal to CPL.
OR

2. The conforming bit of the target code-
segment descriptor is set, and the DPL of the
target is less than or equal to CPL.

⚫An executable segment whose descriptor has
the conforming bit set is called a conforming
segment.

⚫The conforming-segment mechanism permits
sharing of procedures that may be called from
various privilege levels but should execute at
the privilege level of the calling procedure.

⚫Examples of such procedures include math
libraries and some exception handlers.

⚫When control is transferred to a conforming
segment, the CPL does not change.

⚫This is the only case when CPL may be unequal
to the DPL of the current executable segment.

⚫Most code segments are not conforming.
⚫The basic rules of privilege : for nonconforming

segments, control can be transferred without a gate
only to executable segments at the same level of
privilege.

⚫ There is a need, however, to transfer control to
(numerically) smaller privilege levels

⚫This need is met by the CALL instruction when used
with call-gate descriptors,.

⚫ The JMP instruction may never transfer control to
a nonconforming segment whose DPL does not
equal CPL.

3.4 Gate Descriptors Guard Procedure Entry
Points
⚫To provide protection for control transfers

among executable segments at different
privilege levels, the 80386 uses gate
descriptors.

⚫There are four kinds of gate descriptors:
1. Call gates
2. Trap gates
3. Interrupt gates
4. Task gates

⚫Task gates are used for task switching
⚫Trap gates and interrupt gates are used by

exceptions and interrupts
⚫A call gate descriptor may reside in the GDT

or in an LDT, but not in the IDT.

Call Gate
⚫A call gate has two primary functions:
1. To define an entry point of a procedure.
2. To specify the privilege level of the entry
point.

⚫Call gate descriptors are used by call and
jump instructions in the same manner as code
segment descriptors.

⚫When the hardware recognizes that the
destination selector refers to a gate
descriptor, the operation of the instruction is
expanded as determined by the contents of
the call gate.

⚫The selector and offset fields of a gate form a pointer
to the entry point of a procedure.

⚫A call gate guarantees that all transitions to another
segment go to a valid entry point, rather than possibly
into the middle of a procedure (or worse, into the
middle of an instruction).

⚫The far pointer operand of the control transfer
instruction does not point to the segment and offset of
the target instruction

⚫ rather, the selector part of the pointer selects a gate,
and the offset is not used.

⚫Diagram (next)

⚫Diagram (Next)
⚫ 4 different privilege levels are used to

check the validity of a control transfer via
a call gate:

1. The CPL (current privilege level).
2. The RPL (requestor's privilege level) of
the selector used to specify the call gate.
3. The DPL of the gate descriptor.
4. The DPL of the descriptor of the target
executable segment.

⚫The DPL field of the gate descriptor
determines what privilege levels can use
the gate.

⚫One code segment can have several
procedures that are intended for use by
different privilege levels.

⚫ For example, an operating system may
have some services that are intended to be
used by applications, whereas others may
be intended only for use by other systems
software.

Use of Gates
⚫Gates can be used for control transfers to

numerically smaller privilege levels or to the
same privilege level (though they are not
necessary for transfers to the same level).

⚫Only CALL instructions can use gates to transfer
to smaller privilege levels.

⚫A gate may be used by a JMP instruction only to
transfer to an executable segment with the same
privilege level or to a conforming segment.

⚫For a JMP instruction to a nonconforming
segment, both of the following privilege rules
must be satisfied :

1. MAX (CPL,RPL) ≤ gate DPL
2. target segment DPL = CPL

⚫otherwise, a general protection exception
results.

⚫For a CALL instruction (or for a JMP
instruction to a conforming segment), both of
the following privilege rules must be
satisfied:

1. MAX (CPL,RPL) ≤ gate DPL
2. target segment DPL ≤ CPL

⚫otherwise, a general protection exception
results.

3.4.1 Stack Switching

⚫If the destination code segment of the call
gate is at a different privilege level than the
CPL, an interlevel transfer is being
requested.

⚫To maintain system integrity, each privilege
level has a separate stack.

⚫These stacks assure sufficient stack space to
process calls from less privileged levels.

⚫Without them, a trusted procedure would not
work correctly if the calling procedure did
not provide sufficient space on the caller's
stack.

⚫The processor locates these stacks via the task
state segment

⚫Diagram (next)
⚫Each task has a separate TSS, thereby permitting

tasks to have separate stacks.
⚫Systems software is responsible for creating TSSs

and placing correct stack pointers in them.
⚫The initial stack pointers in the TSS are strictly

read-only values.
⚫ The processor never changes them during the

course of execution.

⚫When a call gate is used to change privilege
levels, a new stack is selected by loading a
pointer value from the Task State Segment
(TSS).

⚫The processor uses the DPL of the target
code segment (the new CPL) to index the
initial stack pointer for PL 0, PL 1, or PL 2.

⚫The DPL of the new stack data segment must
equal the new CPL

⚫if it does not, a stack exception occurs.
⚫ It is the responsibility of systems software to

create stacks and stack-segment descriptors
for all privilege levels that are used.

⚫ Each stack must contain enough space to
hold the old SS:ESP, the return address, and
all parameters and local variables that may
be required to process a call.

⚫As with intralevel calls, parameters for the
subroutine are placed on the stack.

⚫ To make privilege transitions transparent to
the called procedure, the processor copies
the parameters to the new stack.

⚫The count field of a call gate tells the
processor how many doublewords (up to 31)
to copy from the caller's stack to the new
stack.

⚫If the count is zero, no parameters are
copied.

⚫The processor performs the following stack-
related steps in executing an interlevel CALL :

1. The new stack is checked to assure that it is
large enough to hold the parameters and
linkages; if it is not, a stack fault occurs with an
error code of 0.
2. The old value of the stack registers SS:ESP is
pushed onto the new stack as two doublewords.
3. The parameters are copied.
4. A pointer to the instruction after the CALL
instruction (the former value of CS:EIP) is
pushed onto the new stack. The final value of
SS:ESP points to this return pointer on the new
stack.

⚫Diagram :Stack contents after a successful
interlevel call.

⚫The TSS does not have a stack pointer for a
privilege level 3 stack, because privilege level 3
cannot be called by any procedure at any other
privilege level.

⚫Procedures that may be called from another
privilege level and that require more than the
31 doublewords for parameters must use the
saved SS:ESP link to access all parameters
beyond the last doubleword copied.

⚫A call via a call gate does not check the
values of the words copied onto the new
stack.

⚫The called procedure should check each
parameter for validity.

3.4.2 Returning from a Procedure

⚫The "near" forms of the RET instruction
transfer control within the current code
segment and therefore are subject only to limit
checking.

⚫The offset of the instruction following the
corresponding CALL, is popped from the stack.

⚫The processor ensures that this offset does not
exceed the limit of the current executable
segment.

⚫The "far" form of the RET instruction pops
the return pointer that was pushed onto the
stack by a prior far CALL instruction.

⚫Under normal conditions, the return pointer
is valid, because of its relation to the prior
CALL or INT.

⚫However, the processor performs privilege
checking because of the possibility that the
current procedure altered the pointer or
failed to properly maintain the stack.

⚫The RPL of the CS selector popped off the
stack by the return instruction identifies the
privilege level of the calling procedure.

⚫An intersegment return instruction can
change privilege levels, but only toward
procedures of lesser privilege.

⚫When the RET instruction encounters a saved
CS value whose RPL is numerically greater
than the CPL, an interlevel return occurs.

⚫Steps:

Interlevel Return Steps

Step 1
⚫The checks (Table) are made, and CS:EIP

and SS:ESP are loaded with their former
values that were saved on the stack.

Table 6-3. Interlevel Return Checks

Step 2
⚫The old SS:ESP (from the top of the current

stack) value is adjusted by the number of
bytes indicated in the RET instruction.

⚫The resulting ESP value is not compared to
the limit of the stack segment.

⚫If ESP is beyond the limit, that fact is not
recognized until the next stack operation.

 Note: The SS:ESP value of the returning
procedure is not preserved; normally, this value
is the same as that contained in the TSS.

Step 3
⚫The contents of the DS, ES, FS, and GS segment

registers are checked.
⚫If any of these registers refer to segments whose

DPL is greater than the new CPL (excluding
conforming code segments), the segment register is
loaded with the null selector (INDEX = 0, TI = 0).

⚫ The RET instruction itself does not signal
exceptions in these cases; however, any subsequent
memory reference that attempts to use a segment
register that contains the null selector will cause a
general protection exception.

⚫This prevents less privileged code from accessing
more privileged segments using selectors left in the
segment registers by the more privileged
procedure.

3.5 Some Instructions are Reserved for
Operating System
⚫Instructions that have the power to affect the

protection mechanism or to influence general
system performance can only be executed by
trusted procedures.

⚫The 80386 has two classes of such
instructions:

1. Privileged instructions: used for system
control.
2. Sensitive instructions: used for I/O and I/O
related activities.

Class I: Privileged Instructions

⚫The instructions that affect system data
structures can only be executed when CPL is
zero.

⚫If the CPU encounters one of these
instructions when CPL is greater than zero,
it signals a general protection exception.

⚫These instructions include:

CLTS Clear Task─Switched Flag

HLT Halt Processor

LGDT Load GDL Register

LIDT Load IDT Register

LLDT Load LDT Register

LMSW Load Machine Status Word

LTR Load Task Register

MOV to/from CRn Move to Control Register n

MOV to /from DRn Move to Debug Register n

MOV to/from TRn Move to Test Register n

Class II: Sensitive Instructions
⚫Instructions that deal with I/O need to be

restricted but also need to be executed by
procedures executing at privilege levels other
than zero.

3.6 Instructions for Pointer Validation
⚫Pointer validation is an important part of

locating programming errors.
⚫Pointer validation is necessary for maintaining

isolation between the privilege levels.
⚫Pointer validation consists of the following

steps:
1. Check if the supplier of the pointer is entitled
to access the segment.
2. Check if the segment type is appropriate to its
intended use.
3. Check if the pointer violates the segment limit.

⚫80386 processor automatically performs
checks 2 and 3 during instruction execution

⚫ software must assist in performing the first
check.

⚫The unprivileged instruction ARPL is
provided for this purpose.

⚫Software can also explicitly perform steps 2
and 3 to check for potential violations.

⚫The unprivileged instructions LAR, LSL,
VERR, and VERW are provided for this
purpose.

LAR : Load Access Rights

⚫Use: to verify that a pointer refers to a
segment of the proper privilege level and
type.

⚫one operand──a selector for a descriptor
whose access rights are to be examined.

⚫The descriptor must be visible at the
privilege level which is the max(CPL,
selector's RPL).

⚫If the descriptor is visible, LAR obtains a
masked form of the second doubleword of
the descriptor, masks this value with
00FxFF00H, stores the result into the
specified 32-bit destination register, and sets
the zero flag.

LAR…….
⚫Once loaded, the access-rights bits can be

tested.
⚫All valid descriptor types can be tested by

the LAR instruction.
⚫If the RPL or CPL is greater than DPL, or

if the selector is outside the table limit, no
access-rights value is returned, and the
zero flag is cleared.

⚫Conforming code segments may be
accessed from any privilege level.

LSL : Load Segment Limit
⚫Allows software to test the limit of a descriptor.
⚫If the descriptor denoted by the given selector (in

memory or a register) is visible at the CPL, LSL
loads the specified 32-bit register with a 32-bit, byte
granular, unscrambled limit that is calculated from
fragmented limit fields and the G-bit of that
descriptor.

⚫This can only be done for segments (data, code, task
state, and local descriptor tables); gate descriptors
are inaccessible.

⚫(Table (Next) lists in detail which types are valid and
which are not.

⚫Interpreting the limit is a function of the segment
type.

⚫For example, downward expandable data segments
treat the limit differently than code segments do.

Note
⚫For both LAR and LSL, the zero flag (ZF)

is set if the loading was performed;
otherwise, the ZF is cleared.

3.6.1 Descriptor Validation
⚫2 instructions : VERR and VERW
⚫To determine whether a selector points to a

segment that can be read or written at the
current privilege level.

⚫Neither instruction causes a protection fault
if the result is negative.

VERR : Verify for Reading
⚫To verify a segment for reading and to

load ZF with 1 if that segment is readable
from the current privilege level.

⚫VERR checks that:
✔The selector points to a descriptor within

the bounds of the GDT or LDT.
✔It denotes a code or data segment

descriptor.
✔The segment is readable and of appropriate

privilege level.

VERR….
⚫The privilege check for data segments and

nonconforming code segments is that the DPL
must be numerically greater than or equal to
both the CPL and the selector's RPL.

⚫Conforming segments are not checked for
privilege level.

VERW : Verify for Writing
⚫provides the same capability as VERR for

verifying writability.
⚫VERW loads ZF if the result of the writability

check is positive.
⚫ The instruction checks that the descriptor is

within bounds, is a segment descriptor, is
writable, and that its DPL is numerically
greater or equal to both the CPL and the
selector's RPL.

⚫ Code segments are never writable, conforming
or not.

3.6.2 Pointer Integrity and RPL

⚫The Requestor's Privilege Level (RPL) feature
can prevent inappropriate use of pointers
that could corrupt the operation of more
privileged code or data from a less privileged
level.

ARPL :Adjust Requestor's Privilege Level

⚫adjusts the RPL field of a selector to become
the larger of its original value and the value
of the RPL field in a specified register.

⚫The latter is normally loaded from the image
of the caller's CS register which is on the
stack.

⚫If the adjustment changes the selector's RPL,
ZF is set

⚫Otherwise, ZF is cleared.

How…..(Skip)
⚫To take advantage of the processor's checking of

RPL, the called procedure need only ensure that
all selectors passed to it have an RPL at least as
high (numerically) as the original caller's CPL.

⚫This action guarantees that selectors are not
more trusted than their supplier.

⚫If one of the selectors is used to access a segment
that the caller would not be able to access
directly,

⚫i.e., the RPL is numerically greater than the DPL,
then a protection fault will result when that
selector is loaded into a segment register.

4. Page-Level Protection
⚫Two kinds of protection are related to pages:
1. Restriction of addressable domain.
2. Type checking.

4.1 Page-Table Entries Hold Protection Parameters

⚫Figure highlights the fields of PDEs and PTEs
that control access to pages.

4.1.1 Restricting Addressable Domain

⚫The concept of privilege for pages is
implemented by assigning each page to one
of two levels:

1. Supervisor level (U/S=0) ── for the
operating system and other systems
software and related data.

OR
2. User level (U/S=1) ── for applications
procedures and data.

⚫The current level (U or S) is related to CPL.

⚫If CPL is 0, 1, or 2, the processor is executing
at supervisor level.

⚫If CPL is 3, the processor is executing at user
level.

⚫When the processor is executing at
supervisor level, all pages are addressable

⚫When the processor is executing at user
level, only pages that belong to the user
level are addressable.

4.1.2 Type Checking

⚫At the level of page addressing, two types are
defined:

1. Read-only access (R/W=0)
2. Read/write access (R/W=1)
⚫When the processor is executing at supervisor

level, all pages are both readable and writable.
⚫When the processor is executing at user level:

⮚ only pages that belong to user level and are
marked for read/write access are writable;

⮚ pages that belong to supervisor level are neither
readable nor writable from user level.

4.2 Combining Protection of Both Levels of
Page Tables
⚫For any one page, the protection attributes of

its page directory entry may differ from those
of its page table entry.

⚫The 80386 computes the effective protection
attributes for a page by examining the
protection attributes in both the directory
and the page table.

⚫Table (Next)
⚫The effective protection provided by the

possible combinations of protection attributes

4.3 Overrides to Page Protection

⚫Certain accesses are checked as if they
are privilege-level 0 references, even if
CPL = 3:

✔LDT, GDT, TSS, IDT references.

✔Access to inner stack during ring-crossing
CALL/INT.

5. Combining Page and Segment
Protection

⚫When paging is enabled, the 80386 first
evaluates segment protection, then evaluates
page protection.

⚫If the processor detects a protection violation
at either the segment or the page level, the
requested operation cannot proceed; a
protection exception occurs instead.

PART II

MULTITASKING

Extra

Task 1 Task 2 Task 3 Task 1 Task 2 Task 4

Task 3
completes

Task 4 beginsTask switch

Fig: Running Multiple Tasks Simultaneously

Time

⚫The x386 processor provides hardware support for
multitasking.

⚫A task is a program which is running, or waiting to
run while another program is running.

⚫A task is invoked by an interrupt, exception, jump,
or call.

⚫When one of these forms of transferring execution is
used with a destination specified by an entry in one
of the descriptor tables, this descriptor can be a type
which causes a new task to begin execution after
saving the state of the current task.

⚫There are two types of task-related descriptors
which can occur in a descriptor table: task state
segment descriptors and task gates.

⚫ When execution is passed to either kind of
descriptor, a task switch occurs.

⚫A task switch is like a procedure call, but it
saves more processor state information.

⚫A task switch transfers execution to a
completely new environment, the environment
of a task.

⚫ This requires saving the contents of nearly all
the processor registers, including the EFLAGS
register and the segment registers.

⚫Unlike procedures, tasks are not re-entrant.
⚫A task switch does not push anything on the

stack.
⚫The processor state information is saved in a

data structure in memory, called a task state
segment.

⚫The processor state information needed to
restore a task is saved in a type of segment,
called a task state segment or TSS.

⚫Figure :format of a TSS for tasks designed for
32- bit CPUs.

⚫The fields of a TSS are divided into two main
categories:

1. Dynamic fields the processor updates with
each task switch.

2. Static fields the processor reads, but does not
change.

TASK STATE SEGMENT

TSS DESCRIPTOR

⚫The task state segment, like all other
segments, is defined by a descriptor.

⚫The format of a TSS descriptor.
⚫The Base, Limit, and DPL fields and the

Granularity bit and Present bit have functions
similar to their use in data-segment
descriptors.

⚫The Busy bit in the Type field indicates
whether the task is busy.

⚫A busy task is currently running or waiting to
run.

⚫A Type field with a value of 9 indicates an
inactive task; a value of 11 (decimal)
indicates a busy task.

⚫Tasks are not recursive.
⚫The processor uses the Busy bit to detect an

attempt to call a task whose execution has
been interrupted.

Extra Ends

multitasking

⚫Task State Segment
⚫ TSS Descriptor
⚫ Task Register
⚫ Task Gate Descriptor
⚫ Task Switching
⚫ Task Linking
⚫ Task Address Space.

Multitasking……
⚫To provide efficient, protected multitasking, the 80386

employs several special data structures.
⚫ It does not use special instructions to control

multitasking
⚫ It interprets ordinary control-transfer instructions

differently when they refer to the special data
structures.

⚫The registers and data structures that support
multitasking are:

1. Task state segment
2. Task state segment descriptor
3. Task register
4. Task gate descriptor

Task MGMT Feature #1
⚫With these structures the 80386 can rapidly

switch execution from one task to another,
saving the context of the original task so that
the task can be restarted later.

Task MGMT Feature #2
⚫Interrupts and exceptions can cause task

switches (if needed in the system design).
⚫The processor not only switches

automatically to the task that handles the
interrupt or exception, but it automatically
switches back to the interrupted task when
the interrupt or exception has been serviced.

⚫Interrupt tasks may interrupt lower-priority
interrupt tasks to any depth.

Task MGMT Feature #3
⚫With each switch to another task, the 80386

can also switch to another LDT and to
another page directory.

⚫Thus each task can have a different logical-to-
linear mapping and a different linear-to-
physical mapping.

⚫This is yet another protection feature,
because tasks can be isolated and prevented
from interfering with one another.

6. Task State Segment

⚫All the information the processor needs in
order to manage a task is stored in a special
type of segment, a task state segment (TSS).

⚫Figure
⚫Format of a TSS for executing 80386 tasks

Diagram :
80386 32-Bit Task State Segment

TSS Fields
⚫The fields of a TSS belong to two classes:
1. A dynamic set that the processor updates

with each switch from the task.
2. A static set that the processor reads but

does not change.

Dynamic Set
⚫This set includes the fields that store:
1. The general registers (EAX, ECX, EDX, EBX,

ESP, EBP, ESI, EDI)
2. The segment registers (ES, CS, SS, DS, FS,

GS)
3. The flags register (EFLAGS)
4. The instruction pointer (EIP)
5. The selector of the TSS of the previously

executing task (updated only when a return
is expected)

Static Set
⚫This set includes the fields that store:
1. The selector of the task's LDT.
2. The register (PDBR) that contains the base

address of the task's page directory (read
only when paging is enabled).

3. Pointers to the stacks for privilege levels 0-
2.

4. The T-bit (debug trap bit) which causes the
processor to raise a debug exception when a
task switch occurs.

5. The I/O map base

Bit map
⚫The base address for the I/O permission

bit map and interrupt redirection bitmap.
⚫If present, these maps are stored in the

TSS at higher addresses.
⚫The base address points to the beginning

of the I/O map and the end of the 32-byte
interrupt map.

Dynamic set
⮚ That where processor updates

with each switch from the
task.

⮚ This set includes the fields that
store:

• The general registers (EAX, ECX,
EDX, EBX, ESP, EBP, ESI, EDI).

• The segment registers (ES, CS, SS,
DS, FS, GS).

• The flags register (EFLAGS).
• The instruction pointer (EIP).
• The selector of the TSS of the

previously executing task (updated
only when a return is expected).

Static set
⮚ It is that where processor reads

but does not change.
⮚ This set includes the fields that

store:
• The selector of the task's LDT.
• The register (PDBR) that contains the

base address of the task's page
directory (read only when paging is
enabled).

• Pointers to the stacks for privilege
levels 0-2.

• The T-bit (debug trap bit) which
causes the processor to raise a debug
exception

• The I/O map base

Task State Segment (TSS)
Two classes of TSS
format

link
ESP0

SS0
ESP1

SS1
ESP2

SS2
PTDB
EIP

ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0
ss0 ss0

ES
CS
SS
DS
FS
GS

LDTR
IOMAP TRAP

EFLAGS
EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

I/O permission bitmap

= field is ‘static’

= field is ‘Dynamic’

= field is ‘reserved’

0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100

32-bits

Fig. 1 :Task state
segment

⚫Task state segments may reside anywhere in
the linear space.

⚫The only case that requires caution is :
⚫when the TSS spans a page boundary and

the higher-addressed page is not present.
⚫In this case, the processor raises an exception

if it encounters the not-present page while
reading the TSS during a task switch.

⚫Such an exception can be avoided by either of
two strategies:

1. By allocating the TSS so that it does not
cross a page boundary.
2. By ensuring that both pages are either both
present or both not-present at the time of a
task switch. If both pages are not-present, then
the page-fault handler must make both pages
present before restarting the instruction that
caused the task switch.

7. TSS Descriptor

⚫The task state segment, like all other
segments, is defined by a descriptor.

⚫Figure (Next) :the format of a TSS descriptor
⚫The B-bit in the type field indicates whether

the task is busy.
⚫A type code of 9 indicates a non-busy task; a

type code of 11 indicates a busy task.
⚫Tasks are not reentrant.
⚫The B-bit allows the processor to detect an

attempt to switch to a task that is already
busy.

Fields of TSS Descriptor
⚫The BASE, LIMIT, and DPL fields and the G-bit and

P-bit have functions similar to their counterparts in
data-segment descriptors.

⚫The LIMIT field, must have a value equal to or
greater than 103.

⚫An attempt to switch to a task whose TSS
descriptor has a limit less that 103 causes an
exception.

⚫A larger limit is permissible, and a larger limit is
required if an I/O permission map is present.

⚫A larger limit may also be convenient for systems
software if additional data is stored in the same
segment as the TSS.

⚫A procedure that has access to a TSS
descriptor can cause a task switch.

⚫In most systems the DPL fields of TSS
descriptors should be set to zero, so that only
trusted software has the right to perform task
switching.

⚫Having access to a TSS-descriptor does not
give a procedure the right to read or modify a
TSS.

⚫Reading and modification can be
accomplished only with another descriptor
that redefines the TSS as a data segment.

⚫An attempt to load a TSS descriptor into any
of the segment registers (CS, SS, DS, ES, FS,
GS) causes an exception.

⚫TSS descriptors may reside only in the GDT.

⚫An attempt to identify a TSS with a selector
that has TI=1 (indicating the current LDT)
results in an exception.

8.TR
⚫TSS descriptors may only be loaded into GDT.

⚫When multiple TSS descriptors exist in GDT,
the TSS currently in use is accessed through
the use of the Task Register.

⚫TR is used as an index pointer into the GDT to
locate a TSS descriptor.

TR…..
⚫The task register (TR) identifies the currently

executing task by pointing to the TSS.

⚫Figure (Next):
the path by which the processor accesses

the current TSS

TASK REGISTER
⚫The task register (TR) is used to
find the current TSS.
⚫The task register has :

•a visible part (i.e., a part which can be
read and changed by software),

•an invisible part (i.e., a part maintained
by the processor and inaccessible to
software).

⚫The selector in the visible portion indexes
to a TSS descriptor in the GDT.

⚫ The processor uses the invisible portion
of the TR register to retain the base and
limit values from the TSS descriptor.

⚫ Keeping these values in a register makes
execution of the task more efficient,
because the processor does not need to
fetch these values from memory to
reference the TSS of the current task.

⚫The LTR and STR instructions are used to
modify and read the visible portion of the task
register.

⚫Both instructions take one operand, a 16-bit
segment selector located in memory or a
general register.

LTR : Load task register
⚫Loads the visible portion of the task register

with the selector operand, which must
select a TSS descriptor in the GDT.

⚫LTR also loads the invisible portion with
information from the TSS descriptor
selected by the operand.

⚫LTR is a privileged instruction; it may be
executed only when CPL is zero.

⚫generally use during system initialization to
give an initial value to the task register

⚫Then, contents of TR are changed by task
switch operations.

STR : Store task register
⚫stores the visible portion of the task

register in a general register or
memory word.

⚫STR is not privileged.

9.Task Gate Descriptor

⚫A task gate descriptor provides an
indirect, protected reference to a TSS.

⚫Figure (Next) :the format of a task gate
⚫The SELECTOR field of a task gate must

refer to a TSS descriptor.
⚫The value of the RPL in this selector is not

used by the processor.

⚫The DPL field of a task gate controls the right
to use the descriptor to cause a task switch.

⚫A procedure may not select a task gate
descriptor unless the maximum of the selector's
RPL and the CPL of the procedure is
numerically less than or equal to the DPL of the
descriptor.

⚫This constraint prevents untrusted procedures
from causing a task switch.

⚫Note : when a task gate is used, the DPL of the
target TSS descriptor is not used for privilege
checking.

⚫A procedure that has access to a task gate
has the power to cause a task switch, just as
a procedure that has access to a TSS
descriptor.

⚫The 80386 has task gates in addition to TSS
descriptors to satisfy three needs:

1. The need for a task to have a single busy bit.
2. The need to provide selective access to

tasks.
3. The need for an interrupt or exception to

cause a task switch.

Need #1
To have a single busy bit for a task:
⚫Because the busy-bit is stored in the TSS

descriptor, each task should have only one
such descriptor.

⚫There may, however, be several task gates
that select the single TSS descriptor.

Need #2
To provide selective access to tasks:
⚫Task gates fulfill this need, because they can

reside in LDTs and can have a DPL that is
different from the TSS descriptor's DPL.

⚫A procedure that does not have sufficient
privilege to use the TSS descriptor in the GDT
(which usually has a DPL of 0) can still switch to
another task if it has access to a task gate for
that task in its LDT.

⚫With task gates, systems software can limit the
right to cause task switches to specific tasks.

Need #3
The need for an interrupt or exception to cause a
task switch:
⚫Task gates may also reside in the IDT, making it

possible for interrupts and exceptions to cause
task switching.

⚫When interrupt or exception vectors to an IDT
entry that contains a task gate, the 80386
switches to the indicated task.

⚫Thus, all tasks in the system can benefit from the
protection afforded by isolation from interrupt
tasks.

Figure :
How both a task gate in an LDT
and a task gate in the IDT can

identify the same task

10. Task Switching
⚫The 80386 switches execution to another task

in any of four cases:
1. The current task executes a JMP or CALL
that refers to a TSS descriptor.
2. The current task executes a JMP or CALL
that refers to a task gate.
3. An interrupt or exception vectors to a task
gate in the IDT.
4. The current task executes an IRET when the
NT flag is set.

⚫JMP, CALL, IRET, interrupts, and exceptions
are all ordinary mechanisms of the 80386
that can be used in circumstances that do not
require a task switch.

⚫Either the type of descriptor referenced or
the NT (nested task) bit in the flag word
distinguishes between the standard
mechanism and the variant that causes a task
switch.

⚫To cause a task switch, a JMP or CALL
instruction can refer either to a TSS
descriptor or to a task gate.

⚫The effect is the same in either case: the
80386 switches to the indicated task.

⚫An exception or interrupt causes a task
switch when it vectors to a task gate in the
IDT.

⚫ If it vectors to an interrupt or trap gate in
the IDT, a task switch does not occur.

⚫Whether invoked as a task or as a procedure
of the interrupted task, an interrupt handler
always returns control to the interrupted
procedure in the interrupted task.

⚫If the NT flag is set, however, the handler is
an interrupt task, and the IRET switches back
to the interrupted task.

When a task switch is called, the following steps take place:

1.The new TSS descriptor or task gate must have
sufficient privilege to allow a task switch.

2.The new TSS descriptor must have its present bit set
and have a valid limit field.

3.The state of the current task(also called its context) is
saved.

4.The TR is loaded with the selector of the new TSS
descriptor.

5.The state of the new task is loaded from its TSS and
execution is resumed.

Step 1
⚫ Checking that the current task is allowed to switch to the

designated task.
⚫ Data-access privilege rules apply in the case of JMP or CALL

instructions.
⚫ The DPL of the TSS descriptor or task gate must be less than

or equal to the maximum of CPL and the RPL of the gate
selector.

⚫ Exceptions, interrupts, and IRETs are permitted to switch
tasks regardless of the DPL of the target task gate or TSS
descriptor.

⚫The DPL, CPL, and RPL values are compared before any
further processing takes place.

⚫ Interrupts and exceptions do not force protection
checking.

Step 2
⚫Checking that the TSS descriptor of the new

task is marked present and has a valid limit.
⚫Any errors up to this point occur in the

context of the outgoing task.
⚫Errors are restartable and can be handled in

a way that is transparent to applications
procedures.

Step 3
⚫Saving the state of the current task.

⚫This involves copying the contents of all
processor registers into the TSS for the current
task.

⚫The processor finds the base address of the current
TSS cached in the task register.

⚫It copies the registers into the current TSS (EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS,
FS, GS, and the flag register).

⚫The EIP field of the TSS points to the instruction
after the one that caused the task switch.

Step 4
⚫Loading the task register with :
✔the selector of the incoming task's TSS

descriptor,
✔marking the incoming task's TSS descriptor

as busy, and
✔setting the TS (task switched) bit of the MSW,

as is the busy bit in the new TSS descriptor.

⚫The selector is either the operand of a control
transfer instruction or is taken from a task
gate.

Step 5
⚫Loading the incoming task's state from its TSS

and resuming execution.
⚫The registers loaded are the LDT register; the

flag register; the general registers EIP, EAX,
ECX, EDX, EBX, ESP, EBP, ESI, EDI; the
segment registers ES, CS, SS, DS, FS, and GS;
and PDBR.

⚫Any errors detected in this step occur in the
context of the incoming task.

⚫To an exception handler, it appears that the
first instruction of the new task has not yet
executed.

⚫The privilege level at which the old task
was running has no relation to the
privilege level of the new task.

⚫Because the tasks are isolated by their
separate address spaces and task state
segments, and because privilege rules
control access to a TSS, no privilege
checks are needed to perform a task
switch.

⚫The new task begins executing at the
privilege level indicated by the RPL of the
new contents of the CS register, which are
loaded from the TSS.

Note:
⚫The state of the outgoing task is always saved

when a task switch occurs.
⚫If execution of that task is resumed, it starts

after the instruction that caused the task
switch.

⚫The registers are restored to the values they
held when the task stopped executing.

11. Task Linking

⚫The back-link field of the TSS and the NT
(nested task) bit of the flag word together allow
the 80386 to automatically return to a task that
CALLed another task or was interrupted by
another task.

⚫When a CALL instruction, an interrupt
instruction, an external interrupt, or an
exception causes a switch to a new task, the
80386 automatically fills the back-link of the
new TSS with the selector of the outgoing
task's TSS and, at the same time, sets the NT
bit in the new task's flag register.

⚫The NT flag indicates whether the back-link
field is valid.

⚫The new task releases control by executing
an IRET instruction.

⚫When interpreting an IRET, the 80386
examines the NT flag.

⚫If NT is set, the 80386 switches back to the
task selected by the back-link field.

⚫Table (Next) summarizes the uses of these
fields.

Busy Bit Prevents Loops
⚫The Busy bit of the TSS descriptor prevents re-

entrant task switching.
⚫There is only one saved task context, the

context saved in the TSS, therefore a task only
may be called once before it terminates.

⚫ The chain of suspended tasks may grow to
any length, due to multiple interrupts,
exceptions, jumps, and calls.

⚫The Busy bit prevents a task from being called
if it is in this chain.

⚫A re-entrant task switch would overwrite the
old TSS for the task, which would break the
chain.

⚫The processor manages the Busy bit as follows:
1. When switching to a task, the processor sets the

Busy bit of the new task.

2. When switching from a task, the processor clears the
Busy bit of the old task if that task is not to be placed in
the chain (i.e., the instruction causing the task switch is
a JMP or IRET instruction). If the task is placed in the
chain, its Busy bit remains set.

3. When switching to a task, the processor generates a
general-protection exception if the Busy bit of the new
task already is set.
⚫In this way, the processor prevents a task from

switching to itself or to any task in the chain, which
prevents re-entrant task switching.

⚫The busy bit is effective even in
multiprocessor configurations, because the
processor automatically asserts a bus lock
when it sets or clears the busy bit.

⚫This action ensures that two processors do
not invoke the same task at the same time.

Modifying Task Linkages
⚫Any modification of the linkage order of tasks

should be accomplished only by software that
can be trusted to correctly update the back-
link and the busy-bit.

⚫Such changes may be needed to resume an
interrupted task before the task that
interrupted it.

⚫Trusted software that removes a task from the
back-link chain must follow one of the
following policies:

1. First change the back-link field in the TSS of the interrupting
task, then clear the busy-bit in the TSS descriptor of the task
removed from the list.

2. Ensure that no interrupts occur between updating the back-
link chain and the busy bit.

12. Task Addressing Space
⚫The LDT selector and PDBR fields of the TSS

give software systems designers flexibility in
utilization of segment and page mapping
features of the 80386.

⚫By appropriate choice of the segment and
page mappings for each task:
⮚tasks may share address spaces,
⮚may have address spaces that are largely

distinct from one another,
OR

⮚may have any degree of sharing between
these two extremes.

⚫The ability for tasks to have distinct address spaces
is an important aspect of 80386 protection.

⚫A module in one task cannot interfere with a
module in another task if the modules do not have
access to the same address spaces.

⚫The flexible memory management features of the
80386 allow systems designers to assign areas of
shared address space to those modules of different
tasks that are designed to cooperate with each
other.

Task Linear-to-Physical Space
Mapping

⚫The choices for arranging the linear-
to-physical mappings of tasks fall
into two general classes:

1. One linear-to-physical mapping
shared among all tasks.

2. Several partially overlapping linear-
to-physical mappings.

1. One linear-to-physical mapping
shared among all tasks:

⚫When paging is not enabled, this is the only
possibility.

⚫Without page tables, all linear addresses map
to the same physical addresses.

⚫When paging is enabled, this style of linear-to-
physical mapping results from using one page
directory for all tasks.

⚫The linear space utilized may exceed the
physical space available if the OS also
implements page-level virtual memory.

2. Several partially overlapping linear-to-
physical mappings.

⚫This style is implemented by using a different
page directory for each task.

⚫Because the PDBR (page directory base
register) is loaded from the TSS with each
task switch, each task may have a different
page directory.

Theoretically,
⚫The linear address spaces of different tasks

may map to
⚫completely distinct physical addresses.
⚫If the entries of different page directories

point to different page tables and the page
tables point to different pages of physical
memory, then the tasks do not share any
physical addresses.

Practically,
⚫Some portion of the linear address spaces of all

tasks must map to the same physical addresses.
⚫The TSSs must lie in a common space so that the

mapping of TSS addresses does not change while
the processor is reading and updating the TSSs
during a task switch.

⚫The linear space mapped by the GDT should also be
mapped to a common physical space;

⚫otherwise, the purpose of the GDT is defeated.
⚫Figure :how the linear spaces of two tasks can

overlap in the physical space by sharing page
tables.

Task Logical Address Space

⚫By itself, a common linear-to-physical space
mapping does not enable sharing of data
among tasks.

⚫To share data, tasks must also have a
common logical-to-linear space mapping; i.e.,
they must also have access to descriptors that
point into a shared linear address space.

Logical-to- Physical Address Space Mapping

⚫There are three ways to create common
logical-to-physical address-space mappings:

1. Via the GDT.
2. By sharing LDTs.
3. By descriptor aliases in LDTs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216

