e

Applications Instruction Set

P e

Few Instruction Types

® Data Movement Instructions

® Binary Arithmetic Instructions

® Decimal Arithmetic Instructions

® Logical Instructions

® Control Transfer Instructions

® String and Character Transfer Instructions
® Instructions for Block Structured Language
® Flag Control Instructions

® Coprocessor Interface Instructions

® Segment Register Instructions

® Miscellaneous Instructions.

! Data Movement Instructions

® provide convenient methods for moving bytes, words, or
doubleword of data between memory and the registers
of the base architecture

® Types:

1. General-purpose data movement instructions.
2. Stack manipulation instructions.

3. Type-conversion instructions.

MOV

® Transfers a byte, word, or doubleword from the source
operand to the destination operand

. To aregister from memory

2. To memory from a register
3. Between general registers

4. Immediate data to a register
5. Immediate data to a memory

® cannot move from memory to memory or from segment
register to segment register

® Exception: string move instruction MOVS

P e

XCHG

® Swaps the contents of two operands.
® Takes the place of three MOV instructions

® Does not require a temporary location to save the

contents of one operand while load the other is being
loaded

® Useful for implementing semaphores or similar data
structures for process synchronization

® Can swap two byte /word / doubleword operands

® The operands for the XCHG instruction may be two
register operands, or a register operand with a memory
operand.

® When used with a memory operand, XCHG automatically
O Es O B) POSEC R ana 1 sl ISP

P e

Stack Manipulation Instructions

® Push
® Pop

ush

Function:
. To decrement the stack pointer (ESP)

2. then to transfer the source operand to the top of
stack indicated by ESP

Use
I. to place parameters on the stack before calling a
procedure

2. To store temporary variables on the stack
Operands

® memory operands, immediate operands, and register
operands (including segment registers)

OG-

- O

O Em P>

S8EFORE PUEH
- 31

0 .

=y
iz

P e

PUSHA

® Push all registers
Function

® To save the contents of 8 general registers on the
stack

Use

® To simplify procedure calls by reducing the number of
instructions required to retain the contents of the
general registers for use in a procedure

Order

® general registers : EAX, ECX EDX, EBX, the initial
value of ESP before EAX was pushed, EBP, ESI, and

O

BEFORE PUSHA

21

s =3F

O NMLLRZUMONRN

e

OMENOUMMO R

PUSHA

P e

POP

Function

. To transfer the word or doubleword at the current
top of stack (indicated by ESP) to the destination
operand,

2. then to increment ESP to point to the new top of
stack

® To move information from the stack to a general
register, or to memory

R O--EanNmia- o

1

LO-HIMmEPoMMm

- 31

BEFORE POP

OPERAND

«—L3F

POP

b | e e |

S

P e

POPA

® Pop All Registers
® to restore the registers saved on the stack by PUSHA
® Exception: it ignores the saved value of ESP

ST

-—

BEFORE POPA

O?. n&IS.ANS..AvN

e

QeENU MO E

POPA

P e

Type Conversion Instructions

® To convert bytes into words, words into doublewords,
and doublewords into 64-bit items (quad-words)

® useful for converting signed integers

® automatically fill the extra bits of the larger item with
the value of the sign bit of the smaller item

® This kind of conversion, is called signh extension.

Sign Extension

PClasses of type conversion

instructions

1. The forms CWD, CDQ, CBW, and CWDE which operate
only on data in the EAX register

2. The forms MOVSX and MOVZX, which permit one
operand to be in any general register while permitting
the other operand to be in memory or in a register.

P e

CWD and CDQ

® CWD (Convert Word to Doubleword) and CDQ (Convert
Doubleword to Quad-Word) double the size of the
source operand.

® CWD extends the sign of the word in register AX
throughout register DX.

® CDQ extends the sign of the doubleword in EAX
throughout EDX.

® CWD can be used to produce a doubleword dividend
from a word before a word division, and CDQ can be
used to produce a quad-word dividend from a
doubleword before doubleword division.

P e

Binary Arithmetic Instructions

® The arithmetic instructions of the 80386 processor
simplify the manipulation of numeric data that is
encoded in binary.

® Standard add, subtract, multiply, and divide as well as
increment, decrement, compare, and change sign

® Both signed and unsigned binary integers are
supported.

® The binary arithmetic instructions may also be used as
one step in the process of performing arithmetic on
decimal integers.

P e

® Many of the arithmetic instructions operate on both
signed and unsigned integers.

® Effect: processor update the flags ZF, CF, SF, and OF
in such a manner that subsequent instructions can
interpret the results of the arithmetic as either signed
or unsigned.

® CF contains information relevant to unsigned integers

® SF and OF contain information relevant to signed
iIntegers

® ZF is relevant to both signed and unsigned integers
® ZF is set when all bits of the result are zero.

P e

® If the integer is unsigned, CF may be tested after one
of these arithmetic operations to determine whether
the operation required a carry or borrow of a one-bit in
the high-order position of the destination operand.

® CF is set if a one-bit was carried out of the high-order
position (addition instructions ADD, ADC, AAA, and
DAA) or if a one-bit was carried (i.e. borrowed) into
the high-order bit (subtraction instructions SUB, SBB,
AAS DAS, CMP, and NEG).

® If the integer is signed, both SF and OF should be
tested.

® SF always has the same value as the sign bit of the
result.

® The most significant bit of a signed integer is the bit
next to the sign—-bit 6 of a byte, bit 14 of a word, or
bit 30 of a doubleword.

® OF is set in either of these cases:

I. A one-bit was carried out of the MSB into the sign bit
but no one bit was carried out of the sign bit (addition
instructions ADD, ADC, INC,AAA, and DAA), i.e. the
result was greater than the greatest positive number
that could be contained in the destination operand.

2. A one-bit was carried from the sign bit into the MSB

but no one bit was carried into the sign bit
T e N T B e OO M SIS] B0 1] 5 Sy’ i 3 | B Bt o I et Wos SR oot po S 8

P e

Note

® These status flags are tested by executing one of the
two families of conditional instructions:

. Jcc (jump on condition cc)
2. SETcc (byte set on condition).

P e

Addition and Subtraction Instructions

ADD
ADC
INC
SUB
SBB
DEC

e e e

P e

1.ADD

® Add Integers

® to replace the destination operand with the sum of
the source and destination operands.

® Sets CF if overflow.

P e

2.ADC

® Add Integers with Carry

® To sum the operands, adds one if CF is set, and
replaces the destination operand with the result.

® If CF is cleared, ADC performs the same operation
as the ADD instruction.

® An ADD followed by multiple ADC instructions can
be used to add humbers longer than 32 bits.

P e

3.INC

® Increment
® To add one to the destination operand
® INC does not affect CF.

® Use ADD with an immediate value of 1 if an
increment that updates carry (CF) is needed.

P e

4.5UB

® Subtract Integers

® To subtract the source operand from the destination
operand and replaces the destination operand with the
result.

® If aborrow is required, the CF is sef.

® The operands may be signed or unsighed bytes, words,
or doublewords.

P e

5.5BB

® Subtract Integers with Borrow

® To subtract the source operand from the destination
operand, subtracts 1 if CF is set, and returns the result
to the destination operand.

® If CF is cleared, SBB performs the same operation as
SUB.

® SUB followed by multiple SBB instructions may be used
to subtract numbers longer than 32 bits.

® If CF is cleared, SBB performs the same operation as
SUB.

P e

6.DEC

® Decrement
® to subtract 1 from the destination operand
® DEC does not update CF.

® Use SUB with an immediate value of 1 to perform a
decrement that affects carry.

P e

Comparison and Sign Change Instruction

® CMP (Compare) subtracts the source operand from the
destination operand.

® It updates OF, SF, ZF, AF, PF, and CF but does not
alter the source and destination operands.

® A subsequent Jcc or SETcc instruction can test the
appropriate flags.

® NEG (Negate) subtracts a signed integer operand from
zero.

® The effect of NEG is to reverse the sign of the
operand from positive to negative or from negative to
positive.

P e

Multiplication Instructions

® The 80386 has separate multiply instructions for
unsigned and signed operands.

® MUL operates on unsigned numbers, while IMUL
operates on signed integers as well as unsigned.

P e

MUL

® Unsighed Integer Multiply

® performs an unsigned multiplication of the source
operand and the accumulator.

® If the source is a byte, the processor multiplies it by
the contents of AL and returns the double-length
result to AH and AL.

® If the source operand is a word, the processor
multiplies it by the contents of AX and returns the
double-length result to DX and AX.

® If the source operand is a doubleword, the processor
multiplies it by the contents of EAX and returns the
64-bit result in EDX and EAX.

o MUI cete CF and OF when the unner half of the rec<ult

P e

IMUL (Signed Integer Multiply)

® performs a signed multiplication operation.
® IMUL has three variations:

1. A one-operand form: The operand may be a byte, word,
or doubleword located in memory or in a general register.
This instruction uses EAX and EDX as implicit operands
in the same way as the MUL instruction.

2. A two-operand form. One of the source operands may
be in any general register while the other may be either
in memory or in a general register. The product replaces
the general-register operand.

3. A three-operand form; two are source and one is the
destination operand. One of the source operands is an
immediate value stored in the instruction; the second
may be in memory or in any general register. The product

® 2 instructions for multiplying binary data.

® MUL (Multiply) instruction handles unsigned data

® IMUL (Integer Multiply) handles signed data

® Both instructions affect the Carry and Overflow flag.
® SYNTAX:

MUL multiplier

IMUL multiplier

® Multiplicand in both cases will be in an accumulator,
depending upon the size of the multiplicand and the
multiplier and the generated product is also stored in
two registers depending upon the size of the operands.

® 3 cases:

SN Soenaris
When two bytes are mutpled

The multpicand s n the AL reqiser, and (e muliplie s a byte n the memory or i another regiter. The
product 5 AX. Fghorder 6 it of the products stored In At and te Iow rder 6 bt are Stored m AL

AL | X | BBtSouree (& | AR || AL

I When two one-word values are multiplied

The mutipficand should be in the AX reqister and the mutiplier i @ word in memary or anoifer reqister. For
example, for an nstruction fke MUL DX, you must sore the mutiplier in DX and the muliplicand in AX.

The restitant product s a double word, which will need two reqisters. The High order (efimost) portion qets
L stored n DX and e kv rder (nanmost) porton ges stored in AX

ALK | 1681 Souree % || AX

When o doubleword values are multlied

When o doubleord valus are mulipld, the mulipicand shoud be in EAX and the muiple & a
doubleword vlue stored i memory orin anoter ecister. The roductgenerated is stored n the EDXEAX

eqisters, i, e igh order 32 bt aets stoed i the EDX reqster and the low order 32-0i are ored
) e EAX gl

A | K| BtSoure | = | EDX || EAX

P e

Summary

SN Scenarios
When two bytes are multiplied

The multiplicand is in the AL reqgister, and the multiplier is a byte in the memory or in another register. The
product is in AX. High order 8 bits of the product is stored in AH and the low order 8 bits are stored in AL

AH AL

AL X | 8 Bit Source

When two one-word values are multiplied

The multiplicand should be in the AX register, and the muliiplier is a word in memory or another register. For
example, for an instruction like MUL DX, you must store the multiplier in DX and the multiplicand in AX.

The resultant product is a double word, which will need two registers. The High order (leftmost) portion gets
- stored in DX and the lower-order (rightmost) portion gets stored in AX.

DX AX

AX X | 16 Bit Source

When two doubleword values are multiplied

When two doubleword values are multiplied, the multiplicand should be in EAX and the multiplier is a

doubleword value stored in memory or in another register. The product generated is stored in the EDX.EAX

registers, i.e., the high order 32 bits gets stored in the EDX register and the low order 32-bits are stored in
3 the EAX register.

EAX X 32 Bit Source EDX EAX

PDivision Instructior

® The 80386 has separate division instructions for unsigned
and signed operands.

® DIV operates on unsigned numbers, while IDIV operates
on signed integers as well as unsigned.

® In either case, an exception (interrupt zero) occurs if the
divisor is zero or if the quotient is too large for AL, AX, or
EAX.

source operand.

® The dividend (the accumulator) is twice the size of the
divisor (the source operand); the quotient and remainder
have the same size as the divisor.

® Non-integral quotients are truncated to integers toward

IV (Unsigned Integer Divide)

® performs an unsigned division of the accumulator by the

0.
® The remainder is always less than the divisor.
® Fiae ofsiurred bytBidilerdon, th@uatieatt qliotRemeidass,
Operand lelso SR i :
¢ For unsigned word division|, the largest quotient is
65,535.
P For wpsigned doubleword divisiomithe largest quetient
2°“-ord DX:AX AX DX
Doubleword EDX:EAX EAX EDX

P — S

The DIV/IDIV Instructions

® The division operation generates two elements - a
quotient and a remainder.

® In case of multiplication, overflow does not occur
pecause double-length registers are used to keep the
product.

® However, in case of division, overflow may occur.

® The processor generates an interrupt if overflow occurs.
® DIV (Divide) instruction for unsigned data

® IDIV (Integer Divide) for sighed data.

P e

® SYNTAX:
DIV/IDIV divisor
® The dividend is in an accumulator.

® Both the instructions can work with 8-bit, 16-bit or 32-bit
operands.

® The operation affects all six status flags.
® 3 cases

m

16 nit dividend

AX Quotient Remainder

AL |And | AH

8 bit Divisor

When the divisor is 1 word

The dividend is assumed to be 32 bits long and in the DXCAX registers. The high order 16 bits are in DX and the

low order 16 bits are in AX. After division, the 16 bit quotient goes to the AX register and the 16 bit remainder
qoes fo te DX reqister.

30 bit dividend

DX || AX Quotient Remainder
AX | #d | DX

16 bit Divisor

When the divisor is doubleword

The dividend Is assumed o be 64 bits long and in the EDXEAX reqisters. The high order 32 bits are in EDX
and the low order 32 bits are in EAX. Afier division, the 32 bit quatient goes to the EAX register and the 32 bi
remainder goes to the EDX reqister.

6 it dividend

EDX | | EAX Quotient Remainder
FAX | And | EDX

32 bit Divisor

PDecimal Arithmetic
Instructions

® Packed BCD Adjustment Instructions

12
2

® Unpacked BCD Adjustment Instructions
1.

2.
3.
4

DAA
DAS

AAA
AAS

AAM
AAD

%gl!cal Instructli O%

The group of logical instructions includes:
e The Boolean operation instructions

e Bit test and modify instructions

e Bit scan instructions

e Rotate and shift instructions

e Byte set on condition

! Bit Test and Modify Instructions

® This group of instructions operates on a single bit which
can be in memory or in a general register.

® The location of the bit is specified as an offset from the
low-order end of the operand.

® The value of the offset either may be given by an
immediate byte in the instruction or may be contained in
a general register.

P e

® These instructions first assign the value of the selected
bit to CF, the carry flag.

® Then a new value is assigned to the selected bit, as
determined by the operation.

® OF, SF, ZF, AF, PF are left in an undefined state.

Bit Test and Modify Instruction

BT (Bit Test) — reports the status of a bit in the operand by setting
or clearing CF to match it. The operand under test may be either a
register or a memory location. The second operand specifies
which bit in the first operand to test.

Example

BT EAX,5 ;testbit5 of EAX
JC foo :jump if bit 5 was set

emEEEe e

it Test and Modify Instruction

BTC (Bit Test & Complement) — It operates exactly like the
BT, except that the bit being tested is inverted after the test
Is performed, and its condition is saved in CF.

Example

BTC EAX, 9 ;test&invertbit9
JC foo . jump if bit used to be 1

Bit Test and Modify Instruction

BTR (Bit Test & Reset) — the BTR instruction operates exactly like the BTC
instruction, except that it always clears the bit being tested.

Example

BTR EAX,O ' test & clear bit 0
JC foo : jump if it was set

BTS (Bit Test & Set) — The BTS instruction operates exactly like the
BTC instruction, except that it always sets the bit being tested.
Example

BTR DWORD PTR DS:[840621], 3 ;test & setbit 3
JC foo :jumpifit was set

Bit Test & Modify Instructions

P e

Bit Scan Instructions

® scan a word/doubleword for a one-bit and store the index
of the first set bit into a register.

® The bit string being scanned may be either in a register
or in memory.

® The ZF flag is set if the entire word is zero (no set bits
are found)

® ZF is cleared if a one-bit is found.

® If no set bit is found, the value of the destination register
is undefined.

P e

1. BSF (Bit Scan Forward) scans from low-order to
high-order (starting from bit index zero).

2. BSR (Bit Scan Reverse) scans from high-order to
low-order (starting from bit index 15 of a word or index
31 of a doubleword).

P

Logical Instructions

® The processor instruction set provides the instructions AND, OR,
XOR, TEST and NOT Boolean logic, which tests, sets and clears
the bits according to the need of the program.

® The format for these instructions:

AND : AND operand1, operand2
OR: OR operand1, operand2
XOR: XOR operand1, operand2
TEST: TEST operand1, operand2

NOT: NOT operand1

he AND Instruction

® The AND instruction is used for supporting logical expressions
by performing bitwise AND operation.

® The bitwise AND operation returns 1, if the matching bits from
both the operands are 1, otherwise it returns 0. For example:

Operand1: 0101

Operand2: 0011

® After AND -> Operand1: 0001

P e

® The AND operation can be used for clearing one or
more bits.

® For example the BL register contains 0011 1010.

® If we need to clear the high order bits to zero, we
AND it with OFH.

AND BL, OFH ; This sets BL to 0000 1010

P e

The OR Instruction

® The OR instruction is used for supporting logical
expression by performing bitwise OR operation.

® The bitwise OR operator returns 1, if the matching bits
from either or both operands are one.

® It returns 0O, if both the bits are zero.
® For example,

Operand1: 0101
Operand2: 0011

After OR -> Operand1: 0111

P e

® The OR operation can be used for setting one or more
bits.

® For example, let us assume the AL register contains 0011
1010, we need to set the four low order bits, we can OR
it with a value 0000 1111, i.e., FH.

OR BL, OFH ; This sets BL to 0011 1111

gl |
P

T
0

T

e XOR Instructio

ne XOR instruction implements the bitwise XOR
peration.

ne XOR operation sets the resultant bit to 1, if and only

if the bits from the operands are different.

® If the bits from the operands are same (both 0 or both
1), the resultant bit is cleared to 0.

P e

® For example,

Operand1: 0101
Operand2: 0011

After XOR -> Operand1: 0110

® XORing an operand with itself changes the operand to 0.
® This is used to clear a register.
XOR EAX, EAX

P

The TEST Instruction

® The TEST instruction works same as the AND operation,
but unlike AND instruction, it does not change the first
operand.

® So, if we need to check whether a number in a register is
even or odd, we can also do this using the TEST
instruction without changing the original number.

TEST AL, O1H
JZ EVEN_NUMBER

1he NOT Instructio

® The NOT instruction implements the bitwise NOT
operation.

® NOT operation reverses the bits in an operand.

® The operand could be either in a register or in the
memory.

® For example,
Operand1: 0101 0011
After NOT -> Operand1: 1010 1100

P e

The CMP Instruction

® This instruction basically subtracts one operand from
the other for comparing whether the operands are
equal or not.

® |t does not disturb the destination or source
operands.

® Non destructive subtraction

® It is used along with the conditional jump instruction
for decision making.

Assembly Conditions

® Conditional execution in assembly language is accomplished
by several looping and branching instructions.

® These instructions can change the flow of control in a
program.

® Conditional execution is observed in two scenarios:

SN Conditional Instructions

Unconditional jump

¢ hs1s peromed b e JNP nsucton. GonddonaleXeulon ofen lves Yanslerofconfol 0 e
Aess of an Instucton hat does not ol te: cuenty execuing Insrcton. Transter of confol may be

forward 10 Execute a new Set of nstuctions, r backward {0 r-execute (e same Steps.

Condltional jump

This s performed by @ Set ofjump instructions <contion> depending upon the condition. The condtional
Instnjctions transfer the conirol by breaking the sequentalflow and they do 1t by changing the offset value I
P

!

P e

® SYNTAX

CMP destination, source
® The CMP instruction compares two operands.
® It is generally used in conditional execution.
® CMP compares two numeric data fields.

MP......

® The destination operand could be either in register or
in memory.

® The source operand could be a constant (immediate)
data, register or memory.

® EXAMPLE:

cmp dx, 00 ; Compare the DX value sWith
Zero

je L7 ; If yes, then jump to label L7

BT

P e

® CMP is often used for comparing whether a counter value
has reached the number of time a loop needs to be run.

® Consider the following typical condition:

nconditional Jump

® This is performed by the JMP instruction.

® Conditional execution often involves a transfer of control
to the address of an instruction that does not follow the
currently executing instruction.

® Transfer of control may be forward to execute a new set
of instructions, or backward to re-execute the same
steps.

P e

® SYNTAX:
jmp label

® The jmp instruction provides a label name where the flow
of control is transferred immediately.

P e

EXAMPLE
The following code snippet lustrates the JMP instuction

MV AX, 00 ; Initializing AX to {
MOV BX, 00 ; Initializing B to
MOV CX, 01 ; Initializing CX to |
L20;

AD M Ol : Increment AX

ADD BX, AX ; Add AX to BX

SEL CX, | shift left CX, this in turn doubles the CX value
M 120 repeats the statements

P —

Conditional Jump

® If some specified condition is satisfied in conditional
jump, the control flow is transferred to a target
instruction.

® There are numerous conditional jump instructions,
depending upon the condition and data.

Instruction

JENZ

JNE/INZ
JGINLE
JGE/NL
JUINGE
JLENG

Description

Jump Equal or Jump Zero

Jump not Equal or Jump Not Zero
Jump Greater or Jump Not Less/Equal
Jump Greater or Jump Not Less

Jump Less or Jump Not Greater/Equal

Jump Less/Equal or Jump Not Greater

l Conditional Jump

® Following are the conditional jump instructions used on sighed
data used for arithmetic operations:

Flags tested
Vig

LF

OF, SF, ZF
OF, SF

OF, SF

OF, SF, ZF

® Following are the conditional jump instructions used on
unsigned data used for logical operations:

JENZ

INEINZ
JNINBE
JAE/INB
JBIINAE
JBE/INA

Jump Equal or Jump Zero

Jump not Equal or Jump Not Zero
Jump Above or Jump Not Below/Equal
Jump Above/Equal or Jump Not Below
Jump Below or Jump Not Above/Equal

Jump Below/Equal or Jump Not Above

LF
LF
CF, ZF
CF
CF
AF, CF

® The following conditional jump instructions have special uses
and check the value of flags:

Instruction
JXCZ

JC

JNC

JO

JNO
JPIJPE
JNPIJPO
JS

JNS

Description

Jump if CX is Zero

Jump If Carry

Jump If No Carry

Jump If Overflow

Jump If No Overflow

Jump Parity or Jump Parity Even
Jump No Parity or Jump Parity Odd
Jump Sign (negative value)

Jump No Sign (positive value)

Flags tested
none

CF

CF

OF

OF

PF

PF

SF

SF

® Example,

P
JE
cMMP

JE
CMP

JE

® The syntax for the J<condition> set of instructions:

AT, DL
EOQUAT
AT., DBEHE
EQUAT,
AT, CL
EQUAT,

NON EQUAT.: - -

EQUAT.: a

P e

Example

® Write a program to display the largest of three variables.
[The variables need to be double-digit variables. The
three variables num1, num2 and num3 have values 47, 22
and 31 respectively]

P e

Assembly Loops

® The JMP instruction can be used for implementing loops.

® Example, the following code snippet can be used for
executing the loop-body 10 times.

P e

Assembly Loops

® The processor instruction set includes a group of loop
instructions for implementing iteration.

® The basic LOOP instruction has the following syntax:
loop label

Where, label is the target label that identifies the target
instruction as in the jump instructions.

P e

® The loop instruction assumes that the ECX register
contains the loop count.

® When the loop instruction is executed, the ECX register
is decremented and the control jumps to the target
label, until the ECX register value, i.e., the counter
reaches the value zero.

P e

Assembly Loops

® The above code snippet could be written as:

P e

Example

® Write a program to print the number 1 to 9 on the
screen.

P e

Assembly Numbers

® Numerical data is generally represented in binary system.
® Arithmetic instructions operate on binary data.

® When numbers are displayed on screen or entered from
keyboard, they are in ASCII form.

® Common Practice: Converting input data in ASCII form to
binary for arithmetic calculations and converting the
result back to binary.

%mmal Number §

Representation

® Decimal numbers can be represented in two forms:
1. ASCII form
2. BCD or Binary Coded Decimal form

P e

ASCII Representation

® In ASCII representation, decimal humbers are stored as
string of ASCII characters.

® For example, the decimal value 1234 is stored as:

Where, 31H is ASCII value for 1,
32H is ASCII value for 2, and so on.

!! !ere are the following four instructions for processing

numbers in ASCII representation:

AAA - ASCII Adjust After Addition

AAS - ASCII Adjust After Subtraction
AAM - ASCII Adjust After Multiplication
AAD - ASCII Adjust Before Division

SEE R T

® These instructions do not take any operands and assumes the
required operand to be in the AL register.

P e

® Use AAA only after executing the form of
an add instruction that stores a two-BCD-digit byte result
in the AL register.

® AAA then adjusts AL to contain the correct decimal
result.

® The top nibble of AL is set to 0.

® To convert AL to an ASCII result, follow
the AAA instruction with:

or %AL, 0x30

P e

How AAA handles a carry

Carry Action

Decimal Carry AH + 1; CF and AF set to 1

No Decimal Carry AH unchanged; CF and AF
cleared to 0

»b(CD Representation

® There are two types of BCD representation:
1. Unpacked BCD representation
2. Packed BCD representation

® In unpacked BCD representation, each byte stores the
binary equivalent of a decimal digit.

® For example, the number 1234 is stored as:

L4
LSy

P e

Unpacked BCD

® There are two instructions for processing these numbers:
1. AAM - ASCII Adjust After Multiplication
2. AAD - ASCII Adjust Before Division

® The four ASCII adjust instructions, AAA, AAS, AAM and AAD
can also be used with unpacked BCD representation.

cked BCD

® In packed BCD representation, each digit is stored
using four bits.

® Two decimal digits are packed into a byte.
® For example, the number 1234 is stored as:

&2

* There are two instructions for processing these numbers:
1. DAA - Decimal Adjust After Addition
2. DAS - decimal Adjust After Subtraction

* There is no support for multiplication and division in packed BCD
representation.

P e

Assembly Strings

® We specify the length of the string by either of the two
ways:

1. Explicitly storing string length
2. Using a sentinel character

® We can store the string length explicitly by using the $
location counter symbol, that represents the current
value of the location counter.

P e

Example
msg db ‘Hello, world!’, Oxa ; string
len equ S - msg :length of string

® S points to the byte after the last character of the string
variable msgq.

® Therefore, $-msg gives the length of the string.
® We can also write
msg db ‘Hello world!’, Oxa ; string
len equ 13 ;length of string

P e

® Alternatively, we can store strings with a trailing sentinel
character to delimit a string instead of storing the string
length explicitly.

® The sentinel character should be a special character that
does not appear within a string.

® For example:

message DB ‘HELLO WORLD!, 0

P e

String Instructions

® Each string instruction may require a source operand, a
destination operand, or both.

® For 32-bit segments, string instructions use ESI and EDI
registers to point to the source and destination operands,
respectively.

® For 16-bit segments, however, the S| and the DI registers are
used to point to the source and destination respectively.

® There are five basic instructions for processing strings. They are:

1. MOVS - This instruction moves 1 Byte, Word or Doubleword of
data from memory location to another.

2. LODS - This instruction loads from memory. If the operand is of
one byte, it is loaded into the AL register, if the operand is one
word, it is loaded into the AX register and a doubleword is loaded
into the EAX register.

3. STOS - This instruction stores data from register (AL, AX, or EAX)
to memory.

4. CMPS - This instruction compares two data items in memory. Data
could be of a byte size, word or doubleword.

5. SCAS - This instruction compares the contents of a register (AL,
AX or EAX) with the contents of an item in memory.

P e

Each of the above instruction has a byte,
word and doubleword version and string
instructions can be repeated by using a
repetition prefix.

® These instructions use the ES:DI and DS:Sl| pair of registers,
where DI and Sl registers contain valid offset addresses that
refers to bytes stored in memory.

® Sl is normally associated with DS (data segment) and DI is
always associated with ES (extra segment).

® The DS:SI (or ESI) and ES:DI (or EDI) registers point to the
source and destination operands respectively.

® The source operand is assumed to be at DS:Sl (or ESI) and the
destination operand at ES:DI (or EDI) in memory.

® For 16-bit addresses the S| and DI registers are used and for
32-bit addresses the ES| and EDI registers are used.

L[ANMIV

Ing instructions and the assumed space of the

operands.

Basic Instruction Operands at

MOVS

LODS
STOS

CMPS
SCAS

£, 05 J MoVsB

AXDSSI LODSB
ESOLAX STOSB
DS:SIES: DI CMPSB
ESDLAX SCASB

MOVSW
LODSW

STOSW
CMPSW

SCASW

Byte Operation Word Operation Double word Operation

MOVSD
LODSD

ST03D
CMPSD

SCASD

P e

MOVS

® The MOVS instruction is used to copy a data item (byte,
word or doubleword) from the source string to the
destination string.

® The source string is pointed by DS:SI and the destination
string is pointed by ES:DI.

LODS

P

STOS

® The STOS instruction copies the data item from AL (for
bytes - STOSB), AX (for words - STOSW) or EAX (for
doublewords - STOSD) to the destination string, pointed
to by ES:DI in memory.

® The CMPS instruction compares two strings.

® This instruction compares two data items of one byte,
word or doubleword, pointed to by the DS:SI| and ES:DI
registers and sets the flags accordingly.

® Use of the conditional jump instructions along with this
instruction also possible.

P e

SCAS

® The SCAS instruction is used for searching a particular
character or set of characters in a string.

® The data item to be searched should be in AL (for
SCASB), AX (for SCASW) or EAX (for SCASD) registers. The
string to be searched should be in memory and pointed by
the ES:DI (or EDI) register.

epetition Prefixes

® The REP prefix, when set before a string instruction, for
example - REP MOVSB, causes repetition of the
instruction based on a counter placed at the CX register.

©® REP executes the instruction, decreases CX by 1, and
checks whether CX is zero. It repeats the instruction
processing until CX is zero.

® The Direction Flag (DF) determines the direction of the
operation.

® Use CLD (Clear Direction Flag, DF = 0) to make the
operation left to right.

® Use STD (Set Direction Flag, DF = 1) to make the
operation right to left.

P e

REP Variants

® The REP prefix also has the following variations:

1. REP: it is the unconditional repeat. It repeats the
operation until CX is zero.

2. REPE or REPZ: It is conditional repeat. It repeats the
operation while the zero flag indicate equal/zero. It
stops when the ZF indicates not equal/zero or when CX
is zero.

3. REPNE or REPNZ: It is also conditional repeat. It repeats
the operation while the zero flag indicate not equal/not
zero. It stops when the ZF indicates equal/zero or when
CX is decremented to zero.

P e

Assembly Arrays

® To define a one dimensional array

® Use of the data definition directives

® To define a one dimensional array of numbers:
NUMBERS DW 34, 45, 56, 67, 75, 89

® This allocates 2x6 = 12 bytes of consecutive memory
space.

® The symbolic address of the first number will be NUMBERS
and that of the second number will be NUMBERS + 2 and so
on.

P e

Define An Array

® We can define an array named ARR of size 8, and
initialize all the values with zero, as:

ARRDW O
DW O
DW O
DW O
DW O
DW O
DW O
DW 0O
® Which, can be abbreviated as:
ARRDWO0,0,0,0,0,0,0,0

P e

P e

ARR TIMES 8 DW 0

® Restriction: The TIMES directive can also be used for
multiple initializations to the same value

P

Assembly Procedures

® Procedures are identified by a name.

® Following this name, the body of the procedure is
described, which perform a well-defined job.

® End of the procedure is indicated by a return statement.
® Syntax to define a procedure:

v
L9y

P e

® The procedure is called from another function by using
the CALL instruction.

® The CALL instruction should have the name of the called
procedure as argument :

CALL proc_name

® The called procedure returns the control to the calling
procedure by using the RET instruction.

P —

Stacks Data Structure

® An array-like data structure in the memory
® Data can be stored and removed

® ‘top’ of the stack

® PUSH and POP operations

® LIFO data structure, i.e., the data stored first is retrieved
last.

® Assembly language provides two instructions for stack
operations: PUSH and POP.

® Syntax:
PUSH operand

POP address/register

PShift and Rotate Ins 10NS

® The shift and rotate instructions reposition the bits
within the specified operand.

® These instructions fall into the following classes:
e Shift instructions

e Double shift instructions

e Rotate instructions

%1 t Instructionsg

® The bits in bytes, words, and doublewords may be shifted
arithmetically or logically.

® Depending on the value of a specified count, bits can be
shifted up to 31 places.

® To specify the count in one of three ways:
1. To specify the count implicitly as a single shift
2. To specify the count as an immediate value

3. To specify the count as the value contained in CL. This
form allows the shift count to be a variable that the

program supplies during execution.Only the low order 5
bits of CL are used.

P e

® CF always contains the value of the last bit shifted out of
the destination operand.

® In a single-bit shift, OF is set if the value of the
high-order (sign) bit was changed by the operation.
Otherwise, OF is cleared.

® Following a multibit shift the content of OF is always
undefined.

® The shift instructions provide a convenient way to
accomplish division or multiplication by binary power.

Note : division of signed numbers by shifting right is not
the same of division performed by the IDIV instruction.

P e

SAL & SHL

® Shift Arithmetic Left

® shifts the destination byte, word, or doubleword operand
left by one or by the number of bits specified in the
count operand (an immediate value or the value
contained in CL)

® The processor shifts zeros in from the right (low-order)
side of the operand as bits exit from the left (high-order)
side.

® SHL (Shift Logical Left) is a synonym for SAL

P e

SHL

® Synonym SAL

® shifts the bits in the register or memory operand to the
left by the specified number of bit positions

® CF receives the last bit shifted out of the left of the
operand.

® SHL shifts in zeros to fill the vacated bit locations.

® These instructions operate on byte, word, and
doubleword operands.

BEFORE SHL
OR SAL

AFTER SHL
OR SAL BY 1

AFTER SHL
OR SAL BY 10

OF

X

1

X

CF OPERAND

X 10001000100010001000100010001111

1 «— 00010001000100010001000100011110 4 0

0 «— 00100010001000100011110000000000 4— 0

P e

SHR

® Shift Logical Right

® Shifts the destination byte, word, or doubleword operand
right by one or by the number of bits specified in the count
operand

® Count: an immediate value or the value contained in CL.

® The processor shifts zeros in from the left side of the
operand as bits exit from the right side.

® SHR shifts the bits of the register or memory operand to
the right by the specified number of bit positions.

® CF receives the last bit shifted out of the right of the
operand.

® SHR shifts in zeros to fill the vacated bit locations.

/\»
and Rotate Instr

°
S =
- ==

OPERAND CF

BEFORE SHR 10001000100010001000100010001111 X

AFTER SHR 0—»01000100010001000100010001000111—>l
BY 1

AFTER SHR 0—»00000000001000100010001000100010—>0
BY 10

Shift Logical Right

P e

SAR

® Shift Arithmetic Right

® Shifts the destination byte, word, or doubleword operand
to the right by one or by the number of bits specified in
the count operand

® Count :an immediate value or the value contained in CL

® The processor preserves the sign of the operand by shifting
in zeros on the left (high-order) side if the value is positive
or by shifting by ones if the value is negative.

® SAR preserves the sign of the register or memory operand
as it shifts the operand to the right by the specified
number of bit positions.

® CF receives the last bit shifted out of the right of the
onerand

Rotate Instructi

POSITIVE OPERAND CF

BEFORE SAR 01000100010001000100010001000111 X

AFTER SAR 0——»00100010001000100010001000100011—»r1

BY 1

NEGATIVE OPERAND CF

BEFORE SAR 11000100010001000100010001000111 X

AFTER SAR 0Q——»11100010001000100010001000100011—»r1

BY 1

Shift Arithmetic Right

Target register or memory

-

)

SHL -
C

SAL -

SHR 0w

SAR E

Sign
bit

= n
the rightmost bit for a
logical left shift;

— 0 to the leftmost bit
position for a logical right
shift

— arithmetic right shift
copies the sign-bit
through the number

— logical right shift copies a
0 through the number.

RCL

ROL

RCR

ROR

Target register or memory ;

' i

| or—

S

»Double-Shift Instruc

® These instructions provide the basic operations needed to
implement operations on long unalignhed bit strings.

® The double shifts operate either on word or doubleword
operands, as follows:

1. Taking two word operands as input and producing a

one-word output.

2. Taking two doubleword operands as input and producing

a doubleword output.

P e

® Of the two input operands, one may either be in a
general register or in memory

® the other may only be in a general register.
® The results replace the memory or register operand.

® The number of bits to be shifted is specified either in
the CL register or in an immediate byte of the
instruction.

P e

® Bits are shifted from the register operand into the
memory or register operand.

® CF is set to the value of the last bit shifted out of the
destination operand.

® SF, ZF, and PF are set according to the value of the
result.

® OF and AF are left undefined.

P e

SHLD

©® Shift Left Double

® shifts bits of the R/M field to the left, while shifting
high-order bits from the Reg field into the R/M field on
the right

® The result is stored back into the R/M operand.
® The Reg field is not modified.

31 DESTINATION 0

]] I
| cF |¢— MEMORY OF REGISTER s
L] 1 ol
r |

| 31 SOURCE)

| F :

REGISTER "

Nl

J

r

P e

SHRD

® Shift Right Double

® shifts bits of the R/M field to the right, while shifting
low-order bits from the Reg field into the R/M field on
the left

® The result is stored back into the R/M operand.
® The Reg field is not modified.

11 SOURCE 0

I I
| REGISTER —
u 4|
r |
|31 DESTINATION 0
l I I 1
N MEMORY OF REGISTER ——| cF |
I

%ate Instructliong‘

® Allow bits in bytes, words, and doublewords to be rotated

® Bits rotated out of an operand are not lost as in a shift,
but are “circled” back into the other "end” of the operand.

©® Rotates affect only the carry and overflow flags.

® CF may act as an extension of the operand in two of the
rotate instructions, allowing a bit to be isolated and then
tested by a conditional jump instruction (JC /JNC).

® CF always contains the value of the last bit rotated out,
even if the instruction does not use this bit as an extension
of the rotated operand.

P e

® In single-bit rotates, OF is set if the operation changes
the high-order (sign) bit of the destination operand.

@ If the sign bit retains its original value, OF is cleared.
® On multibit rotates, the value of OF is always undefined.

P e

ROL

® Rotate Left

® rotates the byte, word, or doubleword destination
operand left by one or by the number of bits specified in
the count operand

® Count : immediate value / value contained in CL

® For each rotation specified, the high-order bit that exits
from the left of the operand returns at the right to
become the new low-order bit of the operand.

il

DESTINATION

[

(T —————— /=]

MENORY OF REGISTER

I
-

P e

ROR

® Rotate Right

® rotates the byte, word, or doubleword destination
operand right by one or by the number of bits specified in
the count operand

® Count : immediate value / value contained in CL

® For each rotation specified, the low-order bit that exits
from the right of the operand returns at the left to
become the new high-order bit of the operand.

P e

)

>

1 DESTINATION 0

] 1
)| MEMORY OF REGISTER]
|

=

PRCL (Rotate Through™

_arry
Left)

® rotates bits in the byte, word, or doubleword
destination operand left by one or by the number
of bits specified in the count operand (an
immediate value or the value contained in CL)

® differs from ROL

® treats CF as a high-order one-bit extension of the
destination operand

® Each high-order bit that exits from the left side of the
operand moves to CF before it returns to the

® operand as the low-order bit on the next rotation cycle.

0

DESTINATION

1

r

MENORY OF REGLOTER

ikl

e,

Corrects result in AH and AL after addition when working with BCD
values.

Mov AX,0009h

Mov BX ,0006h

Add AX, BX - result AX =0fH (Ah =00 ,Al =0f)
AAA (DAA) - now Ax =0105 h (Ah =01 ,Al =05)

AAD- ASCII Adjust before Division.
Prepares two BCD values for division.

Mov BX,0003h
Mov AX, 0105h ; now Ax =0105 h (Ah =01 ,Al =05)
AAD ; result AX =0fH (Ah =00 ,Al =0f)

Div BX ; AX/IBX

A|illll"‘..-‘_._!!_r [[] o [

PE--ASCILA

rrects the result of muItipIicatio of two BCD values.

Mov AX,0003h

Mov BX ,0005h

MUL AX, BX ; result AX =0fH (Ah =00 ,Al =0f)
AAM ; now Ax =0105 h (Ah =01 ,Al =05)
AAS -------- ASCII Adjust after Subtraction.

DAS ---- Decimal Adjust AL after Subtraction
Corrects result in AH and AL after subtraction when working with BCD values.

MOV AX, 02FFh ; AH =02, AL = 0FFh
AAS ;AH=01, AL =09

RC

9
ES

)

—)

IF RPL bits(0,1) of DEST < RPL bits(0,1) of SRC

THEN ZF = 1;

RPL bits(0,1) of DEST := RPL bits(0,1) of SRC;
ELSE ZF :=0;

ENF IF;

The ARPL instruction has two operands. The first operand is a 16-bit memory variable or word register
that contains the value of a selector. The second operand is a word register. If the RPL field ("requested
privilege level"--bottom two bits) of the first operand is less than the RPL field of the second operand, the
zero flag is set to 1 and the RPL field of the first operand is increased to match the second operand.
Otherwise, the zero flag is set to 0 and no change is made to the first operand.ARPL appears in operating
system software, not in application programs. It is used to guarantee that a selector parameter to a
subroutine does not request more privilege than the caller is allowed. The second operand of ARPL is
normally a register that contains the CS selector value of the caller.

Segment for Reading or
Writing

VERR eax ; Set ZF=1 if segment can be read,
selector in eax
VERW eax ;Set ZF=1 if segment can be written,

selector in eax

~ Bound eax,fffffff1h

If eax > fffffff1h then it call interrupt 5

BOUND ensures that a signed array index is within the limits specified by a block of
memory consisting of an upper and a lower bound. Each bound uses one word for an
operand-size attribute of 16 bits and a doubleword for an operand-size attribute of 32 bits.
The first operand (a register) must be greater than or equal to the first bound in memory
(lower bound), and less than or equal to the second bound in memory (upper bound). If
the register is not within bounds, an Interrupt 5 occurs; the return EIP points to the
BOUND instruction.The bounds limit data structure is usually placed just before the array
itself, making the limits addressable via a constant offset from the beginning of the array.

/0 Port data transfer

IN Input from Port
OUT Output to Port

® IN al, DX Input from port DX into AL
® Out al, DX output from AL to port DX

® INS/INSB/INSW/INSD -- Input from Port to String

® INS al, DX Input byte from port DX
into AL

® INS ax,DX Input word from port DX
into AX

® INS eax, DX Input dword from port DX

Flag manipulation instruction

STC -- Set Carry Flag

STD -- Set Direction Flag

STI -- Set Interrupt Flag

CLC -- Clear Carry Flag

CLD -- Clear Direction Flag

CLI -- Clear Interrupt Flag

CMC -- Complement Carry Flag

SAHF -- Store AH into Flags
LAHF --- Load Flags into AH Register

